找规律巧算
- 格式:docx
- 大小:13.69 KB
- 文档页数:3
找规律求解技巧在数学中,找规律求解技巧是一种常用的解题方法。
通过观察给定数列、图形或问题的特点,寻找其中的规律和规律性质,进而得到问题的解答或结论。
在这篇文章中,我将介绍一些常见的找规律求解技巧,并帮助您更好地理解和应用这些方法。
1. 数列的规律性质:- 等差数列:如果一个数列中的任意一项与它的前一项之差都相等,则这个数列是一个等差数列。
可以通过观察数列中项与项之间的差值来确定等差数列的规律。
例如,1,4,7,10,13...是一个等差数列,公差为3。
- 等比数列:如果一个数列中的任意一项与它的前一项之比都相等,则这个数列是一个等比数列。
可以通过观察数列中项与项之间的比值来确定等比数列的规律。
例如,1,2,4,8,16...是一个等比数列,公比为2。
- 平方数列:如果一个数列中的项的平方值与项的值之间存在某种关系,则这个数列是一个平方数列。
例如,1,4,9,16,25...是一个平方数列,每一项都是对应自然数的平方。
- Fibonacci数列:Fibonacci数列是一个特殊的数列,每一项都是前两项之和。
例如,1,1,2,3,5,8...是一个Fibonacci数列。
2. 图形的规律性质:- 对称性:在一些图形中,存在镜像对称或中心对称的特点。
通过观察图形中交叉部分的变化或旋转关系,可以确定图形的规律。
例如,棋盘图形中,黑白相间的格子形成了明显的对称性。
- 旋转变换:有些图形可能通过旋转变换得到下一步的图形,通过观察图形中各部分的旋转角度和次序,可以确定图形的规律。
例如,圆形上的图案每次顺时针旋转60度。
- 嵌套关系:在一些图形中,存在嵌套的关系。
通过观察图形中嵌套图形的数量或大小,可以确定图形的规律。
例如,彩色方块中,每一层方块数量递增。
3. 问题的规律性质:- 递推关系:有些问题中,每一步的结果都与前一步有着固定的关系。
通过观察前几步的输入和输出,可以确定问题的递推关系和规律。
例如,斐波那契数列中,每一项都是前两项之和。
一、找规律,巧口算。
1. 观察下面的算式,你有什么发现?(1)21—12=987-78=998-89=9 (2)41-14=27=9×352-25=27=9×396-69=27=9×3特点:被减数和减数的数字顺序相反(大数-小数),它们的差是有规律的。
这个两位数的两个数字之差是几,它们的差就是9的几倍。
练习:利用上面的规律算一算:54-45= 94-49=73-37= 81-18=83-38= 63-36=2. 你能自己观察出下面算式的规律吗?(1)392-293=99×1=99 572-275=99×3=297817-718=99×1=99 653-356=99×3=297321-123=99×2=198 642-246=99×4=396(2)你能试着做出以下的题目吗?452-254= 842-248=925-529= 726-627=581-185= 391-193=(3)规律:两个三位数相减,如果减数与被减数的组成数字顺序相反,那么它们的差都是99的倍数。
三位数百位上的数与个位上的数相差几,他们的差就是99的几倍。
3、观察下面的算式,你发现了什么?32×11=35251×11=56145×11=495因数是11的口算:“两头一拉,中间相加”将另一个因数的两个数字拉开,再将数字2和3相加得到的5写在中间。
练一练:43×11= 15×11= 27×11= 125×11= 57×11=5+7=12,遇到这样两个数字相加需要进位的,要向前一位进一,最高位得6。
89×11= 37×11= 65×11= 356×11= 473×11=注意:需要连续进位。
二、计算中的巧方法。
1、计算下面的题,你有什么想法?(1)58+27+42 (2)171-86-71 (3)45-26+55方法:在同级运算中,“带着符号搬家”是一个非常实用的方法。
找规律的三种方法
找规律是数学和逻辑问题中常见的解题方法。
以下是三种常用的找规律方法:
1. 数字规律法:通过观察一系列数字或数字序列,寻找其中的规律和模式。
例如,可以尝试计算每个数与前一个数的差异、比率或乘积,看是否能找到递增或递减的规律。
2. 图形规律法:对于一系列图形或图案,可以通过观察图形的形状、线条、对称性等特征,寻找其中的规律。
可以尝试通过旋转、镜像、移动等操作,找出图形之间的关联性。
3. 字母规律法:针对字母序列或单词,可以通过观察字母的位置、排列、重复性等特征,寻找规律。
可以尝试根据字母在字母表中的顺序或根据字母的形状进行推理。
除了以上三种方法,还有一些其他的找规律方法,比如利用代数公式、模型建立、归纳法等。
在解决问题时,可以尝试结合多种方法,综合分析,找出最合适的规律和模式。
在实际应用中,找规律的能力有助于解决数学问题、逻辑问题、编程问题以及一些日常生活中的难题。
通过不断练习和思考,可以提高找规律的能力,并更加灵活地运用于解决各类问题。
数学找规律技巧和方法以数学找规律技巧和方法为题,我们来探讨一下数学中寻找规律的一些常用技巧和方法。
一、观察法观察法是最基本的方法之一。
通过观察数列中的数字或图形的特点,找出其中的规律。
例如,观察以下数列:1, 4, 9, 16, 25, …我们可以观察到这个数列是由每个数字的平方组成的,即第n个数字是n的平方。
这种方法适用于寻找数字规律或图形规律。
二、递推法递推法是指通过已知的一些数值,推导出后面的数值。
这种方法常用于数列或数学问题中。
例如,观察以下数列:1, 3, 6, 10, 15, …我们可以观察到每个数字是前一个数字加上当前的位置。
即第n个数字是前n-1个数字之和加1。
这种方法适用于寻找数列中的数字规律。
三、代数法代数法是通过建立代数表达式或方程来寻找规律。
例如,观察以下数列:2, 4, 8, 16, 32, …我们可以观察到每个数字都是前一个数字乘以2。
即第n个数字是2的n-1次方。
这种方法适用于寻找数列中的数字规律。
四、差分法差分法是通过对数列中的数字进行差分运算,寻找数字之间的规律。
例如,观察以下数列:1, 4, 9, 16, 25, …我们可以观察到每个数字之间的差值是递增的,即1, 3, 5, 7, …。
这种方法适用于寻找数字之间的规律。
五、数形结合法数形结合法是将数学问题中的数字和几何图形结合在一起,通过观察图形的形状和属性,寻找规律。
例如,观察以下图形:□, ■, ▲, ●, ☆, …我们可以观察到每个图形的边数和顶点数是依次递增的。
即第n个图形有n个边和n个顶点。
这种方法适用于寻找图形规律。
六、归纳法归纳法是通过已知的一些例子,总结出规律。
例如,观察以下数列:1, 1, 2, 3, 5, 8, 13, …我们可以观察到每个数字是前两个数字之和。
即第n个数字是前两个数字之和。
这种方法适用于寻找数列中的数字规律。
七、逆向思维法逆向思维法是指从结果出发,倒推出前面的数字或规律。
八个数学巧算小技巧老师发现很多小学生在计算方面很“弱”——找不到技巧。
在一些规定要用“简便方法”计算的题目中,很多同学不会套用“简便方法”。
01提取公因式这个方法实际上是运用了乘法分配律,将相同因数提取出来,考试中往往剩下的项相加减,会出现一个整数。
注意相同因数的提取。
例如:0.92×1.41+0.92×8.59=0.92×(1.41+8.59)02借来借去法看到名字,就知道这个方法的含义。
用此方法时,需要注意观察,发现规律。
还要注意还哦 ,有借有还,再借不难。
考试中,看到有类似998、999或者1.98等接近一个非常好计算的整数的时候,往往使用借来借去法。
9999+999+99+9=9999+1+999+1+99+1+9+1—403拆分法顾名思义,拆分法就是为了方便计算把一个数拆成几个数。
这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。
分拆还要注意不要改变数的大小哦。
例如:3.2×12.5×25=8×0.4×12.5×25=8×12.5×0.4×2504加法结合律注意对加法结合律(a+b)+c=a+(b+c)的运用,通过改变加数的位置来获得更简便的运算。
5.76+13.67+4.24+6.33=(5.76+4.24)+(13.67+6.33)拆分法和乘法分配律结这种方法要灵活掌握拆分法和乘法分配律,在考卷上看到99、101、9.8等接近一个整数的时候,要首先考虑拆分。
例如:34×9.9 = 34×(10-0.1)案例再现:57×101=?利用基准数在一系列数种找出一个比较折中的数字来代表这一系列的数字,当然要记得这个数字的选取不能偏离这一系列数字太远。
例如:2072+2052+2062+2042+2083=(2062x5)+10-10-20+2105利用公式法(1) 加法:交换律,a+b=b+a,结合律,(a+b)+c=a+(b+c).(2) 减法运算性质:a-(b+c)=a-b-c,a-(b-c)=a-b+c,a-b-c=a-c-b,(a+b)-c=a-c+b=b-c+a.(3):乘法(与加法类似):交换律,a*b=b*a,结合律,(a*b)*c=a*(b*c),分配率,(a+b)xc=ac+bc,(a-b)*c=ac-bc.(4) 除法运算性质(与减法类似):a÷(b*c)=a÷b÷c,a÷(b÷c)=a÷bxc,a÷b÷c=a÷c÷b,(a+b)÷c=a÷c+b÷c,(a-b)÷c=a÷c-b÷c.前边的运算定律、性质公式很多是由于去掉或加上括号而发生变化的。
小学六年级计算及规律训练1、101+100-99+98-97+96-95+94-93+……+8-7+6-5+4-3+2-1=100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-1=2、让学生总结连续自然数的规律:1+2+3+4+…+n=并利用此规律答题:找规律:1 3 6 10 15… 3、让学生发现连续奇数和的规律:1+3=22 1+3+5=32 1+3+5+7=42 等等4、能计算:++……的题型,规律:分母互质,分子等于分母两个数之差,总能写成分子是1的两个分数之差。
如= 并做好变式:216⨯ + 326⨯ + 436⨯ +…… + 1011006⨯ +1021016⨯= 还应把…… 与的题型进行比较。
1+12 +14 +18 +116 +132 +164 +1128= 128127646332311615874321+++++++256255+512511=5、如果2!=2×3,3!=3×4×5,5!=5×6×7×8×9。
请你按此规则计算!8!6 178÷9+91×1717、我们学过+、-、×、÷四种运算。
现在规定“※”是一种新运算,A※B=(A-2)×(B+6)+3。
如:3※5=(3-2)×(5+6)+3=14。
那么10※7=8、△△□☆★△△□☆★△△□☆★……左起第30个图形是(),当□☆★一共有18个时,△最多有()个。
9、小正方形的边长是1如果排成n层,一共要用()个小正方形。
10、摆一个三角形用3根小棒,摆2个三角形用5根小棒,摆3个三角形用7根小棒。
照这样,摆5个三角形用()根小棒,用201根小棒可以摆()三角形。
……………。
数学巧算的方法和技巧巧算,也称为简便计算,是一种数学技巧,旨在通过特定的方法快速地完成计算。
这些方法通常比直接使用基本的算术运算更为高效。
掌握巧算的方法和技巧对于提高数学计算速度和准确性非常重要。
以下是几种常见的数学巧算的方法和技巧:1. 乘法分配律:乘法分配律是数学中的一个基本法则,它可以用于简化复杂的乘法表达式。
例如,对于任意实数a、b、c,有:a × (b + c) = a × b +a × c。
这个法则可以用于简化多个数的乘法运算。
2. 提取公因数:在处理复杂的乘法或加法表达式时,尝试找出并提取出公因数。
例如,在计算25 × 17 + 25 × 83 时,可以提取出公因数 25,简化为25 × (17 + 83)。
3. 利用平方差公式:平方差公式是(a + b) × (a - b) = a^2 - b^2。
这个公式在处理与平方有关的计算时非常有用。
例如,计算 100 - 99 + 98 - 97 + ... + 4 - 3 + 2 - 1 可以简化为 (100 - 99) + (98 - 97) + ... + (4 - 3) + (2 - 1)。
4. 分数的简化:对于分数,尝试通过约分或通分来简化表达式。
例如,对于分数3/4 × 5/6,可以通分为 15/24,进一步约分为 5/8。
5. 利用数的特性:利用数的特性进行巧算。
例如,对于整数1至9,有1×9=9,2×8=16,3×7=21,...,这些结果都是9的倍数。
因此,在计算这些数的乘积时,可以快速得出结果。
6. 利用特殊数字关系:例如,对于π(圆周率)的一些近似值(如),可以利用它与其他数字的关系进行巧算。
例如,× 2 = ,× 3 = 等。
7. 利用公式和定理:许多数学公式和定理可以用于简化计算。
例如,勾股定理、三角函数公式、几何图形的面积和体积公式等。
找规律巧算
找规律是我们在生活、学习、工作中经常使用的一种思维方法,这一讲,我们将劳领小朋友们一起找规律,并根据找到的规律进行巧算
难题点拨①
下面各题,你能很快算出结果吗?
91-19 92-29 83-38 61-16
91-19
快速写出下面各式的结果
86-68 52-25 74-47 95-59
96-69 62-26 51-15 82-28
难题点拨②
计算下面各题,并找出规律律。
(1)1×9+2
(2)12×9+3
(3)123×9+4
根据规律,很快写出下面各式的结果。
1.1234×9+5 12345×9+6
123456×9+71234567×9+8
2. 1234×8+4 12345×8+5
123456×8+6 1234567×8+7
12345678×8+8
2.9876×9-4 98765×9-5
987654×9-6 9876543×9-7
难题点拨3
计算下面各题,然后找规律。
21×9 321×9 4321×9
根据难题点拨中各算式的计算规律,快速算出下面各题的结果。
1.54321×9654321×97654321×9
99×599×799×699×8
家庭作业根据学过的各类算式的规律,快速算出下面各题。
: 64-46 73-37
12345678×9+________=111111111
9876543×9+________=88888888
123456789×8+________=987654321
98765432×9-________=888888880
99×499×9
87654321×9987654321×9
计算下面各题,然后说说你发现的规律。
9876×9+498765×9+3987654×9+2。