运筹学第6章
- 格式:ppt
- 大小:609.50 KB
- 文档页数:76
《运筹学》第六章排队论习题转载请注明1. 思考题(1)排队论主要研究的问题是什么;(2)试述排队模型的种类及各部分的特征;(3)Kendall 符号C B A Z Y X /////中各字母的分别代表什么意义;(4)理解平均到达率、平均服务率、平均服务时间和顾客到达间隔时间等概念; (5)分别写出普阿松分布、负指数分布、爱尔朗分布的密度函数,说明这些分布的主要性质;(6)试述队长和排队长;等待时间和逗留时间;忙期和闲期等概念及他们之间的联系与区别。
2.判断下列说法是否正确(1)若到达排队系统的顾客为普阿松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从普阿松分布,则这两部分顾客合起来的顾客流仍为普阿松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,┉名顾客到达的间隔时间也服从负指数分布; (4)对1//M M 或C M M //的排队系统,服务完毕离开系统的顾客流也为普阿松流; (5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间少于允许队长无限的系统;(9)在顾客到达分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分布的方差越大时,顾客的平均等待时间就越长; (10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由1名工人看管5台机器,或由3名工人联合看管15台机器时,机器因故障等待工人维修的平均时间不变。
3.某店有一个修理工人,顾客到达过程为Poisson 流,平均每小时3人,修理时间服从负指数分布,平均需19分钟,求: (1)店内空闲的时间; (2)有4个顾客的概率; (3)至少有一个顾客的概率; (4)店内顾客的平均数; (5)等待服务的顾客数; (6)平均等待修理的时间;(7)一个顾客在店内逗留时间超过15分钟的概率。
第六章整数规划6.1 用图形将一下列线性规划问题的可行域转换为纯整数问题的可行域(在图上用“×”标出)。
1、 max z=3x1+2x2S.T. 2x1+3x2≤122x1+x2≤9x1、x2≥0解:2、 min f=10x1+9x2S.T. 5x1+3x2≥45x1≥8x2≤10x1、x2≥06.2 求解下列整数规划问题1、 min f=4x1+3x2+2x3S.T. 2x1-5x2+3x3≤44x1+x2+3x3≥3x2+x3≥1x1、x2、x3=0或1解:最优解(0,0,1),最优值:22、 min f=2x1+5x2+3x3+4x3S.T. -4x1+x2+x3+x4≥2-2x1+4x2+2x2+4x2≥4x1+x2-x2+x2≥3x1、x2、x3、x3=0或1解:此模型没有可行解。
3、max Z=2x1+3x2+5x3+6x4S.T. 5x1+3x2+3x3+x4≤302x1+5x2-x2+3x2≤20-x1+3x2+5x2+3x2≤403x1-x2+3x2+5x2≤25x1、x2、x3、x3=正整数解:最优解(0,3,4,3),最优值:474、min z =8x1 +4 x2+3 x3+5 x4+2 x5+3 x6+4 x7+3 x8+4 x9+9 x10+7 x11+5 x12 +10 x13+4 x14+2 x15+175 x16+300 x17+375 x18 +500 x19约束条件x1 + x2+x3≤30x4+ x5+x6-10 x16≤0x7+ x8+x9-20 x17≤0x10+ x11+x12-30 x18≤0x13+ x14+x15-40 x19≤0x1 + x4+ x7+x10+ x13=30x2 + x5+ x8+x11+ x14=20x3 + x6+ x9+x12+ x15=20x i为非负数(i=1,2…..8)x i为非负整数(i=9,10…..15)x i为为0-1变量(i=16,17…..19)解:最优解(30,0,0,0,0,0,0,0,0,0,0,0,0,20,20,0,0,0,1),最优值:8606.3 一餐饮企业准备在全市范围内扩展业务,将从已拟定的14个点中确定8个点建立分店,由于地理位置、环境条件不同,建每个分店所用的费用将有所不同,现拟定的14个店的费用情况如下表:公司办公会决定选择原则如下:(1)B5、B3和B7只能选择一个。
运筹学习题答案第六章运筹学习题答案第六章第一节:线性规划线性规划是运筹学中的一种重要方法,它通过建立数学模型来解决实际问题。
在第六章中,我们学习了线性规划的基本概念和求解方法。
本节将针对第六章的习题提供详细的解答。
第1题:某公司生产两种产品,产品A和产品B。
每单位产品A的利润为5万元,每单位产品B的利润为4万元。
产品A每单位需要3个工时,产品B每单位需要2个工时。
公司每天有8个小时的工时可用。
求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设产品A的产量为x,产品B的产量为y。
根据题意可得以下线性规划模型:目标函数:Max Z = 5x + 4y约束条件:3x + 2y ≤ 8非负约束:x ≥ 0,y ≥ 0根据图形法,我们可以绘制出约束条件的图形,并找到最优解。
通过计算,我们得到最优解为x = 2,y = 1。
即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。
第2题:某公司有两个生产车间,分别生产产品A和产品B。
车间1每天可生产产品A 4个单位或产品B 2个单位;车间2每天可生产产品A 3个单位或产品B 6个单位。
产品A的利润为3万元,产品B的利润为2万元。
公司每天有8个小时的工时可用。
求解公司每天应生产多少单位的产品A和产品B,才能使利润最大化?解答:设车间1生产的产品A的单位数为x1,车间2生产的产品A的单位数为x2。
设车间1生产的产品B的单位数为y1,车间2生产的产品B的单位数为y2。
根据题意可得以下线性规划模型:目标函数:Max Z = 3x1 + 2x2 + 2y1 + 3y2约束条件:4x1 + 3x2 ≤ 82x1 + 6x2 ≤ 8非负约束:x1 ≥ 0,x2 ≥ 0,y1 ≥ 0,y2 ≥ 0通过计算,我们得到最优解为x1 = 2,x2 = 0,y1 = 0,y2 = 1。
即公司每天应生产2个单位的产品A和1个单位的产品B,才能使利润最大化。