苏教版数学必修一新素养同步讲义:3.1 3.1.2 第1课时 指数函数的概念、图象及性质
- 格式:doc
- 大小:442.50 KB
- 文档页数:10
2.2.2 指数函数整体设计教材分析本节主要学习指数函数的概念、图象、性质及性质的简单应用.学习过程中,可以让学生通过画出具体的指数函数的图象,观察其特征,将表达图象特征的通俗语言,归纳、转化为数学符号语言,从而得出指数函数的性质.在这一过程中,体现数形结合的数学思想,用到了分类讨论的数学方法及从特殊到一般的类比研究的方法.所以本节的教学重点是指数函数的图象与性质.根据前面的分析,对本节的学习提出如下的建议:指导学生在学习过程中注意对列表计算结果的分析;让学生自己动手,通过画指数函数的图象,来归纳指数函数的性质.可以根据学生探索新知的情况,在适当时机,利用现代化的教学设备演示,帮助学生理解指数函数的性质.让学生在自主学习、探究活动中,体验数学发现和创造的历程,发展他们的创新意识,体会数学的美,同时激发学生对数学学习的兴趣.在应用性质的过程中,对学习有困难的学生,时时提醒他们注意底数a对指数函数的性质的影响.三维目标1.理解指数函数的概念和意义,能借助计算器或计算机画出具体的指数函数的图象,探索并理解指数函数的单调性的特殊点.2.在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型.3.利用计算工具,比较指数函数增长差异;体会指数等不同函数的类型增长的含义.4.通过指数函数的图象和性质的教学,培养学生观察、分析、归纳等思维能力和数形结合的数学思想方法.5.利用计算机技术及相关的教学软件探讨指数函数的图象和性质,激发学生学习数学的兴趣,努力培养学生的创新意识,培养学生良好的心理素质,优化学生个性品质,使学生学会认识事物的特殊性与一般性之间的关系,培养学生善于探索的思维品质.重点难点教学重点:1.指数函数的图象和性质.2.通过数形结合,利用图象来认识、掌握函数的性质,增强学生分析问题、解决问题的能力.教学难点:指数函数的定义理解,指数函数的图象特征及指数函数的性质.课时安排3课时教学过程第一课时指数函数(一)导入新课设计思路一(实际问题导入)从我国辽东半岛普兰店附近的泥炭中发掘出的古莲子至今大部分还能发芽开花,这些古莲子是多少年以前的遗物呢?要测定古物的年代,可以用放射性碳法:在动植物的体内都含有微量的放射性14C.动植物死亡后,停止了新陈代谢,14C不再产生,且原有的14C会自动衰变.经过5 730年(14C的半衰期),它的残余量只有原始量的一半.经过科学测定,若14C的原始量为1,则经过x年后的残留量为y=a x这里a为常数,0<a<1.设计思路二(情境导入)相传达依尔是国际象棋的发明人,同时也是古印度的宰相,达依尔聪明能干,国王要奖赏他,问他需要什么,达依尔就对国王说:“国王,你只需在象棋的第一格放1粒麦子,在第二格放2粒麦子,在第三格放4粒麦子,以后按比例每一格是前一格的两倍,一直放到第64格,这就是我的要求,如能满足我的这个要求,我就感激不尽了,其他的我就什么都不要了.”国王心想,这有什么难的,不就是一点麦子吗,满足他就是了,于是下令,按照宰相的要求去做,谁知道,全国的粮食用完了还不够.国王很是奇怪,他怎么也想不明白,那么你能用数学知识帮助国王解决这个问题吗?另外按宰相达依尔的要求共需多少粒小麦? 再看下面的一个例子: 背景(实际问题):某细胞分裂时,第一次由1个分裂成2个,第二次由2个分裂成4个,第三次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与分裂次数x 的函数关系式是什么?(答案:y=2x ) 推进新课 新知探究指数函数的概念根据上述例子,我们得到了形如y=a x 的函数,这些函数的自变量是指数,因此我们把这种函数称为指数函数.一般地,函数y=a x (a >0,a≠1)叫做指数函数,其中x 是自变量,x 的取值范围是R .为了对指数函数的形式有较为深刻的印象,不妨请同学思考下面的问题: ①函数y=x 2与函数y=2x 有什么区别?(答:函数y=x 2与函数y=2x 的区别是:函数y=2x 的指数为自变量,底数为常数,而函数y=x 2的底数为自变量,指数为常数)②为什么要规定底数a 是一个大于零且不等于1的常数?(答:如果a=0,⎪⎩⎪⎨⎧≤>;,0,0,0无意义时当恒等于时当xxa x a x如果a <0,例如y=(-2)x ,这时对于x=21,41,…,y=(-2)x 在实数范围内函数值不存在; 如果a=1,y=1x 是一个常数1,对于常数1没有研究的必要.为了避免上述情况,所以规定a >0,a≠1)下面我们来研究指数函数的性质:(在初中学生已经学过描点法画函数的图象,因此先让学生按照描点法的一般步骤:列表—描点—连接来画函数的图象)在同一坐标系中画出下列函数的图象: (1)y=10x ; (2)y=2x ; (3)y=(21)x .我们通过观察函数图象的特征来研究函数的性质:图象特征 函数性质a >1 0<a <1 A >1 0<a <1 向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数图象都在x 轴上方 函数的值域为R + 函数图象都过定点(0,1) a 0=1自左向右看,图象逐渐上升 自左向右看,图象逐渐下降增函数 减函数在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1x >0,a x >1 x >0,a x <1在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1x <0,a x <1 x <0,a x >1图象上升趋势是越来越陡 图象上升趋势是越来越缓函数值开始增长较慢,到了某一值后增长速度极快 函数值开始减小极快,到了某一值后减小速度较慢利用函数的单调性,结合图象还可以看出:(1)在[a,b]上,f(x)=a x (a >0且a≠1)值域是[f(a),f(b)]或[f(b),f(a)]; (2)若x≠0,则f(x)≠1;f(x)取遍所有正数当且仅当x ∈R ; (3)对于指数函数f(x)=a x (a >0且a≠1),总有f(1)=a ; (4)当a >1时,若x 1<x 2,则f(x 1)<f(x 2). 应用示例思路1例1 指数函数f(x)=a x (a >0,且a≠1)的图象经过点(3,π),求f(0)、f(1)、f(-3)的值.分析:要求f(0)、f(1)、f(-3)的值,我们需要先求出指数函数f(x)=a x (a >0,且a≠1)的解析式,也就是要先求a 的值.根据函数图象经过定点(3,π)这一个条件,可以求得底数a 的值. 解:设f(x)=a x (a >0,且a≠1),因为f(x)=a x (a >0,且a≠1)的图象经过点(3,π), 所以f(3)=π,即a 3=π,解得a=π31, 于是f(x)=π3x ,所以,f (0)=π0=1,f(1)=π31=3π,f(-3)=π-1=π1. 点评:从本题看出,要想确定一个指数函数,只需一个条件即可,因为表达式中只有1个参数a.例2 比较下列各组数中两个值的大小.(1)1.52.5,1.53.2; (2)0.5-1.2,0.5-1.5; (3)1.50.3,0.81.2分析:比较数的大小,可以利用函数的单调性,所给的几组数都是指数式,所以考虑利用指数函数的单调性来解.解:(1)考察指数函数y=1.5x ,因为1.5>1,所以指数函数y=1.5x 在R 上是单调增函数.又因为2.5<3.2,所以1.52.5<1.53.2.(2)考察指数函数y=0.5x ,因为0<0.5<1,所以指数函数y=0.5x 在R 上是单调减函数.又因为-1.2>-1.5,所以0.5-1.2<0.5-1.5.(3)由指数函数的性质知1.50.3>1.50=1,0.81.2<0.80=1,所以1.50.3>0.81.2.点评:比较两数的大小,一般方法是将其转化为同一函数的两个不同的函数值,利用函数的单调性进行比较,如果出现不能直接看成同一函数的两个值时,通常可在这两个数之间找一个中间值比如数1,然后将这两个数与1进行比较,从而比较出两个数的大小. 例3 (1)已知5x ≥50.5,求实数x 的取值范围; (2)已知0.25x <16,求实数x 的取值范围.分析:因为5x 、50.5的底数相同,而0.25x 、16可以将底数化为相同的底数0.25,所以可以考虑用指数函数的单调性来求解.解:(1)因为5>1,所以指数函数f(x)=5x 在R 上是单调增函数.由5x ≥50.5,可得x≥0.5,即x 的取值范围为[0.5,+∞).(2)因为0<0.25<1,所以指数函数f(x)=0.25x 在R 上是单调减函数. 因为16=(41)-2=0.25-2,所以0.25x <0.25-2,由此可得x >-2,即x 的取值范围为(-2,+∞). 点评:在解指数不等式(方程)时,可以考虑运用指数函数的单调性来解.对于(2)我们还可以将底数化为4来解.可参照课本第51页例2. 例4 求下列函数的定义域和值域: (1)y=241-x ;(2)y=(32)-|x|;(3)y=4x +2x+1+1;④(4)=10112-+x x .分析:由于指数函数y=a x (a >0,且a≠1)的定义域为R ,所以函数y=a f(x)与函数f(x)的定义域相同,利用指数函数的单调性求值域.解:(1)令x-4≠0,得x≠4,∴定义域为{x|x ∈R ,且x≠4}.∵41-x ≠0,∴241-x ≠1,∴y=241-x 的值域为{y|y >0,且y≠1}.(2)定义域为R . ∵|x|≥0,∴y=(32)-|x|=(23)|x|≥(23)0=1,故y=(32)-|x|的值域为{y|y≥1}. (3)定义域为R .∵y=4x +2x+1+1=(2x )2+2·2x +1=(2x +1)2,且2x >0,∴y >1. 故y=4x +2x+1+1的值域为{y|y >1}. (4)令12+x x ≥0,得11+-x x ≥0,解得x <-1或x≥1,故y=10112-+x x 函数定义域为{x|x <-1或x≥1},值域为{y|y≥1,且y≠10}.点评:求与指数函数有关的函数的值域时,要注意充分考虑并利用指数函数本身的要求和所具有的性质,例如指数函数的单调性等.例5 作出下列函数的图象,并说明它们之间的相互关系. (1)y=3x ;(2)y=3x-1;(3)y=3x+1.分析:画函数的图象常用的方法是描点法,描点法的一般步骤是:列表—描点—连线. 当我们熟悉了一些基本的初等函数的图象特征后,可以考虑运用图象的变换的方法来实现作函数的图象.解:运用描点法可以作出函数(1)y=3x ;(2)y=3x-1;(3)y=3x+1的图象,如右图所示.由图象可以得知:函数y=3x+1的图象是由函数y=3x 的图象向左平移一个单位得到的;函数y=3x-1的图象是由函数y=3x 的图象向右平移一个单位得到的.点评:本题主要考查函数的图象及其平移变换,其变换的一般规律是:设a >0. (1)将函数y=f(x)的图象向左平移a 个单位,就得到函数y=f(x+a)的图象; (2)将函数y=f(x)的图象向右平移a 个单位,就得到函数y=f(x-a)的图象; (3)将函数y=f(x)的图象向下平移a 个单位,就得到函数y=f(x)-a 的图象; (4)将函数y=f(x)的图象向上平移a 个单位,就得到函数y=f(x)+a 的图象. 简单地说就是“左加右减,上加下减”.拓展思维:函数图象的变换除了平移变换外还有其他的变换,例如对称变换等,对于对称变换:一般地,函数y=f(x)的图象与函数y=f(-x)的图象关于y 轴对称;函数y=f(x)的图象与函数y=-f(x)的图象关于x 轴对称,函数y=f(x)的图象与函数y=-f(-x)的图象关于原点对称.思路2例1 指数函数y=f(x)的图象经过点(π,e),求f(0)、f(1)、f(-π)的值. 分析:要求函数值,只要求出函数的解析式就可以了.解:设y=f(x)=a x (a >0,且a≠1),因为y=f(x)的图象经过点(π,e),所以e=a π,得a=e π1,于是f(x)=(e π1)x .所以,f(0)=(e π1)0=1,f(1)=(e π1)1=e π1,f(-π)=(e π1)-π=e1. 例2 将下列各数由小到大排列起来:(-3)32,(32)21,(32)31,(-32)32-,(-3)31,(31-)3,(23)34,(21-)-2.分析:这些数按从小到大的顺序排列起来,最好的方法是先将这些数进行分类:首先可考虑是正数还是负数,如果是负数,则再进一步分成小于-1还是介于-1与0之间,是正数的再进一步分成0与1之间的及大于1的,然后再将以上各类数中的每一类数作进一步的比较,最后将它们由小到大排列起来.解:在所给的数中,负数有:(-3) 31,(31-)3,且(-3) 31<-1,-1<(31-)3<0,所以(-3)31<(31-)3<0. 正数有:(-3)32,(32)21,(32)31,(-32)32-,(23)34,(21-)-2,且(-3)32=332,(32)21,(32)31,(-32)32-=(23),(23)34,(21-)-2=(-2)2=4,其中大于0而小于1的有:(32)21,(32)31=(23)32,且(32)21<(32)31,大于1的有:(-3)32=332,(-32)32-=(23)32,(23)34,(21-)-2=4.综上所述,所给的数由小到大排列的顺序为:(-3)31<(31-)3<(32)21<(32)31<(-32)32-<(23)34<(-3)32<(21-)-2.点评:多个幂值的比较大小,常常采取先分组再比较的方法,即先将所给的各个数值进行分类,在每类数值中比较大小,若底数相同可利用指数函数的单调性进行比较;若底数、指数都不相同时,可以利用中间量搭建“桥梁”进行比较.若数值中含有字母,应对所含字母的取值进行讨论.例3 求下列函数的定义域和值域:(1)y=xx 212+;(2)y=2713-x. 解:(1)函数y=x x212+的定义域为R .∵y=xx212+,∴(y-1)2x =-y ,即(1-y)2x =y , 显然,y≠1,∴2x =y y-1>0,∴函数y=xx 212+的值域为(0,1). (2)∵3x -271≥0,∴3x ≥3-3,∴x≥-3.∴函数y=2713-x的定义域为{x|x≥-3|,函数y=2713-x值域为[0,+∞).点评:一般来说,函数y=a f(x)的定义域就是f(x)的定义域,其值域不但要考虑f(x)的值域,还要考虑a >1还是0<a <1,例如f(x)∈[-4,+∞)时,若a >1,则a f(x)∈[a -4,+∞),若0<a <1,则a f(x)∈(0,a -4]. 例4 利用函数f(x)=(21)x的图象,作出下列函数的图象: (1)f(x-1);(2)f(x+1);(3)f(x)-1. 分析:作图前先分别探究每一个函数的定义域和值域以及单调性,再研究探索各个函数的图象间是否有对称性及平移的相互关系,从而掌握图象的大致变化趋势,利用函数图象的相应变化,作出相应的函数图象. 解:各函数的图象如下图:点评:利用熟悉的函数图象作图,主要是利用图象的平移变换,平移需分清平移的方向以及平移的量,即平移多少个单位. 知能训练课本第52页练习1、2、3、4、5. 解答:1.C(提示:0<a-1<1).2.(1)3.10.5<3.12.3;(2)(32)-0.3>(32)-0.24; (3)2.3-2.5<0.2-0.1(提示:2.3-2.5<2.30=1,0.2-0.1>0.20=1).3.(1){x|x≠0,x ∈R };(2){x|x≥0,x ∈R }.4.(1)x >3;(2)x <-3;(3)x <21;(4)x <0. 5.A(提示:y=2-x ,即y=(21)x ). 点评:进一步熟练掌握指数函数的图象及其性质的应用. 课堂小结指数函数是中学阶段所学的重要的初等函数之一,因此在学习中要特别注意,尤其是指数函数是新接触的函数,所以要特别加以重视.本节课的重点内容是指数函数的定义、图象和性质,要求能熟记指数函数的图象特征以及指数函数的基本性质,这是学好指数函数的关键.除此之外,还要学会根据指数函数的图象特征来探究指数函数的性质,并能根据实际需要,对指数函数的底数a 分两种情况加以讨论,体会其中的数形结合的思想和分类讨论的思想,通过图象变换的讨论研究,懂得世界上的万事万物之间存在必然的、内在的联系,因此,在研究图象的平移和对称变换的时候,注意对变换的方法和规律的总结,并能正确地运用这些方法和规律解决有关函数图象的问题,加深对指数函数的图象和性质的认识和理解. 作业一、习题2.2(2)第1、2、4、5题. 二、阅读课本第49页至第53页内容.设计感想在设计本节课的教学过程时,围绕以下几点进行:一是以《新课程标准》的基本理念为指导,着眼于培养学生自主学习的能力,因此在设计教学过程时,注意让学生多动手实践,使学生从动手操作的过程中体会函数问题研究的方法和过程;二是从学生现有的认知基础出发,在课堂教学中以本节课的知识结构为主线,充分发挥学生学习的主观能动性,让学生自主探索并获取新的知识和应用新的知识解决实际问题;三是采用层层深入的方式,分散学生学习时可能遇到的难点;四是教学中注意讲练结合,借助多媒体手段进行多方位教学,从而实现教学方式多样化,从实例出发,引用典故,激发学生的学习兴趣,使教与学做到有机结合,使课堂教学达到最佳状态.(设计者:赵家法)第二课时 指数函数(二)导入新课设计思路一(复习导入)在上一节课中,我们学习了指数函数的概念、图象以及性质,下面我们一起来回顾一下相关的内容.(由学生回答,再由教师归纳总结) 设计思路二(习题导入) 请同学们完成下列习题:1.形如y=a x 的函数叫做______________函数,其中底数a 满足的条件是_____________;2.已知函数y=(m 2-3m-3)·3x 为指数函数,则m=_________;3.若-1<x <0,则2x ,(21)x,0.2x 由小到大的排列顺序是__________. 答案:1.指数,a >0,且a≠1;2.m=-1或4;3.2x <(21)x<0.2x . 思考如何判断函数y=1212-+x x 的奇偶性以及单调性?推进新课 新知探究复习指数函数的相关知识: 1.指数函数的定义. 2.指数函数的性质:指数函数y=a x 的图象和性质a >10<a <1图象性质(1)定义域:R (2)值域:(0,+∞) (3)图象过定点(0,1)(4)在(-∞,+∞)上是单调增函数 在(-∞,+∞)上是单调减函数应用示例思路1例1 求函数y=(21)232+-x x 的定义域、值域及单调区间.分析:这是一个求复合函数的单调性的问题,对于这类问题必须弄清楚函数是由哪几个函数复合而成,这些函数的单调性如何,这样才能正确求解.解:函数y=(21)232+-x x 的定义域为R . 设u=x 2-3x+2=(x-23)2-41,所以u=x 2-3x+2的值域为[-41,+∞),减区间为(-∞,23],增区间为[23,+∞).又因为函数y=(21)u 是减函数,所以函数y=(21)232+-x x 的值域为(0,42],单调减区间为[23,+∞),单调增区间为(-∞,23].点评:对于形如y=a g(x)(a >0,a≠1)的函数,根据例题可以得出以下结论:①函数y=a g(x)的定义域与g(x)的定义域相同;②应先求函数的g(x)值域,再根据指数函数的单调性及其值域来求y=a g(x)(a >0,a≠1)的值域;③对于函数y=a g(x)(a >0,a≠1)的单调性有:当a >1时,函数y=a g(x)(a >0,a≠1)的单调性与函数g(x)的单调性相同;当0<a <1时,函数y=a g(x)(a >0,a≠1)的单调性与函数g(x)的单调性相反. 例2 设a 是实数,f(x)=a-122+x(x ∈R ),(1)试证明:对于任意实数a ,函数f(x)为增函数;(2)试确定a 值,使f(x)为奇函数. 分析:题中函数f(x)=a-122+x (x ∈R )的形式较为复杂,而题目要求证明函数的单调性和奇偶性,因此,只要严格按照函数的单调性、奇偶性的定义进行证明就能证得结论. (1)证明:设x 1,x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(a-1221+x )-(a-1222+x )=1222+x -1221+x =)12)(12()22(22121++-x x x x ,由于指数函数y=2x 在R 上是增函数,且x 1<x 2,所以12x<22x,即12x-22x<0, 又由2x >0得12x+1>0,22x+1>0,所以f(x 1)-f(x 2)<0,即f(x 1)<f(x 2). 因为此结论与a 取值无关,所以对于a 取任意实数,f(x)为增函数.(2)解:若f(x)为奇函数,则f(-x)=-f(x)即a-122+-x =-(a-122+x ),变形得:2a=xx x2)12(22+•-+122+x =12)12(2++x x , 解得:a=1.所以当a=1时,f(x)为奇函数.点评:(1)在题(1)的证明过程中,在对作差的结果进行正、负号判断时,利用了指数函数的值域及单调性.这也提醒我们在解这类题目时,注意运用已经掌握的函数的奇偶性及单调性来解题.(2)解题时应要求学生注意不同题型采用不同的解题方法.如题(2),此题并非直接确定a 值,而是由已知条件逐步推导得a 值. 例3 设函数f(x)=1+11-x ,g(x)=f(2|x|).(1)求函数f(x)和g(x)的定义域;(2)判断函数f(x)和g(x)的奇偶性;(3)求函数g(x)的单调递增区间.分析:对于函数g(x),它是一个由f(x)与x=2|x|复合而成的函数,因此,可以通过这种复合关系得到函数g(x)的解析式,从而可以解决相应的问题;函数的单调区间也可以考虑用定义解决.解:(1)由x-1≠0得x≠1,所以函数f(x)的定义域为(-∞,1)∪(1,+∞). 因为f(x)=1+11-x ,所以g(x)=f(2|x|)=1+121||-x , 由于2|x|-1≠0,所以x≠0,所以函数g(x)的定义域为(-∞,0)∪(0,+∞).(2)因为函数f(x)的定义域为(-∞,1)∪(1,+∞),它不关于原点对称,所以f(x)既不是奇函数也不是偶函数,即f(x)是非奇非偶函数.因为函数g(x)的定义域为(-∞,0)∪(0,+∞),它关于原点对称,且 g(-x)=1+121||--x =1+121||-x =g(x),所以g(x)是偶函数. (3)设x 1、x 2∈(0,+∞),且x 1<x 2,则 g(x 1)-g(x 2)=(1+121||1-x )-(1+121||2-x )=121||1-x -121||2-x ==---12112121x x)12)(12(222112---x x x x . 因为0<x 1<x 2,所以22x-12x>0,12x-1>0,22x-1>0,所以g(x 1)-g(x 2)>0,所以g(x)在(0,+∞)上是减函数,又因为g(x)是偶函数,所以g(x)在(-∞,0)上是增函数.所以g(x)的单调增区间是(-∞,0).点评:(1)研究函数的单调性和奇偶性,不能忽视函数的定义域,特别是在研究函数的奇偶性时,如果函数的定义域不关于原点对称,则这个函数必定是非奇非偶函数;(2)本题(3)的解答过程中,在研究函数的单调性时,巧妙运用了函数的奇偶性,起到了事半功倍的效果;(3)本题是一个比较综合的问题,我们在解决这类问题时,要紧紧抓住题目条件,联系相关定义、概念以及公式等,环环相扣,步步为营,最终自然而然地解决问题. 例4 已知函数f(x)=x(131-x+21). (1)求函数f(x)的定义域;(2)讨论函数f(x)的奇偶性;(3)证明:函数f(x)在定义域上恒大于0.分析:本题中求函数的定义域从分母不为0入手;对于函数奇偶性的讨论可以直接由函数奇偶性的定义来判断.解:(1)定义域为{x|x≠0}.(2)因为f(x)=x(131-x +21),所以f(x)=x(131-x +21)=13132-+•x x x .因为f(-x)=131323131213132-+•=-+•-=-+•---x x x x x x x x x =f(x), 所以函数f(x)为偶函数.(3)当x >0时,3x >1,所以3x -1>0.所以131-x >0,从而有131-x+21>21.所以x(131-x +21)>2x >0,即当x >0时,f(x)>0; 当x <0时,1>3x >0,所以0>3x -1>-1.所以131-x <-1,从而有131-x +21<21-. 所以x(131-x +21)>-2x >0,即当x <0时,f(x)>0. 综上所述,函数f(x)在定义域上恒大于0.点评:(1)判断函数的奇偶性可以直接运用定义来判断,也可以运用函数奇偶性定义的等价形式:若函数f(x)满足f(-x)+f(x)=0,则函数f(x)为奇函数;函数f(x)满足f(-x)+f(x)=0,则函数f(x)为偶函数.因此对于本题中的(2)还有以下解法:因为f(x)-f(-x)=x(131-x +131--x +1)=x(1331--x x +1)=0. 所以得f(-x)=f(x),所以f(x)是偶函数.(2)证明函数在定义域上恒大于0的问题,可以运用分类讨论来逐步求解,也可以转化为先证明函数f(x)在(0,+∞)上值域为(0,+∞),再根据函数是偶函数得到函数f(x)在(-∞,0)上值域为(0,+∞),从而证得结论.思路2例1 对于函数f(x)=(31)122--x x ,(1)求函数f(x)的定义域、值域; (2)确定函数f(x)的单调区间.分析:这是一个复合函数的问题,因此,可以将函数分解成为我们熟悉的函数如二次函数、指数函数、对数函数等,利用这些熟悉的函数相应的性质来解决问题.解:函数f(x)=(31)122--x x 可以看成是由函数u =x 2-2x -1与函数y =(31)u 复合而成. (1)由u =x 2-2x -1=(x -1)2-2,当x ∈R 时,u≥-2,此时函数y =(31)u 总有意义,所以函数f(x)定义域为R ;又由u≥-2,所以0<(31)u ≤9,所以原函数的值域为(0,9]. (2)因为函数u =x 2-2x -1在[1,+∞)上递增, 所以对于任意的1≤x 1<x 2都有u 1<u 2,所以有(31)1u >(31)1u ,即y 1>y 2. 所以函数f(x)=(31)122--x x 在[1,+∞)上递减. 同理可得函数f(x)=(31)122--x x 在(-∞,1]上递增. 点评:形如y =a f(x)(a >0,a≠1)的函数有如下性质:(1)定义域与函数f(x)定义域相同;(2)先确定函数u =f(x)的值域,然后以u 的值域作为函数y =a u (a >0,a≠1)的定义域求得函数y =a f(x)(a >0,a≠1)的值域;(3)函数y =a f(x)(a >0,a≠1)的单调性,可以由函数u =f(x)与y =a u (a >0,a≠1)按照“同增异减”即“单调性相同为增函数,单调性相异为减函数”的原则来确定.(4)从本题中的解答过程,可以体会到换元法在解决复合函数问题时的作用.例2 若函数f(x)=1212---•x x a a 为奇函数, (1)确定a 的值;(2)求函数f(x)的定义域;(3)求函数f(x)的值域;(4)讨论函数f(x)的单调性.分析:这是一个研究函数的定义域、值域、单调性、奇偶性的问题,可以由函数的单调性、奇偶性的定义来解决相应的问题.解:先将函数f(x)=1212---•x x a a 化简为f(x)= a-121-x . (1)由奇函数的定义,可得f(-x)+f(x)=0,即a-121--x +a-121-x =0,因为2a +x x 2121--=0,所以a =-21. (2)因为f(x)=-21-121-x ,所以2x -1≠0,即x≠0. 所以函数f(x)=-21-121-x 的定义域为{x|x≠0}. (3)方法一:(逐步求解法)因为x≠0,所以2x -1>-1.因为2x -1≠0,所以0>2x -1>-1或2x -1>0.所以-21-121-x >21,-21-121-x <-21, 即函数的值域为(-∞,21-)∪(21,+∞). 方法二:(利用函数的有界性)由y=f(x)=-21-121-x ≠-21,可得2x =2121+-y y . 因为2x >0,所以2121+-y y >0,可得y >21或y <-21,即f(x)>21或f(x)<-21, 所以函数的值域为(-∞,21-)∪(21,+∞). (4)当x >0时,设0<x 1<x 2,则f(x 1)-f(x 2)=a-1211-x -(a-1212-x )=1212-x -1211-x =)12)(12(221221---x x x x . ∵0<x 1<x 2,∴1<12x <22x.∴12x -22x <0,12x -1<0,22x -1<0.∴f(x 1)-f(x 2)<0,即f(x 1)<f(x 2),因此f(x)=-21-121-x 在(0,+∞)上递增. 同样可以得出f(x)=-21-121-x 在(-∞,0)上递减. 点评:本题是一道函数综合题,需利用函数的有关性质,如求函数的定义域、值域,判断函数的奇偶性、单调性等知识.在判断函数的单调性时,我们也可以采用复合函数单调性的判断方法.例3 若不等式3x +6x +9x ·a >-1对(-∞,1]上任意的x 恒成立,求实数a 的取值范围.分析:本题可以将不等式变形为a >f(x)或a <f(x)的形式,因为所给不等式恒成立,因此,实数a 的取值范围为a >[f(x)]max 或a <[f(x)]min ,这样就将问题转化为求f(x)的最大值或最小值.解:将不等式3x +6x +9x ·a >-1化为a >-[(31)x +(32)x +(91)x ], 因为函数y=(31)x ,y=(32)x ,y=(91)x 在(-∞,1]上都是减函数,所以函数y=-[(31)x +(32)x +(91)x ]在(-∞,1]上是增函数.所以当x=1时,函数y=-[(31)x +(32)x +(91)x ]有最大值910-,所以,所求实数a 的取值范围为a >910-. 点评:(1)在解决有关恒成立问题时的常用方法之一是“变量分离法”,即将变量x 与参数a 分离后分别放在不等式或等式的两边,然后,再来求相关函数的最值.(2)在求函数的最值时,运用函数的单调性来求解是常用的方法之一.例4 已知函数f(x)=a x +12+-x x (a >1).(1)证明:函数f(x)在(-1,+∞)上为增函数;(2)证明:方程f(x)=0没有负数根.分析:要证明函数在某一个区间上的单调性,常用的方法是应用函数单调性的定义来证明.要证明方程没有负数根,可以先假设方程存在负数根,然后根据题目条件推出矛盾,从而证得结论.证明:(1)设x 1、x 2∈(-1,+∞),且x 1<x 2,f(x 2)-f(x 1)=)1)(1()(31212121211221112++-+-=+---+-+x x x x a a x x a x x a x x x x , 因为x 1<x 2,a >1,所以12x x a a >,又因为x 1、x 2∈(-1,+∞),所以x 2+1>0,x 1+1>0.从而有f(x 2)-f(x 1)>0,所以函数f(x)在(-1,+∞)上为增函数.(2)设x 0(x 0<0)是方程f(x)=0的根,则0x a +1200+-x x =0, 即0x a =1200+-x x .因为x 0<0,所以0x a ∈(0,1). 又因为1200+-x x =130+x -1,若x 0<-1,则130+x <0,所以130+x -1<-1,即1200+-x x <-1; 若-1<x 0<0,则0<x 0+1<1,所以130+x >3,即1200+-x x >2. 所以1200+-x x ∈(-∞,-1)∪(2,+∞). 综上所述,满足0x a =1200+-x x 的x 0不存在,即方程f(x)=0没有负数根. 所以,方程f(x)=0没有负数根.点评:(1)对于函数单调性的证明或判断,利用函数单调性的定义是常用的证明或判断方法,另外,还有其他的方法,例如可以通过复合函数来判断或证明.(2)对于方程是否在某一个区间的根的存在性的判断,除了用本题的方法之外,还可以运用函数的单调性求出区间上的最值的方法来解决.知能训练1.已知函数f(x)是偶函数,且当x >0时,f(x)=10x ,则当x <0时,f(x)等于( )A.10xB.10-xC.-10xD.-10-x解答:B2.已知函数f(x)=a x 在[-1,1]上的最大值与最小值的差是1,则底数a 等于( )A.251+B.251+-C.251±D.215+ 解答:D3.函数y=2x 与y=x 2的图象的交点个数为( )A.0B.1C.2D.3解答:D4.函数y=π-|x|是( )A.奇函数,且在(-∞,0]上是增函数B.偶函数,且在(-∞,0]上是减函数C.奇函数,且在[0,+∞)上是增函数D.偶函数,且在[0,+∞)上是减函数解答:D5.函数f(x)=(31)22++-x x 的单调增区间为____________. 解答:[21,2] 6.函数y=(41)2122+-x x 的值域为____________. 解答:(0,2]7.已知函数y=a+141+x 为奇函数,则a=____________.解答:21- 点评:进一步掌握指数函数的图象与性质.课堂小结1.指数函数y=a x (a >0,a≠1)是在定义域上的单调函数,复合函数y=a u [其中u 是关于x 的函数u(x)]的单调性,由函数y=a u 和u=u(x)的单调性综合确定.2.通过观察指数函数y=a x (a >0,a≠1),不难发现:当⎩⎨⎧<<<<⎩⎨⎧>>10,101,1y a y a 或时,均有x >0;当⎩⎨⎧<<>⎩⎨⎧><<10,101,10y y a 或时,均有x <0.这一性质可以归结为“底幂同,大于零;底幂异,小于零”.熟悉这一性质,对于解决有关指数函数的问题非常有用.作业课本第55页习题2.2(2)第6、7、8题.设计感想本节课的内容主要是结合指数函数的性质来研究一些复合函数的性质,譬如研究复合函数的单调性和奇偶性,研究复合函数的单调区间以及函数的最值等等.其中复合函数的性质对于学生来说是难点,因此,在研究复合函数的性质时,注意归纳总结.一般地,函数y=f(u)和u=g(x),设函数y=f[g(x)]的定义域为A ,如果在A 或A 的某个子区间上函数y=f(u)(称为外函数)与u=g(x)(称为内函数)的单调性相同,则复合函数y=f[g(x)]在该区间上为递增函数,如果单调性相反,则复合函数y=f[g(x)]在该区间上为递减函数.这一个结论可以简记为“同增异减”.另外,在研究复合函数的性质时必须在函数y=f[g(x)]的定义域内研究.(设计者:王银娣)第三课时 指数函数(三)导入新课设计思路一(实际问题导入)当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5 730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量P 与死亡年数t 之间的关系P=(21)5730t,考古学家根据上面的这个式子依据生物体内的碳14含量P 的值,可以知道生物死亡的年数t.式子P=(21)5730t 是一个生物体内碳14含量P 关于生物死亡年数t 的函数,而且是一个指数函数形式的函数.这一节课我们来研究与指数函数相关的实际问题,也就是指数函数的实际应用问题.设计思路二(情境导入)请看下面的问题:某厂引进一个产品的生产线,第一个月这种产品的产量是100件,由于技术的不断熟练和更新,第二个月这种产品的产量是150件,第三个月这种产品的产量是225件,按照这样的生产速度,问第十个月这种产品的产量是多少件?问题的解决:因为第一个月这种产品的产量是100件,第二个月这种产品的产量是150件,第三个月这种产品的产量是225件,所以,可以得出这样的结论:后一个月的产量是前。
指数函数及其性质::【学习目标】1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域;2.掌握指数函数图象:(1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质;(2)掌握底数对指数函数图象的影响;(3)从图象上体会指数增长与直线上升的区别.3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型;4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法;5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题.【要点梳理】要点一、指数函数的概念:函数y=a x(a>0且a≠1)叫做指数函数,其中x是自变量,a为常数,函数定义域为R.要点诠释:1(1)形式上的严格性:只有形如y=a x(a>0且a≠1)的函数才是指数函数.像y=2⋅3x,y=2x,y=3x+1等函数都不是指数函数.(2)为什么规定底数a大于零且不等于1:⎧⎪x>0时,a x恒等于0,①如果a=0,则⎨⎪⎩x≤0时,a x无意义.②如果a<0,则对于一些函数,比如y=(-4)x,当x=11,x=,⋅⋅⋅时,在实数范围内函数值不存在.24③如果a=1,则y=1x=1是个常量,就没研究的必要了.要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质①定义域R,值域(0,+∞)②a0=1,即x=0时,y=1,图象都经过(0,1)点③a x=a,即x=1时,y等于底数a④在定义域上是单调减函数⑤x<0时,a x>1x>0时,0<a x<1⑥既不是奇函数,也不是偶函数④在定义域上是单调增函数⑤x<0时,0<a x<1x>0时,a x>1要点诠释:(1)当底数大小不定时,必须分“a>1”和“0<a<1”两种情形讨论。
3.2.1对数第1课时对数的概念学习目标 1.了解对数的概念.2.会进行对数式与指数式的互化.3.会求简单的对数值.知识点一对数的概念思考解指数方程:3x= 3.可化为3x=123,所以x=12.那么你会解3x=2吗?★★答案★★不会,因为2难以化为以3为底的指数式,因而需要引入对数概念.梳理对数的概念一般地,如果a(a>0,a≠1)的b次幂等于N,即a b=N,那么就称b是以a为底N的对数,记作log a N=b,其中,a叫做对数的底数,N叫做真数.通常将以10为底的对数称为常用对数,以e为底的对数称为自然对数.log10N可简记为lg_N,log e N简记为ln_N.知识点二对数与指数的关系思考log a1(a>0,且a≠1)等于?★★答案★★设log a1=t,化为指数式a t=1,则不难求得t=0,即log a1=0.梳理(1)对数与指数的关系若a>0,且a≠1,则a x=N⇔log a N=x.对数恒等式:log a Na=N;log a a x=x(a>0,且a≠1).(2)对数的性质①1的对数为零;②底的对数为1;③零和负数没有对数.类型一 对数的概念例1 在N =log (5-b )(b -2)中,实数b 的取值范围是________. ★★答案★★ 2<b <5且b ≠4 解析 ∵⎩⎪⎨⎪⎧b -2>0,5-b >0,5-b ≠1,∴2<b <5且b ≠4.反思与感悟 由于对数式中的底数a 就是指数式中的底数a ,所以a 的取值范围为a >0,且a ≠1;由于在指数式中a x =N ,而a x >0,所以N >0. 跟踪训练1 求f (x )=log x 1-x1+x 的定义域.解 要使函数式有意义,需⎩⎪⎨⎪⎧x >0,x ≠1,1-x 1+x >0,解得0<x <1.∴f (x )=log x 1-x1+x 的定义域为(0,1).类型二 应用对数的基本性质求值 例2 求下列各式中x 的值. (1)log 2(log 5x )=0;(2)log 3(lg x )=1. 解 (1)∵log 2(log 5x )=0, ∴log 5x =20=1,∴x =51=5.(2)∵log 3(lg x )=1,∴lg x =31=3,∴x =103=1000.反思与感悟 本题利用对数的基本性质从整体入手,由外到内逐层深入来解决问题.log a N =0⇒N =1;log a N =1⇒N =a 使用频繁,应在理解的基础上牢记.跟踪训练2 若log 2(log 3x )=log 3(log 4y )=log 4(log 2z )=0,则x +y +z 的值为________. ★★答案★★ 9解析 ∵log 2(log 3x )=0,∴log 3x =1. ∴x =3.同理y =4,z =2.∴x +y +z =9. 类型三 对数式与指数式的互化 命题角度1 指数式化为对数式 例3 将下列指数式写成对数式.(1)54=625;(2)2-6=164;(3)3a =27;(4)⎝⎛⎭⎫13m =5.73. 解 (1)log 5625=4.(2)log 2164=-6.(3)log 327=a .(4)13log 5.73=m .反思与感悟 指数式化为对数式,关键是弄清指数式各部位的去向:跟踪训练3 (1)将3-2=19,⎝⎛⎭⎫126=164化为对数式.(2)解方程:⎝⎛⎭⎫13m=5.解 (1)3-2=19可化为log 319=-2;⎝⎛⎭⎫126=164可化为12log 164=6.(2)m =13log 5.命题角度2 对数式化为指数式 例4 求下列各式中x 的值.(1)log 64x =-23;(2)log x 8=6;(3)lg100=x ;(4)-lne 2=x ;(5)21)log 13+22=x .解 (1)x =2364-=233(4)-=4-2=116.(2)因为x 6=8,所以x =166()x =168=136(2)=122= 2.(3)因为10x =100=102,所以x =2. (4)由-lne 2=x ,得-x =lne 2,即e -x =e 2. 所以x =-2. (5)因为21)log -)13+22=x ,所以(2-1)x =13+22=1(2+1)2=12+1=2-1, 所以x =1.反思与感悟 要求对数的值,设对数为某一未知数,将对数式化为指数式,再利用指数幂的运算性质求解.跟踪训练4 计算:(1)log 927;(2)43log 81;(3)345log 625.解 (1)设x =log 927,则9x =27,32x =33,∴x =32.(2)设x =43log 81,则⎝⎛⎭⎫43x =81,43x=34,∴x =16.(3)令x =345log 625,则⎝⎛⎭⎫354x=625,435x =54,∴x =3.命题角度3 对数恒等式log a Na=N 的应用例5 (1)求=2中x 的值; (2)求的值(a,b ,c ∈(0,+∞)且不等于1,N >0). 解 (1)∵=33·=27x =2,∴x =227. (2)===N . 反思与感悟 应用对数恒等式时应注意 (1)底数相同.(2)当N >0时才成立,例如y =x 与y =log a xa 并非相等的函数.跟踪训练5 设5log (21)25x -=9,则x =________.★★答案★★ 2 解析 ∵5log (21)25x -=()5log (21)25x -=5log (21)2(5)x -=(2x -1)2=9.∴2x -1=±3,又∵2x -1>0,∴2x -1=3. ∴x =2.1.log b N =a (b >0,b ≠1,N >0)对应的指数式是________. ★★答案★★ b a =N2.若log a x =1,则x =________. ★★答案★★ a3.下列指数式与对数式互化不正确的一组的序号是________. ①e 0=1与ln1=0; ②138-=12与log 812=-13; ③log 39=2与129=3; ④log 77=1与71=7. ★★答案★★ ③33log 3x+log log log a b c b c Na ⋅⋅33log 3x +3log 3x log loglog a b c b c N a ⋅⋅log log log ()a b c b c Na⋅log c Nc4.已知log x 16=2,则x =________. ★★答案★★ 45.设10lg x =100,则x 的值等于________. ★★答案★★ 1001.对数概念与指数概念有关,指数式和对数式是互逆的,即a b =N ⇔log a N =b (a >0,且a ≠1,N >0),据此可得两个常用恒等式:(1)log a a b =b ;(2)log a Na=N .2.在关系式a x =N 中,已知a 和x 求N 的运算称为求幂运算;而如果已知a 和N 求x 的运算就是对数运算,两个式子实质相同而形式不同,互为逆运算.课时作业一、填空题 1.有下列说法: ①零和负数没有对数;②任何一个指数式都可以化成对数式; ③以10为底的对数叫做常用对数; ④以e 为底的对数叫做自然对数. 其中正确命题的序号为________. ★★答案★★ ①③④解析 ①、③、④正确,②不正确,只有a >0,且a ≠1时,a x =N 才能化为对数式. 2.已知log 2(1-2x )=1的解x =________. ★★答案★★ -12解析 ∵log 2(1-2x )=1, ∴2=1-2x , ∴x =-12.3.3log=________.★★答案★★ 8 解析 设3log=t ,则(3)t=81,32t=34,t 2=4,t =8. 4.下列四个等式:①lg(lg10)=0;②lg(lne)=0;③若lg x =10,则x =10;④若ln x =e ,则x =e 2. 其中正确等式的序号是________.★★答案★★ ①②解析 ①lg(lg10)=lg1=0;②lg(lne)=lg1=0; ③若lg x =10,则x =1010;④若ln x =e ,则x =e e . 5.(12)-1+log 0.54的值为________.★★答案★★ 0解析 (12)-1+log 0.54=(12)-1+log 124=2-2=0.6.若log a 3=m ,log a 5=n ,则a 2m +n的值是________.★★答案★★ 45解析 由log a 3=m ,得a m =3,由log a 5=n ,得a n =5, ∴a 2m +n =(a m )2·a n =32×5=45.7.已知f (log 2x )=x ,则f (12)=________.★★答案★★2解析 令log 2x =12,则x =212=2,即f (12)=f (log 22)= 2.8.方程3log 2x=14的解是________. ★★答案★★ x =19解析 ∵3log 2x=2-2,∴log 3x =-2,∴x =3-2=19.9.已知log 7[log 3(log 2x )]=0,那么x 12-=________.★★答案★★24解析 ∵log 7[log 3(log 2x )]=0,∴log 3(log 2x )=1, ∴log 2x =3,∴23=x . ∴x12-=(23)12-=18=122=24. 10.设a =log 310,b =log 37,则3a -b =________. ★★答案★★107解析 ∵a =log 310,b =log 37,∴3a =10,3b =7,∴3a -b=3a 3b =107. 11.22log 32++32log 93-=________.★★答案★★ 13 解析22log 32++32log 33-=22×2log 32+32log 933=4×3+99=12+1=13. 二、解答题12.(1)先将下列式子改写成指数式,再求各式中x 的值. ①log 2x =-25;②log x 3=-13.(2)已知6a =8,试用a 表示下列各式. ①log 68;②log 62;③log 26.解 (1)①因为log 2x =-25,所以x =225-=582.②因为log x 3=-13,所以x 13-=3,所以x =3-3=127.(2)①log 68=a . ②由6a =8,得6a=23,即63a =2,所以log 62=a3.③由63a =2,得23a=6,所以log 26=3a.13.设M ={0,1},N ={lg a,2a ,a,11-a },是否存在a 的值,使M ∩N ={1}? 解 不存在a 的值,使M ∩N ={1}成立.若lg a =1,则a =10,此时11-a =1,从而11-a =lg a =1,与集合元素的互异性矛盾; 若2a =1,则a =0,此时lg a 无意义; 若a =1,此时lg a =0,从而M ∩N ={0,1},与条件不符;若11-a =1,则a =10,从而lg a =1,与集合元素的互异性矛盾. 所以不存在a ,使M ∩N ={1}. 三、探究与拓展14.log(n+1-n)(n+1+n)=________.★★答案★★-1解析由题意,知log(n+1-n)(n+1+n)=log(n+1-n)(n+1-n)-1=-1.15.若集合{x,xy,lg(xy)}={0,|x|,y},求log2(x2+y2)的值.解根据集合中元素的互异性可知,在第一个集合中,x≠0,第二个集合中,y≠0,∴第一个集合中的元素xy≠0,只有lg(xy)=0,可得xy=1.①然后,还有两种可能:x=y,②或xy=y.③由①②联立,解得x=y=1或x=y=-1,若x=y=1,则xy=1,违背集合中元素的互异性;若x=y=-1,则xy=|x|=1,从而两集合中的元素相同.∴x=-1,y=-1,符合集合相等的条件.因此,log2(x2+y2)=log22=1.。
3.1.2指数函数第1课时指数函数的概念、图象与性质学习目标核心素养1.理解指数函数的概念.(重点)2.掌握指数函数的图象和性质.(重点)3.能够利用指数函数的图象和性质解题.(重点、难点)4.掌握函数图象的平移变换和对称变换. 通过学习本节内容培养学生的逻辑推理和直观想象的数学核心素养.1.指数函数的概念一般地,函数y=a x(a>0,a≠1)叫做指数函数,它的定义域是R. 2.指数函数的图象和性质a>10<a<1图象性质定义域R值域(0,+∞)定点图象过点(0,1),即x=0时,y=1函数值的变化x>0时,y>1;x<0时,0<y<1x>0时,0<y<1;x<0时,y>1 单调性在(-∞,+∞)上是单调增函数在(-∞,+∞)上是单调减函数奇偶性非奇非偶函数1.思考辨析(正确的打“√”,错误的打“×”)(1)函数y=3·2x是指数函数.()(2)指数函数的图象与x 轴永不相交. ( ) (3)函数y =2-x 在R 上为增函数.( )(4)当a >1时,对于任意x ∈R 总有a x >1.( ) [★★答案★★] (1)× (2)√ (3)× (4)×[提示] (1)y =3·2x 的系数为3,故y =3·2x 不是指数函数. (2)指数函数的值域为(0,+∞),故它与x 轴不相交. (3)y =2-x=⎝ ⎛⎭⎪⎫12x是减函数.(4)a >1时,若x <0,则a x <1.2.下列函数中,是指数函数的为________.(填序号) (1)y =2x +2;(2)y =(-2)x ;(3)y =-2x ;(4)y =πx ; (5)y =x 2;(6)y =(a -1)x (a >1,且a ≠2).(4)(6) [只有(4),(6)是指数函数,因它们满足指数函数的定义;(1)中解析式可变形为y =2x ·22=4·2x ,不满足指数函数的形式;(2)中底数为负,所以不是;(3)中解析式中多一负号,所以不是;(5)中指数为常数,所以不是;(6)中令b =a -1,则y =b x ,b >0且b ≠1,所以是.]3.若函数f (x )=a x (a >0且a ≠1)的图象过点(2,9),则f (x )=________. 3x [由于a 2=9,∴a =±3.∵a >0,∴a =3, ∴f (x )=3x .]指数函数的概念【例1】 函数f (x )=(a 2-7a +7)a x 是指数函数,求实数a 的值. 思路点拨:利用指数函数的定义求解. [解] ∵函数f (x )=(a 2-7a +7)a x 是指数函数, ∴⎩⎨⎧ a 2-7a +7=1,a >0,a ≠1,∴⎩⎨⎧a =1或a =6,a >0,a ≠1, ∴a =6,即a 的值为6.指数函数具有以下特征:①底数a 为大于0且不等于1的常数,不含有自变量x ;②指数位置是自变量x ,且x 的系数是1;③a x 的系数是1.1.已知y =(2a -1)x 是指数函数,则a 的取值范围是________.⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a ⎪⎪⎪a >12且a ≠1 [要使y =(2a -1)x 是指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1.]利用单调性比较大小(1)⎝ ⎛⎭⎪⎫34-1.8与⎝ ⎛⎭⎪⎫34-2.6;(2)⎝ ⎛⎭⎪⎫58-23与1;(3)0.6-2与⎝ ⎛⎭⎪⎫43-23;(4)⎝ ⎛⎭⎪⎫130.3与3-0.2.思路点拨:观察底是否相同(或能化成底相同),若相同用单调性,否则结合图象或中间值来比较大小.[解] (1)0<34<1,y =⎝ ⎛⎭⎪⎫34x在定义域R 内是减函数.又∵-1.8>-2.6, ∴⎝ ⎛⎭⎪⎫34-1.8<⎝ ⎛⎭⎪⎫34-2.6.(2)∵0<58<1,∴y =⎝ ⎛⎭⎪⎫58x在定义域R 内是减函数.又∵-23<0, ∴⎝ ⎛⎭⎪⎫58-23>⎝ ⎛⎭⎪⎫580=1, ∴⎝ ⎛⎭⎪⎫58-23>1. (3)∵0.6-2>0.60=1,⎝ ⎛⎭⎪⎫43-23<⎝ ⎛⎭⎪⎫430=1,∴0.6-2>⎝⎛⎭⎪⎫43-23.(4)∵⎝ ⎛⎭⎪⎫130.3=3-0.3,y =3x 在定义域R 内是增函数,又∵-0.3<-0.2, ∴3-0.3<3-0.2,∴⎝ ⎛⎭⎪⎫130.3<3-0.2.在进行指数式的大小比较时,可以归纳为以下三类: (1)底数同、指数不同:利用指数函数的单调性解决.(2)底数不同、指数同:利用指数函数的图象进行解决.在同一平面直角坐标系内画出这两个函数的图象,依据底数a 对指数函数图象的影响,逆时针方向底数在增大,然后观察指数取值对应的函数值即可.(3)底数不同、指数也不同:采用介值法.以其中一个的底为底,以另一个的指数为指数.比如a c 与b d ,可取a d ,前者利用单调性,后者利用图象.2.比较下列各组数的大小: (1)1.9-π与1.9-3; (2)0.60.4与0.40.6; (3)⎝ ⎛⎭⎪⎫4313,223,⎝ ⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫3412. [解] (1)由于指数函数y =1.9x 在R 上单调递增,而-π<-3, ∴1.9-π<1.9-3.(2)∵y =0.6x 在R 上递减, ∴0.60.4>0.60.6.又在y 轴右侧,函数y =0.6x 的图象在y =0.4x 图象的上方, ∴0.60.6>0.40.6,∴0.60.4>0.40.6.(3)∵⎝ ⎛⎭⎪⎫-233<0,⎝ ⎛⎭⎪⎫4313>1,223>1,0<⎝ ⎛⎭⎪⎫3412<1,又在y 轴右侧,函数y =⎝ ⎛⎭⎪⎫43x的图象在y =4x 的下方,∴⎝ ⎛⎭⎪⎫4313<413=223, ∴⎝ ⎛⎭⎪⎫-233<⎝ ⎛⎭⎪⎫3412<⎝⎛⎭⎪⎫4313<223.利用单调性解指数不等式【例3】 (1)已知4≥2x +1>223,求x 的取值范围; (2)已知0.3x>⎝ ⎛⎭⎪⎫103y,求x +y 的符号.思路点拨:化为同底,利用指数函数的单调性求解. [解] (1)∵4=22,∴原式化为22≥2x +1>223. ∵y =2x 是单调递增的,∴2≥x +1>23, ∴-13<x ≤1, ∴x的取值范围为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-13<x ≤1. (2)(0.3)x>⎝ ⎛⎭⎪⎫103y =⎝ ⎛⎭⎪⎫310-y=0.3-y .∵y =0.3x 是减函数,∴x <-y ,∴x +y <0.1.形如a x >a y 的不等式,借助y =a x 的单调性求解,如果a 的取值不确定,需分a >1与0<a <1两种情况讨论.2.形如a x >b 的不等式,注意将b 化为以a 为底的指数幂的形式,再借助y =a x 的单调性求解.3.(1)若例3题(1)改为4≥⎝ ⎛⎭⎪⎫12x +1>223,则x 的取值范围为_____.(2)解关于x 的不等式a 3x -2≤a x +2,(a >0且a ≠1).(1)⎣⎢⎡⎭⎪⎫-3,-53 [∵223<2-(x +1)≤22,又y =2x 是增函数,∴23<-(x +1)≤2,解得-3≤x <-53.](2)[解] ①当a >1时,3x -2≤x +2,∴x ≤2. ②当0<a <1时,3x -2≥x +2,∴x ≥2. 综上,当a >1时,不等式的解集为{x |x ≤2}, 当0<a <1时,不等式的解集为{x |x ≥2}.图象变换及其应用1.在同一坐标系中作出y =2x ,y =2x +1,y =2x +1+2的图象,在另一坐标系中做出y =2x ,y =2x -1,y =2x -1-2的图象,结合以前所学的知识,归纳出图象变换的规律.[提示]结论:y =2x +1的图象是由y =2x 的图象向左平移1个单位得到; y =2x +1+2的图象是由y =2x +1的图象再向上平移2个单位得到; y =2x -1的图象是由y =2x 的图象向右平移1个单位得到; y =2x -1-2的图象是由y =2x -1的图象再向下平移2个单位得到.2.在同一坐标系中,做出y =2x-1,y =3x-1,y =⎝ ⎛⎭⎪⎫12x-1的图象,它们有公共点吗?坐标是什么?能否由此得出结论y =a x -1均过该点.在另一坐标系中,做出y =2x +1-1,y =3x +1-1,y =⎝ ⎛⎭⎪⎫12x +1-1的图象,它们有公共点吗?坐标是什么,能得出y =a x +1-1均过该点的结论吗?由以上两点,能否说明形如y =a x +m +n (m ,n >0)的图象经过的定点是什么?[提示]结论:y =2x-1,y =3x-1,y =⎝ ⎛⎭⎪⎫12x-1都过定点(0,0),且y =a x -1也总过定点(0,0).y =2x +1-1,y =3x +1-1,y =⎝ ⎛⎭⎪⎫12x +1-1都过定点(-1,0),且y =a x +1-1也总过定点(-1,0).综上得y =a x +m +n 的图象经过定点(-m,1+n ).3.除去用图象变换的方法外,还有无其它方式寻找定点.如y =4a 2x -4+3是否过定点.[提示] 还可以整体代换. 将y =4a 2x -4+3变形为y -34=a 2x -4. 令⎩⎪⎨⎪⎧y -34=1,2x -4=0⇒⎩⎨⎧x =2,y =7,即y =4a 2x -4+3过定点(2,7). 【例4】 (1)函数y =3-x 的图象是________.(填序号)(2)已知0<a <1,b <-1,则函数y =a x +b 的图象必定不经过第________象限.(3)函数f (x )=2a x +1-3(a >0且a ≠1)的图象恒过定点________. 思路点拨:题(1)中可将y =3-x转化为y =⎝ ⎛⎭⎪⎫13x.题(2)中,函数y =a x +b 的图象过点(0,1+b ), 因为b <-1,所以点(0,1+b )在y 轴负半轴上.题(3)应该根据指数函数经过定点求解.(1)② (2)一 (3)(-1,-1) [(1)y =3-x=⎝ ⎛⎭⎪⎫13x为单调递减的指数函数,其图象为②.(2)函数y =a x (0<a <1)在R 上单调递减,图象过定点(0,1),所以函数y =a x +b 的图象在R 上单调递减,且过点(0,1+b ).因为b <-1,所以点(0,1+b )在y 轴负半轴上,故图象不经过第一象限.(3)令x +1=0,得x =-1,此时y =2a 0-3=-1,故图象恒过定点(-1,-1).]1.处理函数图象问题的策略(1)抓住特殊点:指数函数的图象过定点(0,1).(2)巧用图象变换:函数图象的平移变换(左右平移、上下平移). (3)利用函数的性质:奇偶性与单调性. 2.指数型函数图象过定点问题的处理方法求指数型函数图象所过的定点时,只要令指数为0,求出对应的y 的值,即可得函数图象所过的定点.4.函数y =f (x )=a x +2-12(a >1)的图象必过定点______,其图象必不过第________象限.⎝⎛⎭⎪⎫-2,12 四 [y =a x(a >1)在R 上单调递增,必过(0,1)点,故求f (x )所过的定点时可以令⎩⎪⎨⎪⎧x +2=0,y +12=1⇒⎩⎪⎨⎪⎧x =-2,y =12,即定点坐标为⎝ ⎛⎭⎪⎫-2,12.结合图象(略)可知,f (x )的图象必在第一、二、三象限,不在第四象限.]1.判断一个函数是不是指数函数,关键是看解析式是否符合y =a x (a >0且a ≠1)这一结构形式,即a x 的系数是1,指数是x 且系数为1.2.指数函数y =a x (a >0且a ≠1)的性质分底数a >1,0<a <1两种情况,但不论哪种情况,指数函数都是单调的.3.指数函数的定义域为(-∞,+∞),值域为(0,+∞),且f (0)=1. 4.在y 轴右侧,底数a 越大,图象越靠近y 轴.1.下列所给函数中为指数函数的是( )①y =4x ;②y =x 4;③y =-4x ;④y =(-4)x ;⑤y =4x 2;⑥y =x 2;⑦y =(2a -1)x ⎝ ⎛⎭⎪⎫a >12,a ≠1. A .①③ B .②④⑥ C .①⑦D .①④⑦C [形如y =a x (a >0且a ≠1)的函数为指数函数,故①⑦是指数函数.] 2.指数函数y =(2-a )x 在定义域内是减函数,则a 的取值范围是________. (1,2) [由题意可知,0<2-a <1,即1<a <2.]3.函数y =a x -5+1(a ≠0)的图象必经过点________.(5,2) [指数函数的图象必过点(0,1),即a 0=1,由此变形得a 5-5+1=2,所以所求函数图象必过点(5,2).]4.画出函数y =2|x |的图象,观察其图象有什么特征?根据图象指出其值域和单调区间.[解] 当x ≥0时y =2|x |=2x ; 当x <0时y =2|x |=⎝ ⎛⎭⎪⎫12x .∴函数y =2|x |的图象如图所示,由图象可知,y =2|x |的图象关于y 轴对称,值域是[1,+∞),单调递减区间是(-∞,0],单调递增区间是[0,+∞).。
姓名,年级:时间:3.1.2 指数函数第1课时指数函数的概念、图象及性质1。
了解指数函数的实际背景. 2.理解指数函数的概念、意义、图象和性质.3.掌握与指数函数有关的函数定义域、值域、单调性问题.[学生用书P41]1.指数函数的定义一般地,形如y=a x(a>0且a≠1)的函数叫做指数函数,其中x 为自变量,定义域为R.2.指数函数的图象与性质a〉10<a〈1图象性质定义域R值域(0,+∞)定点(0,1)单调性增函数减函数性质相应的y值x〉0时,y>1;x=0时,y=1;x<0时,0<y<1x〉0时,0〈y〈1;x=0时,y=1;x<0时,y〉11.判断(正确的打“√”,错误的打“×”)(1)指数函数y=a x中,a可以为负数.()(2)指数函数的图象一定在x轴的上方.() (3)函数y=2-x的定义域为{x|x≠0}.()答案:(1)×(2)√(3)×2.下列函数:①y=(-2)x;②y=2x;③y=2-x;④y=3×2x。
其中指数函数的个数为( ) A.0 B.1C.2 D.4答案:C3.若f(x)=(a2-3)a x是指数函数,则a=________.答案:24.函数f(x)=2x,x∈[0,2]的值域是________.答案:[1,4]指数函数的概念[学生用书P41]下列函数中,哪些是指数函数.①y=(-8)x;②y=2x2-1;③y=a x;④y=(2a-1)x错误!;⑤y=2×3x。
【解】①中底数-8<0,所以不是指数函数.②中指数不是自变量x,所以不是指数函数.③中底数a,只有规定a〉0且a≠1时,才是指数函数.④因为a>错误!且a≠1,所以2a-1>0且2a-1≠1,所以y=(2a-1)x错误!为指数函数.⑤中3x前的系数是2,而不是1,所以不是指数函数.故只有④是指数函数.错误!只需判定其解析式是否符合y=a x(a〉0,且a≠1)这一结构形式,其具备的特点为:1.指出下列函数中,哪些是指数函数.(1)y=πx;(2)y=-4x;(3)y=(1-3a)x错误!;(4)y=(a2+2)-x;(5)y=2×3x+a(a≠0).解:根据指数函数的定义,指数函数满足:①前面系数为1;②底数a>0且a≠1;③指数是自变量.(1)y=πx,底数为π,满足π>0且π≠1,前面系数为1,且指数为自变量x,故它是指数函数.(2)y=-4x,前面系数为-1,故它不是指数函数.(3)y=(1-3a)x,因为a<错误!且a≠0,所以1-3a>0且1-3a≠1,前面系数为1,且指数为自变量x,故它是指数函数.(4)y=(a2+2)-x=错误!错误!,底数错误!∈错误!,前面系数为1,指数为自变量x,故它是指数函数.(5)y=2×3x+a(a≠0),3x前面系数为2≠1,故它不是指数函数.故(1)(3)(4)为指数函数.指数式的比较大小问题[学生用书P42]比较下列各组数的大小.(1)1.8-π,1.8-3;(2)1。
即:1.情景设置,形成概念2.发现问题,深化概念3.深入探究图像,加深理解性质4.强化训练,落实掌握5.小结归纳6.布置作业(一)情景设置,形成概念1、引例:折纸问题:让学生动手折纸问题1:①对折的次数x与所得的层数y之间有什么关系?(2x y =)②记折前纸张面积为1,对折的次数x与折后面积y之间有什么关系?(1()2x y =)问题2: ①x y 2=、1()2x y =及0.999879x y =这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字?(引导学生观察,两个函数中,底数是常数,指数是自变量。
如果可以用字母代替其中的底数,那么上述两式就可以表示成x y a =的形式。
自变量在指数位置,所以我们把它称作指数函数)2、形成概念:(1)定义:形如x y a =(a>0且a ≠1)的函数称为指数函数,定义域为x∈R 。
问题3:一个新的数学概念的引入,一定要有研究的价值和意义。
此定义中,你觉得对底数a 有何要求?为什么?3.发现问题、深化概念例1:判断下列函数是否为指数函数,为什么?1)y=-3x 2)y=31/x 3) y=(-3)x 4) y=31+x ,5)(1)x y a =+ 例2: 1)若函数y=(2a -3a+3) a x是指数函数,求a 值。
2)指数函数f(x)= a x (a>0且a ≠1)的图像经过点(3,9),求f(x)、f(0)、f(1)的值。
(待定系数法求指数函数解析式(只需一个方程))(二)深入研究图像,加深理解性质问题4:指数函数是学生在学习了函数基本概念和性质以后接触到得第一个具体函数,也是很重要的初等函数。
我们应研究指数函数的哪些性质?又该如何研究呢?(图象——性质,具体——一般)学生操作: 操作一:利用描点法作函数2xy =与1()2x y =的图象; 操作二:利用描点法作函数3x y =与1()3x y =的图象; 问题5:(1)指数函数2x y =与1()2x y =的图象有何关系?函数3x y =与1()3x y =的图象有何关系?你能得到一般性结论吗?(2)指数函数2x y =、1()2x y =、3x y =、1()3x y =的图象有何有什么共同特征?又有什么区别呢?你能得到一般性结论吗?(学生观察图象得出结论)操作三:(借助几何画板演示)函数x y a =当1>a 和10<<a 时的若干个图象,请同学们观察,(1)当5.1=a ,2=a ,3=a ……时的图象,你能发现它们有什么共同特征?(2)当8.0=a ,5.0=a ,3.0=a ……时的图象,你能发现它们有什么共同特征?请你概括一下对数函数应具有什么性质。
3.1.2指数函数第1课时指数函数的概念、图象及性质1.了解指数函数的实际背景.2.理解指数函数的概念、意义、图象和性质.3.掌握与指数函数有关的函数定义域、值域、单调性问题.[学生用书P41]1.指数函数的定义一般地,形如y=a x(a>0且a≠1)的函数叫做指数函数,其中x 为自变量,定义域为R.2.指数函数的图象与性质a>10<a<1图象性质定义域R值域(0,+∞)定点(0,1)单调性增函数减函数性质相应的y值x>0时,y>1;x=0时,y=1;x<0时,0<y<1x>0时,0<y<1;x=0时,y=1;x<0时,y>11.判断(正确的打“√”,错误的打“×”)(1)指数函数y=a x中,a可以为负数.()(2)指数函数的图象一定在x轴的上方.()(3)函数y=2-x的定义域为{x|x≠0}.()★★答案★★:(1)×(2)√(3)×2.下列函数:①y=(-2)x;②y=2x;③y=2-x;④y=3×2x.其中指数函数的个数为() A.0B.1C.2 D.4★★答案★★:C3.若f (x )=(a 2-3)a x 是指数函数,则a =________. ★★答案★★:24.函数f (x )=2x ,x ∈[0,2]的值域是________. ★★答案★★:[1,4]指数函数的概念[学生用书P41]下列函数中,哪些是指数函数. ①y =(-8)x ;②y =2x 2-1;③y =a x ; ④y =(2a -1)x ⎝⎛⎭⎫a >12且a ≠1;⑤y =2×3x . 【解】 ①中底数-8<0,所以不是指数函数. ②中指数不是自变量x ,所以不是指数函数.③中底数a ,只有规定a >0且a ≠1时,才是指数函数. ④因为a >12且a ≠1,所以2a -1>0且2a -1≠1,所以y =(2a -1)x ⎝⎛⎭⎫a >12且a ≠1为指数函数. ⑤中3x 前的系数是2,而不是1,所以不是指数函数.故只有④是指数函数.只需判定其解析式是否符合y =a x (a >0,且a ≠1)这一结构形式,其具备的特点为:1.指出下列函数中,哪些是指数函数.(1)y =πx ;(2)y =-4x ; (3)y =(1-3a )x ⎝⎛⎭⎫a <13且a ≠0; (4)y =(a 2+2)-x ;(5)y =2×3x +a (a ≠0).解:根据指数函数的定义,指数函数满足:①前面系数为1;②底数a >0且a ≠1;③指数是自变量.(1)y =πx ,底数为π,满足π>0且π≠1,前面系数为1,且指数为自变量x ,故它是指数函数.(2)y =-4x ,前面系数为-1,故它不是指数函数.(3)y =(1-3a )x ,因为a <13且a ≠0,所以1-3a >0且1-3a ≠1,前面系数为1,且指数为自变量x ,故它是指数函数.(4)y =(a 2+2)-x=⎝⎛⎭⎫1a 2+2x,底数1a 2+2∈⎝⎛⎦⎤0,12,前面系数为1,指数为自变量x ,故它是指数函数.(5)y =2×3x +a (a ≠0),3x 前面系数为2≠1,故它不是指数函数. 故(1)(3)(4)为指数函数.指数式的比较大小问题[学生用书P42]比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3;(3)0.80.6,0.60.8.【解】 (1)构造函数f (x )=1.8x .因为a =1.8>1,所以f (x )=1.8x 在R 上是增函数. 因为-π<-3,所以1.8-π<1.8-3. (2)因为y =⎝⎛⎭⎫1.71.9x在R 上是减函数, 所以1.7-0.31.9-0.3=⎝⎛⎭⎫1.71.9-0.3>⎝⎛⎭⎫1.71.90=1.又因为1.7-0.3与1.9-0.3都大于0,所以1.7-0.3>1.9-0.3.(3)取中间值0.80.8.因为y =0.8x 在R 上单调递减,而0.6<0.8, 所以0.80.6>0.80.8.又因为0.80.80.60.8=⎝⎛⎭⎫0.80.60.8>⎝⎛⎭⎫0.80.60=1,且0.60.8>0,0.80.8>0,所以0.80.8>0.60.8.所以0.80.6>0.60.8.对于同底数幂,应利用指数函数的单调性求解;对于同指数的两个函数值,应根据“在y 轴的右侧,图象由上到下,底数越来越小”来判断数值的大小;对于不同底数,不同指数的两个函数值,可找一中间函数值,通过“搭桥”来达到比较两个数的大小的目的.2.比较下列各组中两个数的大小:(1)0.63.5和0.63.7; (2)(2)-1.2和(2)-1.4;(3)⎝⎛⎭⎫3213和⎝⎛⎭⎫3223; (4)π-2和⎝⎛⎭⎫13-1.3.解:(1)考察函数y =0.6x ,因为0<0.6<1,所以函数y =0.6x 在实数集R 上是单调减函数.又因为3.5<3.7,所以0.63.5>0.63.7.(2)考察函数y =(2)x .因为2>1,所以函数y =(2)x 在实数集R 上是单调增函数.又因为-1.2>-1.4,所以(2)-1.2>(2)-1.4.(3)考察函数y =⎝⎛⎭⎫32x.因为32>1,所以函数y =⎝⎛⎭⎫32x在实数集R 上是单调增函数.又因为13<23,所以⎝⎛⎭⎫3213<⎝⎛⎭⎫3223.(4)因为π-2=⎝⎛⎭⎫1π2<1,⎝⎛⎭⎫13-1.3=31.3>1,所以π-2<⎝⎛⎭⎫13-1.3.与指数函数有关的函数定义域与值域问题[学生用书P42]求下列函数的定义域和值域: (1)y =21x -4;(2)y =1-⎝⎛⎭⎫12x.【解】 (1)x 应满足x -4≠0,所以x ≠4, 故函数y =21x -4的定义域为{x |x ≠4}.因为x ≠4,所以1x -4≠0,所以21x -4≠1.所以y =21x -4的值域为{y |y >0,且y ≠1}.(2)因为x 应满足1-⎝⎛⎭⎫12x≥0, 所以⎝⎛⎭⎫12x≤1=⎝⎛⎭⎫120,所以x ≥0. 所以函数y =1-⎝⎛⎭⎫12x的定义域为{x |x ≥0}.因为⎝⎛⎭⎫12x ≤1,且⎝⎛⎭⎫12x>0,所以0<⎝⎛⎭⎫12x≤1. 所以0≤1-⎝⎛⎭⎫12x<1,即0≤y <1. 所以函数y 的值域为{y |0≤y <1}.函数y =a f (x )的定义域的求解方法使f (x )有意义列不等式(组)求出x 的取值范围;值域的求解方法:(1)根据定义域求出μ=f (x )的值域;(2)根据指数函数的性质求出y =a μ的值域,即为所求.3.求下列函数的定义域与值域:(1)y =4x +2x +1+1; (2)y =⎝⎛⎭⎫13-x 2+2x .解:(1)定义域为R .令2x =t (t >0), 则y =4x +2x +1+1=t 2+2t +1=(t +1)2>1. 所以值域为{y |y >1}. (2)定义域为R .令u =2x -x 2=-(x -1)2+1, 则u ≤1,因为y =⎝⎛⎭⎫13u 为减函数,所以y =⎝⎛⎭⎫13u ≥⎝⎛⎭⎫131, 即函数的值域为⎣⎡⎭⎫13,+∞.透析指数函数的图象与性质(1)当底数a 大小不确定时,必须分a >1或0<a <1两种情况讨论函数的图象和性质. (2)当a >1时,x 的值越小,函数的图象越接近x 轴;当0<a <1时,x 的值越大,函数的图象越接近x 轴.(3)指数函数的图象都经过点(0,1),且图象都经过第一、二象限.如果函数y =a 2x +2a x +1(a >0,a ≠1)在[-1,1]上的最大值为9,求a 的值. [解] 设a x =t (t >0),则y =t 2+2t +1=(t +1)2. 若0<a <1,则t =a x ∈[a ,a -1], 所以当t =a -1,即x =-1时, y max =a -2+2a -1+1. 于是由a -2+2a -1+1=9, 解得a =12(a >0,a ≠1).若a >1,则t =a x ∈[a -1,a ],所以当t =a ,即x =1时,y max =a 2+2a +1. 于是由a 2+2a +1=9,解得a =2(a >0,a ≠1). 综上所述,a =12或a =2.(1)本题换元(设a x =t )后易出现两个错误:①已知区间[-1,1]是x 的取值范围,误认为是t 的取值范围;②a 的取值将影响指数函数t =a x 的单调性,从而影响t =a x 的取值范围,故应该分a >1与0<a <1讨论.(2)指数函数的单调性,由底数的取值范围确定,故当指数函数的底数含有字母时,要对字母的取值情况分类讨论.1.若函数f (x )=⎝⎛⎭⎫12a -3·a x 是指数函数,则f ⎝⎛⎭⎫12的值为 ( ) A .2 B .-2 C .-2 2D .2 2解析:选D.因为函数f (x )是指数函数,所以12a -3=1,所以a =8,所以f (x )=8x ,f ⎝⎛⎭⎫12=812=2 2.2.已知函数f (x )=a x (a >0)的图象经过点(-1,2),则f (2)=________. 解析:因为2=a -1,即a =12,所以f (2)=⎝⎛⎭⎫122=14.★★答案★★:143.已知函数y =a x -1的定义域是(-∞,0],则实数a 的取值范围是________. 解析:由a x -1≥0,得a x ≥1=a 0,因为x ∈(-∞,0],由指数函数的性质知0<a <1. ★★答案★★:(0,1)4.不等式⎝⎛⎭⎫12x<4的解集是________. 解析:⎝⎛⎭⎫12x<4即⎝⎛⎭⎫12x<⎝⎛⎭⎫12-2. 又y =⎝⎛⎭⎫12x 在(-∞,+∞)上为减函数.所以x >-2. ★★答案★★:(-2,+∞)[学生用书P106(单独成册)])[A 基础达标]1.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )解析:选C.由于0<m <n <1,所以y =m x 与y =n x 都是减函数,故排除A ,B ,作直线x =1与两个曲线相交,交点在下面的是函数y =m x 的图象,故选C.2.若函数y =(1-2a )x 是实数集R 上的增函数,则实数a 的取值范围为( ) A.⎝⎛⎭⎫12,+∞ B .(-∞,0) C.⎝⎛⎭⎫-∞,12 D .⎝⎛⎭⎫-12,12 解析:选B.由题意知,此函数为指数函数,且为实数集R 上的增函数,所以底数1-2a >1,解得a <0.3.函数f (x )=a x 与g (x )=-x +a 的图象大致是( )解析:选A.因为g (x )=-x +a 是R 上的减函数,所以排除选项C ,D.由选项A ,B 的图象知,a >1.因为g (0)=a >1,故选A.4.已知f (x )=3x -b (2≤x ≤4,b 为常数)的图象经过点(2,1),则f (x )的值域为( ) A .[9,81] B .[3,9] C .[1,9]D .[1,+∞)解析:选C.因为函数f (x )=3x-b的图象经过点(2,1),所以32-b =1,所以2-b =0,b =2, 所以f (x )=3x -2.由2≤x ≤4得0≤x -2≤2, 所以30≤3x -2≤32,即1≤3x -2≤9,所以函数f (x )的值域是[1,9]. 5.已知a =20.4,b =80.1,c =⎝⎛⎭⎫12-0.5,则a ,b ,c 的大小顺序为________.解析:a =20.4,b =20.3,c =20.5. 又y =2x 在R 上为增函数. 所以b <a <c .★★答案★★:b <a <c6.函数f (x )=⎝⎛⎭⎫131x 的定义域,值域依次是____________________________.解析:由函数f (x )=⎝⎛⎭⎫131x 的表达式得x ≠0为其有意义的取值范围,1x≠0.所以⎝⎛⎭⎫131x ≠1且⎝⎛⎭⎫131x>0.于是函数的定义域为{x |x ≠0,x ∈R }, 值域为{y |y >0且y ≠1}.★★答案★★:{x |x ≠0,x ∈R },{y |y >0且y ≠1} 7. y =⎝⎛⎭⎫12x 2-2x -3的值域为________. 解析:因为x 2-2x -3=(x -1)2-4≥-4, 所以⎝⎛⎭⎫12x 2-2x -3≤⎝⎛⎭⎫12-4=16. 又因为⎝⎛⎭⎫12x 2-2x -3>0,所以函数y =⎝⎛⎭⎫12x 2-2x -3的值域为(0,16]. ★★答案★★: (0,16]8.已知函数f (x )=⎩⎪⎨⎪⎧2x ,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于________.解析:由题意知f (1)=21=2. 因为f (a )+f (1)=0,所以f (a )+2=0.若a >0,则f (a )=2a ,2a +2=0无解;若a ≤0,则f (a )=a +1. 所以a +1+2=0,a =-3. ★★答案★★:-39.求下列函数的定义域和值域: (1)y =21x-1;(2)y =⎝⎛⎭⎫132x 2-2.解:(1)要使y =21x -1有意义,需x ≠0,则21x >0且21x ≠1,故21x -1>-1且21x-1≠0,故函数y =21x-1的定义域为{x |x ≠0},函数的值域为(-1,0)∪(0,+∞).(2)函数y =⎝⎛⎭⎫132x 2-2的定义域为实数集R ,由于2x 2≥0,则2x 2-2≥-2,故0<⎝⎛⎭⎫132x 2-2≤9,所以函数y =⎝⎛⎭⎫132x 2-2的值域为(0,9].10.已知指数函数f (x )=a x 在x ∈[-2,2]上恒有f (x )<2,求实数a 的取值范围. 解:当a >1时,f (x )=a x 在[-2,2]上为增函数, 所以f (x )max =f (2),又因为x ∈[-2,2]时,f (x )<2恒成立,所以⎩⎪⎨⎪⎧a >1,f (2)<2,即⎩⎪⎨⎪⎧a >1,a 2<2,解得1<a < 2. 同理,当0<a <1时,⎩⎪⎨⎪⎧0<a <1,f (x )max =f (-2)<2, 解得22<a <1. 综上所述,a 的取值范围为⎝⎛⎭⎫22,1∪(1,2).[B 能力提升]1.图中所给的曲线C 1,C 2,C 3,C 4是指数函数y =a x 的图象,而a ∈⎩⎨⎧⎭⎬⎫23,13,5,π,则图象C 1,C 2,C 3,C 4对应的函数的底数依次是________,________,________,________.解析:由底数变化引起指数函数图象变化的规律,知C 2的底数<C 1的底数<1<C 4的底数<C 3的底数,而13<23<5<π,故C 1,C 2,C 3,C 4对应函数的底数依次是23,13,π, 5.★★答案★★:23 13π 52.若方程|2x -1|=a 有唯一实数解,则a 的取值范围是________.解析:作出y =|2x -1|的图象,如图,要使直线y =a 与图象的交点只有一个,所以a ≥1或a =0.★★答案★★:{a |a ≥1,或a =0}3.将⎝⎛⎭⎫4313,223,⎝⎛⎭⎫-233,⎝⎛⎭⎫3412用“<”号连接起来. 解:先将这4个数分成三类: (1)负数:⎝⎛⎭⎫-233;(2)大于1的数:⎝⎛⎭⎫4313,223; (3)大于0小于1的数:⎝⎛⎭⎫3412. 又因为⎝⎛⎭⎫4313<413=223, 故⎝⎛⎭⎫-233<⎝⎛⎭⎫3412<⎝⎛⎭⎫4313<223. 4.(选做题)设a >0,且a ≠1,函数y =a 2x +2a x -1在[-1,1]上的最大值是14,求a 的值.解:令t =a x (a >0且a ≠1), 则原函数可化为y =(t +1)2-2(t >0).令y =f (t ),则函数f (t )=(t +1)2-2的图象的对称轴为直线t =-1,开口向上. ①当0<a <1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤a ,1a , 此时,f (t )在⎣⎡⎦⎤a ,1a 上为增函数, 所以f (t )max =f ⎝⎛⎭⎫1a =⎝⎛⎭⎫1a +12-2=14. 所以⎝⎛⎭⎫1a +12=16, 所以a =-15或a =13.又因为a >0,所以a =13.②当a >1时,x ∈[-1,1],t =a x ∈⎣⎡⎦⎤1a ,a , 此时f (t )在⎣⎡⎦⎤1a ,a 上是增函数, 所以f (t )max =f (a )=(a +1)2-2=14. 解得a =3(a =-5舍去).所以a =13或a =3.。