最新结构化学实验
- 格式:ppt
- 大小:1.04 MB
- 文档页数:36
昆明理工大学理学院上机实验报告课程名称:计算化学实验名称:专业班级:学生姓名:学号:上机作业4:Gaussian程序使用二:频率和热力学性质计算对乙烯酮( H2C=C=O)分子的振动频率和热力学性质进行计算。
1)写出乙烯酮( H2C=C=O)分子的内坐标及高斯输入文件。
,其中C=C: 1.35 C=O: 1.20 C-H: 1.09,H-C=C:120.0°。
(提示:设虚原子)%CHK=YIXITONG.CHK%rwf=yixitong.rwf#p B3LYP /6-31G* spYixitong0 1CC 1 R1X 2 R2 1 A1O 2 R3 3 A1 1 180.0H 1 R4 2 A2 3 0.0H 1 R4 2 A2 3 180.0R1=1.35R2=1.0R3=1.20R4=1.09A1=90.0A2=120.02)对H2C=C=O分子进行结构优化,给出结构的对称性,优化后的结构数据(键长、键角、二面角),能量值,并通过GaussView或ChemOffice将输入的结构图形以球棍形式列出。
计算方法:B3LYP基组设定:6-31G*优化:OPT对称性:C2V能量= -152.5984712921 C 0.0000002 C 1.314839 0.0000003 O 2.486220 1.171381 0.0000004 H 1.082743 2.077840 3.167280 0.0000005 H 1.082743 2.077840 3.167280 1.878582 0.0000003)对优化后的结构进行频率计算。
(提示:保持*.chk文件不变),找出计算的红外频率、振动模式及对称性,对频率进行矫正,并将校正后的数据和实验值相对比(填写表1)。
给出主要振动模式的图形、对应的峰值和红外光谱图(要求用origin作图)。
表1. 乙烯酮的红外分析振动模式实验值(cm-1) 计算值(cm-1) 校正值(cm-1) 红外强度对称性面内振动438 440.7177 423.662 2.9343 B2面外摇摆528 538.7049 517.8573 74.4313 B1面外摇摆588 590.7611 567.899 74.0799 B1面内扭曲977 1003.0527 964.22341 8.3269 B2伸缩振动1118 1179.8738 1134.2135 6.9638 A1面内伸缩1388 1434.7138 1379.1909 16.2242 A1面内拉伸2152 2239.9335 2153.2481 526.0268 A1面内拉伸3071 3209.1869 3084.9915 23.7501 A1面外拉伸3166 3298.0569 3170.4221 5.7145 B2计算方法:B3LYP基组设定:6-31G*频率计算:Freq geom=check guess=read频率矫正因子:0.9613(2)(1)(3)(4)(5) (6(7)(8)(9)-10010020030040050060070080005010015020025030010.7036549533175.0751177974257.3788746988E p s i l o nFrequency (cm-1)4)列表给出H2C=C=O分子的热力学数据。
结构化学实验二溶液法测定极性分子的偶极矩一、实验目的1.用溶液法测定正丁醇的偶极矩2.了解偶极矩与分子电性质的关系3. 掌握溶液法测定偶极矩的实验技术二、实验原理1.偶极矩与极化度两个大小相等方向相反的电荷体系的偶极矩定义为:μ=q d (1)极性分子在电场作用下极化程度可用摩尔定向极化度P定向来衡量:P定向=4/3πN A*μ02/(3kT)=4/9πN A*μ02/(kT) (2)极性分子所产生的摩尔极化度P是摩尔定向极化度、摩尔电子诱导极化度和摩尔原子诱导极化度的总和:P=P定向+P诱导=P定向+P电子+P原子(3)2. 溶液法测定偶极矩无限稀释时溶质的摩尔极化度的公式:P=P2∞=3αε1/(ε1+2)2* Μ1/ρ1+ (ε1-1)/(ε1+2) * (Μ2-βΜ1)/ρ1(9) 习惯上用溶质的摩尔折射度R2表示高频区测得的摩尔极化度,因为此时P 定向=0,P原子=0,推导出无限稀释时溶质的摩尔折射度的公式:P电子=R2∞=(n12-1)/(n12+2) * (Μ2-βΜ1)/ρ1+6n12Μ1γ/[(n12+2)2*ρ1] (13) 稀溶液的近似公式:ε溶=ε1(1+α* x2) (7)ρ溶=ρ1(1+β*x2) (8)n溶=n1(1-γ*x2) (12) 由P定向=P2∞-R2∞=4/9πN A*μ02/(kT) (14)得μ0=0.0128*[(P2∞-R2∞)*T]1/2 (D)(15)需测定参数:α,β,γ,ε1,ρ1 n1三、仪器和试剂仪器:阿贝折光仪1台;比重管1只;电容测量仪一台;电容池一台;电子天平一台;电吹风一只;25ml容量瓶4支;25ml、5ml、1ml移液管各一支;滴管5只;5ml针筒一支;针头一支;吸耳球两个试剂:正丁醇(分析纯);环己烷(分析纯);蒸馏水;丙酮四、实验步骤1.溶液的配制配制4种正丁醇的摩尔分数分别是0.05、0.10、0.15、0.20的正丁醇-环己烷溶液。
竭诚为您提供优质文档/双击可除分子模型实验报告篇一:结构化学实验报告重庆大学化学化工学院《结构化学》实验报告姓名学号:年级专业:指导老师:重庆大学化学化工学院20XX年12月21日实验一利用量子化学计算软件验证分子轨道理论和判断分子点群一、主要仪器设备及软件1、仪器:用于计算的计算机。
2、软件:gviewA、建模软件(1)chemoffice是一款广受化学学习、研究者好评的化学学习工具。
(2)gaussView主要功能有创建三维分子模型,计算任务设置全面支持gaussian计算,和显示gaussian计算结果等。
b、计算软件:(1)gaussian:量子化学领域最著名和应用最广泛的软件之一,由量子化学家约翰波普的实验室开发,可以应用从头计算方法、半经验计算方法等进行分子能量和结构;过渡态能量和结构;化学键及反应能量;分子轨道;偶极矩;多极矩;红外光谱和拉曼光谱,核磁共振,极化率和超极化率,热力学性质,反应路径等分子相关计算。
(2)materialsstudio:是AcceLRYs公司专门为材料科学领域研究者所涉及的一款可运行在pc上的模拟软件。
(3)VAsp是使用赝势和平面波基组,进行第一定律分子动力学计算的软件包。
(4)gamess-us:由于免费与开放源码,成为除gaussian 以外,最广泛应用的量子化学软件,目前由Iowastateuinversity的markgorden教授的研究组主理。
(5)cAsTep:是由密度泛函理论为基础的计算程式所组成,同时采用平面波(planewave)为基底处理波函数,可针对具有周期性的固态材料表面进行化学模拟计算。
(6)ATK:是由丹麦公司QuantumwiseA/s开发的一款通用的电子态结构计算软件。
其他量子化学计算软件目前,除了上面提到的几版著名量子化学计算软件之外,还有大量商业和免费的量子化学计算软件,其中绝大部分是从事量子化学或计算化学研究的实验室自行开发的,此外,一些著名的大型化学软件如hyperchem、chem3D、sybyl等,也包含有量子化学计算包。
一、实验目的:1.了解MicroCal iTC200等温滴定量热仪在测量蛋白质相互作用中的应用2.了解仪器基本工作原理,学习蛋白质相互作用的测定步骤和仪器操作3.简要分析实验结果。
二、实验原理:在研究两种或两种以上的蛋白质的功能时,相关蛋白质之间常常存在相互作用(常常是氢键或范德华力),如果两蛋白可以彼此结合,则结合的过程中会放出一定的热量。
所以,通过测定蛋白质相互作用时放出热量的大小,可以得到蛋白相互作用时的结合常数KD、化学计量比N和焓变ΔH,从而由热力学公式ΔG = RT lnKD和ΔG = ΔH -TΔS可以进一步得到反应的自由能变化。
在恒温下,注射器中的“配体”溶液滴定到包含“高分子”溶液的池中。
当配体注射到池中,两种物质相互作用,释放或吸收的热量与结合量成正比。
当池中的高分子被配体饱和时,热量信号减弱,直到只观察到稀释的背景热量。
MicroCal iTC200等温滴定量热仪可以用来定量测定生物分子间的相互作用,例如蛋白质-蛋白质相互作用(包括抗原-抗体相互作用和分子伴侣-底物相互作用);蛋白质折叠/去折叠;蛋白质-小分子相互作用以及酶-抑制剂相互作用;酶促反应动力学;药物-DNA/RNA相互作用;RNA折叠;蛋白质-核酸相互作用;核酸-小分子相互作用;核酸-核酸相互作用;生物分子-细胞相互作用等。
从而获得亲和力以及相关热力学数据。
通过滴定操作和热量的测量,量热仪可以给出热量-摩尔比曲线:图像中曲线的突跃中点对应的化学计量比就是两种蛋白质相互作用的化学计量数N,突跃中点处曲线的斜率就是两种蛋白相互作用的结合常数KD。
决定曲线形状的主要参数是C值:C = 滴定池中的蛋白浓度/ KD = [M]t/ KD × NC值越大,曲线越陡;C值越小,曲线越平缓,没有明显的突跃。
一般C值在10-100之间实验效果最好。
配体溶液多次次注射到ITC池的蛋白溶液中。
每个注射峰下方的区域的面积与注射所释放的总热量相等。
结构化学趣味实验教案高中
目标:通过趣味实验,激发学生对化学科学的兴趣,深入了解结构化学知识。
教学步骤:
一、实验准备
1. 准备所需实验器材和药品:烧杯、试管、显微镜、化学试剂等。
2. 安排实验场地,确保实验安全。
二、实验内容
1. 实验一:化学结构拼图
将不同颜色的木块代表不同种类的原子,让学生根据元素周期表的结构,拼出不同化合物的分子结构。
2. 实验二:显微镜下的分子结构
给学生提供一些常见的化合物样品,让他们通过显微镜观察分子结构,并根据观察结果进行推断。
3. 实验三:化学反应模拟
让学生进行一些简单的化学反应实验,观察反应物和产物之间的化学结构变化。
三、实验总结
1. 让学生在小组内分享实验心得和观察结果,讨论化学结构对物质性质的影响。
2. 引导学生总结实验结果,思考化学结构与物质特性之间的联系。
四、实验延伸
1. 鼓励学生进行更多有趣的化学实验,进一步探究化学结构的奥秘。
2. 鼓励学生参加化学比赛或展示活动,展示他们的实验成果和发现。
评价标准:学生能够通过实验观察、总结和讨论,深入理解化学结构知识并加深对化学科学的兴趣。
休克尔分子轨道法1 目的要求(1) 运用HMO 程序计算若干平面共轭分子的电子结构。
(2) 通过HMO 程序的具体运算,加强对这一基本原理的理解,培养学生运用分子轨道概念解决实际问题的能力。
(3) 熟悉微型计算机和磁盘操作系统。
2 基本原理(1) HMO 方法的基本原理:休克尔分子轨道法是量子化学近似计算方法之一,它以简便迅速著称,适宜于计算平面共轭分子中的π电子结构。
在分析有机共轭分子的稳定性、化学反应活性和电子光谱,及研究有机化合物结构与性能的关系等方面有着广泛应用。
该方法主要运用了下列基本假定:①σ-π分离近似。
对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性的不同,可以近似地看成互相独立的。
②独立π电子近似。
分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。
③LCAO-MO 近似。
对于π体系,可将每个π分子轨道Ψk 看成是由各原子提供的垂直于共轭体系平面的p 原子轨道i ϕ线性组合构成的,即∑=ii ki k C ϕψ (1)在上述假定下,可列出π体系单电子Schrodinger 方程kk E H ψψκπ=ˆ (2)将(1)式代入(2)式,利用变分原理,可得久期方程式: ()()()0112121211111=-++-+-n n n C ES H C ES H C ES H ()()()0222222212121=-++-+-n n n C ES H C ES H C ES H………………………………………………………………()()()0222111=-++-+-nnn nn n n n n C ES H C ES H C ES H此方程组有非零解的充分条件1121211111n n ES H ES H ES H --- 02222222211112=------nnnn n n n n n n n ES H ES H ES H ES H ES H ES H此行列式亦称为久期行列式。
结构化学的HMO处理实验报告摘要:本实验旨在通过Hückel分子轨道法(HMO)处理有机分子的电子结构,探究不同体系的分子轨道结构和反应性质。
通过从头计算方法,我们研究了苯、萘和壬二烯三种有机分子的HMO处理结果,并对其结果进行了讨论。
实验结果表明,HMO方法能够揭示分子的π电子结构和化学反应行为,并为有机合成的设计和机制研究提供了理论基础。
1.引言结构化学是研究分子构造及其性质的学科,为化学反应的机理研究和有机化合物的设计合成提供了理论基础。
HMO方法是结构化学中重要的计算手段之一,通过简化分子的电子结构,可以分析分子的π电子和化学反应性质。
本实验通过应用HMO方法,计算了苯、萘和壬二烯三种不同体系的分子轨道结构和反应性质,以揭示分子的内禀特性。
2.实验方法2.1 Hückel分子轨道法Hückel近似是简化分子电子结构计算的重要方法,主要适用于共轭体系。
在Hückel近似中,只考虑分子的π电子,忽略σ电子的贡献。
通过构建分子的π轨道哈密顿算符,可以求解分子轨道的能级和电子分布。
2.2从头计算方法为了获得准确的结果,本实验采用从头计算方法,通过量子化学软件实现计算。
基于密度泛函理论和Hartree-Fock方法,从头计算能够精确地描述分子的电子结构和性质。
3.实验结果与讨论通过从头计算方法,我们得到了苯、萘和壬二烯的分子轨道结构。
苯为平面结构,具有6个π电子,分布于分子平面上的分子轨道中。
萘为平面结构,具有10个π电子,分布于分子平面上及其侧链的分子轨道中。
壬二烯为非平面结构,由9个共轭碳原子组成,具有18个π电子,分布在整个分子结构中。
根据分子轨道能级的序列和电子分布,我们可以推测分子的反应性质。
苯具有特殊的稳定性,由于分子平面上的π电子均属于全满轨道,使得苯环对电子不容易进行加成和脱除反应。
萘由于侧链上的π电子轨道参与,具有比苯更高的反应活性,可以进行较多的化学反应。
实验名称:分子模型操作实验实验日期:2023年4月10日实验地点:化学实验室一、实验目的1. 理解分子模型的基本结构及组成;2. 掌握分子模型的搭建方法;3. 通过分子模型观察分子的空间构型,加深对分子结构、性质的理解;4. 培养学生的动手能力和团队协作精神。
二、实验原理分子模型是研究分子结构的一种直观手段,通过搭建分子模型,可以直观地展示分子的空间构型,从而加深对分子结构、性质的理解。
本实验主要采用球棍模型,通过球体代表原子,棍棒代表化学键,搭建分子模型。
三、实验材料1. 实验仪器:分子模型套件、支架、螺丝、扳手等;2. 实验药品:碳、氢、氧、氮、硫等原子模型;3. 实验工具:剪刀、镊子等。
四、实验步骤1. 观察并熟悉分子模型套件中的各种原子模型和化学键模型;2. 根据实验要求,选择合适的原子模型和化学键模型;3. 使用螺丝将原子模型固定在支架上;4. 根据原子之间的化学键,用扳手拧紧棍棒,搭建分子模型;5. 检查分子模型是否搭建正确,如有错误,及时修正;6. 对搭建好的分子模型进行观察、分析,记录实验结果。
五、实验结果与分析1. 搭建了甲烷(CH4)分子模型,观察发现甲烷分子为正四面体结构,碳原子位于中心,四个氢原子均匀分布在四个顶点上;2. 搭建了水分子(H2O)模型,观察发现水分子为V形结构,氧原子位于中心,两个氢原子分别位于氧原子两侧;3. 搭建了二氧化碳(CO2)分子模型,观察发现二氧化碳分子为直线形结构,碳原子位于中心,两个氧原子分别位于碳原子两侧;4. 搭建了氨分子(NH3)模型,观察发现氨分子为三角锥形结构,氮原子位于中心,三个氢原子分别位于氮原子顶点。
通过实验,我们了解到不同分子具有不同的空间构型,这些构型对分子的性质有着重要影响。
例如,甲烷分子为正四面体结构,具有对称性,使其在常温下不易与其他物质发生化学反应;水分子为V形结构,具有极性,使其在自然界中广泛存在。
六、实验结论1. 本实验成功搭建了甲烷、水、二氧化碳、氨等分子的模型,直观地展示了分子的空间构型;2. 通过观察和分析分子模型,加深了对分子结构、性质的理解;3. 培养了学生的动手能力和团队协作精神。
实验二分子所属点群的判断
一、实验目的
1.学会运用结构化学的知识推断分子的空间构型。
2.能够准确地找出分子中存在地对称元素。
3.掌握确定分子所属点群的方法。
二、实验原理
每个分子对称操作的完全集合组成了一个数学群,由于在进行对称操作时分子中至少有一点是不动的,所以又称为分子的点群。
尽管分子有千千万万,但它们所属的点群却是有限的几种类型。
如果知道了分子的空间构型并准确地找出分子中存在地对称元素,那么运用下图所示分子所属点群的判断图表就可以确定一个分子所属点群。
三、实验所需的材料
模型球和棒
四、实验步骤
1.选定十个分子。
2.组装模型,找出分子中的对称元素。
3.依据分子所属点群的判断图表编一个简单的程序,上机运行,得
出结论。
五、实验所需的程序及运行结果
自编程序或参考资料下载里的程序
六、结果与讨论。
一、实验目的1. 了解原子的基本结构,包括原子核和核外电子的分布。
2. 通过实验观察和测量,加深对原子结构的认识。
3. 掌握原子结构实验的基本操作和数据处理方法。
二、实验原理原子是由原子核和核外电子组成的。
原子核由质子和中子组成,带正电荷;核外电子带负电荷,绕原子核高速运动。
根据量子力学理论,电子在原子核外有一定的能级分布,不同能级的电子具有不同的能量。
三、实验仪器与材料1. 原子结构模型2. 显微镜3. 计算器4. 实验记录本四、实验步骤1. 观察原子结构模型,了解原子核和核外电子的分布。
2. 使用显微镜观察原子结构模型,记录下原子核和核外电子的分布情况。
3. 根据实验观察结果,分析原子核和核外电子的能级分布。
4. 计算不同能级电子的能量差,并绘制能级图。
5. 分析实验数据,总结原子结构实验的规律。
五、实验数据与处理1. 观察结果:- 原子核位于原子中心,核外电子绕原子核高速运动。
- 核外电子分为若干能级,不同能级的电子具有不同的能量。
2. 数据处理:- 根据观察结果,计算不同能级电子的能量差。
- 绘制能级图,展示不同能级电子的能量分布。
六、实验结果与分析1. 实验结果显示,原子核位于原子中心,核外电子绕原子核高速运动。
2. 通过实验数据计算,发现不同能级电子的能量差存在规律性。
3. 根据能级图,可以看出电子的能量随着能级的增加而增大。
4. 实验结果与量子力学理论相符,进一步验证了原子结构的正确性。
七、实验结论1. 原子由原子核和核外电子组成,核外电子绕原子核高速运动。
2. 核外电子存在能级分布,不同能级的电子具有不同的能量。
3. 实验结果与量子力学理论相符,验证了原子结构的正确性。
八、实验反思1. 本实验通过观察和测量,加深了对原子结构的认识。
2. 实验过程中,应注意操作规范,确保实验结果的准确性。
3. 在实验数据处理过程中,应仔细计算,避免误差产生。
4. 实验结果对理解原子结构具有重要意义,有助于进一步探索物质世界的奥秘。