力的合力分力
- 格式:ppt
- 大小:223.00 KB
- 文档页数:16
力的合力与分力力是物体之间相互作用的结果,它可以产生运动或改变物体的形状。
在物理学中,力可以分为合力和分力两种类型。
力的合力是指作用在物体上的所有力的矢量和,而力的分力则是指作用在物体上的一个力被拆分成若干个分力的过程。
本文将探讨力的合力和分力的定义、性质以及与力学问题相关的应用。
一、力的合力力的合力是指作用在物体上的所有力的矢量和。
合力的大小和方向由各个力的大小和方向共同决定。
当多个力作用在同一物体上时,它们可以相互加成或抵消,产生一个合力。
合力可以导致物体加速度的改变或静止物体保持静止。
在三维空间中,若有两个力F1和F2作用在物体上,它们的合力F可以通过向量相加得到。
合力F的大小等于力F1和力F2大小的矢量和,方向则由力F1和力F2的夹角共同决定。
力的合力的计算可以应用牛顿第二定律,即F = ma,其中F为合力,m为物体的质量,a为物体的加速度。
通过合力的计算,可以得到物体的加速度,从而进一步分析物体的运动状态。
二、力的分力力的分力是指作用在物体上的一个力被拆分成若干个分力的过程。
当一个力作用在物体上时,它可以被分解成垂直于物体表面的分力和平行于物体表面的分力。
分力的大小和方向由力的大小和方向以及物体的几何特征共同决定。
分力可以在力学问题中起到很重要的作用。
通过将一个力拆分成若干个分力,可以更好地理解物体所受的力的作用。
例如,在斜面上放置一个物体,当斜面倾斜角度较大时,物体所受的重力可以被分解成垂直于斜面的分力和平行于斜面的分力。
通过分解力的过程,可以得到物体在斜面上的压力和摩擦力,从而分析物体的运动状态。
在实际问题中,分力的计算可以应用三角函数来解决。
根据力的大小和方向,可以通过三角函数计算出垂直分力和水平分力的大小,进而分析力在物体上的作用效果。
三、合力与分力的应用合力和分力的概念在力学问题中有广泛的应用。
以下是一些常见的应用示例:1. 斜面上的物体:当一个物体放置在斜面上时,重力可以被分解成垂直分力和水平分力,用于计算物体在斜面上所受的压力和摩擦力。
分力与合力的概念
分力和合力是物体上受到的力的两个重要概念,它们在力学中有着关键的作用。
1.分力:分力指的是一个力的分量,即一个力在某个坐标轴上的投影。
当一个力不是沿坐标轴方向的时候,可以将这个力分解成沿坐标轴的两个分力。
这个分力在特定坐标轴上的投影即为分力。
使用三角函数,可以将一个力分解成水平和垂直方向上的分力。
例如,一个斜向上的力可以被分解成水平方向和垂直方向上的两个分力,这样我们就能更好地理解力在不同方向上的作用。
2.合力:合力是多个力的矢量和,即多个力在同一方向上的矢量相加的结果。
合力的大小和方向由各个力的大小和方向决定。
如果多个力在同一方向上,它们的合力就是它们的矢量和;如果多个力在不同方向上,合力的计算需要考虑矢量的合成。
例如,多个人共同拉动一个物体,它们的合力将是各个人施加力的矢量和,决定了物体的总体加速度和运动方向。
总的来说,分力是一个力在某个坐标轴上的投影,而合力是多个力在同一方向上的矢量和。
这两个概念帮助我们更好地理解和计算物体受力的情况。
力的合成与分解一、共点力作用于同一物体且作用线能够相交于一点的几个力,称之为共点力。
二、力的合成1、合力与分力如果一个力作用在物体上与几个力共同作用在物体上产生的效果相同,那么这个力就是那几个力的合力,那几个力就是这个力的分力。
相同的效果包括使物体产生相同的形变或是使物体产生相同的加速度。
2、合力与分力的关系合力与分力是一种等效代换的关系。
下图中,物体在力F作用下处于静止状态,在力 F1、F2共同作用下也能处于静止状态,即F1、F2共同作用的效果与力F单独作用的效果相同,于是F是F1、F2的合力;F1、F2是力F的分力,从作用效果上可以相互替换。
即,对于下图而言,可以认为没有F1、F2作用,而是有力F作用,替换后,物体的运动状态保持不变。
3、力的合成(1)力的合成:已知分力求合力的过程称为力的合成。
(2)平行四边形定则:以表示两个分力的线段为邻边作平行四边形,该平行四边形的对角线表示合力的大小和方向。
2.力的平行四边形定则求两个互成角度的力的合力,可以用表示这两个力的线段为邻边作平行四边形,它的对角线就表示合力的大小和方向.F1F2FOF1F2FO说明:①矢量的合成与分解都遵从平行四边形定则(可简化成三角形定则)②力的合成和分解实际上是一种等效替代.③由三角形定则还可以得到一个有用的推论:如果n个力首尾相接组成一个封闭多边形,则这n个力的合力为零.④在分析同一个问题时,合矢量和分矢量不能同时使用.也就是说,在分析问题时,考虑了合矢量就不能再考虑分矢量;考虑了分矢量就不能再考虑合矢量.⑤矢量的合成分解,一定要认真作图.在用平行四边形定则时,分矢量和合矢量要画成带箭头的实线,平行四边形的另外两个边必须画成虚线.各个矢量的大小和方向3.根据力的平行四边形定则可得出以下几个结论:①共点的两个力(F1、F2)的合力(F)的大小,与它们的夹角(θ)有关;θ越大,合力越小;θ越小,合力越大.F1与F2同向时合力最大;F1与F2反向时合力最小,合力的取值范围是:_____________≤F≤________________.②合力可能比分力大,也可能比分力小,也可能等于某一分力.③共点的三个力,如果任意两个力的合力最小值小于或等于第三个力,那么这三个共点力的合力可能等于零.(3)三角形定则与多边形定则4、两个共点力的合成总结(1)两个分力在一条直线上且同向时,它们的合力大小为两力之和,方向同两力方向。
力的合成和力的分解定律力的合成和力的分解定律是物理学中的重要概念,主要涉及力的合成、力的分解和力的平行四边形法则。
一、力的合成力的合成是指多个力共同作用于一个物体时,可以将其看作一个总力的作用。
根据平行四边形法则,多个力的合力等于这些力的矢量和。
即在力的图示中,将各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是多个力的合力。
二、力的分解力的分解是指一个力作用于一个物体时,可以将其分解为多个分力的作用。
根据平行四边形法则,一个力可以被分解为两个分力,这两个分力分别与原力构成两个力的矢量和。
在力的图示中,将原力的箭头分别与两个分力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是原力。
三、力的平行四边形法则力的平行四边形法则是描述力的合成和分解的基本规律。
根据该法则,多个力共同作用于一个物体时,它们的合力等于这些力的矢量和。
同样地,一个力可以被分解为两个分力,这两个分力的合力等于原力。
在力的图示中,力的合成和分解都遵循平行四边形法则,即各个力的箭头首尾相接,形成一个闭合的矢量图形,这个图形对角线所表示的力就是合力或分力。
力的合成和力的分解定律在实际生活中有广泛的应用,如物理学中的力学问题、工程设计、体育竞技等。
通过力的合成和分解,可以简化复杂力的计算,便于分析和解决问题。
综上所述,力的合成和力的分解定律是物理学中的重要概念,掌握这些知识有助于更好地理解和解决力学问题。
习题及方法:1.习题:两个力F1和F2,F1 = 5N,F2 = 10N,它们之间的夹角为60度,求这两个力的合力。
解题方法:根据力的合成,将两个力的矢量和画在一个坐标系中,将F1和F2按照夹角60度画出矢量图,然后用平行四边形法则求出合力。
答案:合力F = √(F1² + F2² + 2F1F2cos60°) = √(5² + 10² + 2510*0.5) = 15N。
力的合成 力的分解一、 重点、难点解析:(一)合力与分力当一个物体受到几个力的共同作用时,我们常常可以求出这样一个力,这个力产生的效果跟原来几个力的效果相同,这个力就叫做那几个力的合力,原来几个力叫做分力。
(二)力的合成1. 定义:求几个力的合力的过程或求合力的方法,叫做力的合成。
2. 平行四边形定则:两个力合成时,以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
这个法则叫做平行四边形定则。
对力这种既有大小又有方向的物理量,进行合成运算时,一般不能用代数加法求合力,而必须用平行四边形定则。
(三)共点力如果一个物体受到两个或更多力的作用,有些情况下这些力共同作用在同一点上,或者虽不作用在同一点,但它们的作用线交于一点,这样的一组力叫做共点力。
平行四边形定则只适用于共点力的合成。
(四)讨论:1. 力的合成的意义在于保证作用效果相同的前提下,用一个力的作用代替几个力的作用,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点,通过实验总结出来的共点力的合成法则,它给出了寻求这种“等效代换”所遵循的规律,作图法和计算法是运用这一规律进行共点力合成的具体方法。
(1)作图法:要选取统一标度,严格作出力的图示及平行四边形,量出平行四边形的对角线长度(注意是哪一条对角线),根据标度求出合力的大小,再量出对角线与某一分力的夹角,求出合力的方向。
(2)计算法:根据平行四边形定则作出力的示意图,然后利用解三角形的方式求出对角线,即为合力。
2. 力的合成的几种特殊情况:①相互垂直的两个力的合成,如图所示,F =F 与分力F 1的夹角θ的正切为:21tan F Fθ=。
②夹角为θ的两个等大的力的合成,如图所示,作出的平行四边形为菱形,利用其对角线互相垂直的特点可得直角三角形,解直角三角形求得合力2cos 2'θF F =,合力'F 与每一个分力的夹角等于2θ。
力的合成与分解要内容:一、合力和分力如果一个力作用在物体上,它产生的效果跟几个力共同作用在物体上产生的效果相同,则这个力就叫那几个力的合力,而那几个力就叫这个力的分力。
合力和分力的关系:等效..替代关系,并不同时作用于物体上,所以不能把合一个物体受到几个力(分力)作用的同二、共点力几个力如果都作用在物体的同一点,或者几个力作用在物体上的不同点,但这几个力的作用线延长后相交于同一点,这几个力就叫共点力,所以,共点力不一定作用在同一点上,如图所示的三个力F1、F2、F3均为共点力。
三、共点力合成实验:实验结论:四、力的合成的定则1.平行四边形定则求两个互成角度的力的合力,可以用表示这两个力的线段作邻边,作平行四边形,它的_______就表示合力的_______和_______.这叫做力的平行四边形定则。
2.三角形定则根据平行四边形的对边平行且相等,即平行四边形是由两个全等的三角形组成,平行四边形定则可简化为三角形定则。
若从O点出发先作出表示力F1的有向线段OA,再以A点出发作表示力F2的有向线段AC,连接OC,则有向线段OC即表示合力F的大小和方向。
五、共点力的合成1.作图法(图解法):以力的图示为基础,以表示两个力的有向线段为邻边严格作出平行四边形,然后量出这两个邻边之间的对角线的长度,从与图示标度的比例关系求出合力的大小,再用量角器量出对角线与一个邻边的夹角,表示合力的方向。
分力和合力的有向线段共点且要画成实线,与分力平行的对边要画成虚线,力线段上要画上刻度和箭头。
2.计算法:先根据力的平行四边形定则作出力的合成示意图,然后运用数学知识求合力大小和方向。
3.两个以上共点力的合成【例一】两个小孩拉一辆车子,一个小孩用的力是45N,另一个小孩用的力是60N,这两个力的夹角是90°.求它们的合力.【例二】用作图法求夹角分别为30°、60°、90°、120°、150°的两个力的合力.再求它们的夹角是0°和180°时的合力.比较求得的结果,能不能得出下面的结论:①合力总是大于分力;②夹角在0°到180°之间时,夹角越大,合力越小.六、合力大小与二分力间的夹角的关系:七、合力大小与分力大小之间的关系:【例三】三名同学一起玩游戏,用三根绳拴住同一物体,其中甲同学用100N向东拉,乙同学用400N的力向西拉,丙同学用400N的力向南拉。
一 、合力与分力1、合力与分力的概念:一个力产生的效果跟几个力共同作用产生的效果相同,这个力就叫做那几个力的合力,而那几个力就叫做这个力的分力。
2、 合力与分力的关系:①合力与分力之间是一种 等效替代 的关系。
一个物体同时受到几个力的作用时,如果用另一个力来代替这几个力而作用效果不变,这个力就叫那几个力的合力,但必须要明确合力是虚设的等效力,并非是真实存在的力。
合力没有性质可言,也找不到施力物体,合力与它的几个分力可以等效替代,但 不能共存, 否则就添加了力。
②一个力可以有多个分力,即一个力的作用效果可以与多个力的作用效果相同。
当然,多个力的作用效果也可以用一个力来代替。
二 、共点力1、 概念:几个力如果都 作用在物体的同一点 ,或者它们的 作用线相交于同一点,则这几个力叫共点力。
2、一个具体的物体,所受的各个力的作用点并非完全在同一个点上,若这个物体的形状、大小对所研究的问题没有影响,我们就认为物体所受到的力就是共点力。
如图甲所示,我们可以认为拉力 F 、摩擦力 F f 及支持力 F N 都与重力 G 作用于同一点O 。
又如图乙所示,棒受到的力也是共点力。
甲 乙三 、力的合成:1、 概念:求几个力的合力叫力的合成。
2、力的合成的本质:力的合成就是找一个力去代替几个已知的力,而不改变其作用效果。
3、求合力的基本方法——利用平行四边形定则。
①平行四边形定则内容:如果用表示两个共点力 F 1 和 F 2的线段为邻边作平行四边形,那么,合力F的大小和方向就可以用这两个邻边之间的对角线表示出来。
这种方法叫做力的平行四边形定则。
注意 :平行四边形定则只适用于共点力。
②利用平行四边形定则求解合力常用两种求解方法Ⅰ . 图解法:从力的作用点起,按两个力的作用方向,用同一个标度作出两个力 F 1 、F 2,并构成一个平行四边形,这个平行四边形的对角线的长度按同样的比例表示合力的大小,对角线的方向就是合力的方向,用量角器直接量出合力 F 与某一个力(如 F 1)的夹角 ,如图所示。
力的合成与力的分解1. 合力与分力如果一个力的作用效果跟几个力共同作用的效果相同,这一个力就叫那几个力的合力,那几个力就叫这个力的分力.合力是分力的矢量和。
2. 求合力① 平行四边形法:求两个互成角度的共点力F 1、F 2的合力,可以用表示F 1、F 2的有向线段为邻边作平行四边形,平行四边形的对角线就表示合力的大小和方向。
如图甲② 三角形法:把表示F 1、F 2的线段首尾相接,从首到尾的连线就表示合力的大小和方向。
如图乙. 如三个力首尾相连组成一个闭合的三角形,则三个力的合力为零.【例1】如图所示,F 1、F 2、F 3恰好构成封闭的直角三角形,这三个力的合力最大的是 ( )【例2】如图所示,用轻绳AO 和OB 将重为G 的重物悬挂在水平天花板和竖直墙壁之间处于静止状态,AO 绳水平,OB 绳与竖直方向的夹角为θ,则AO 绳的拉力F A 、OB 绳的拉力F B 的大小与G 之间的关系为( ) A .F A =G tan θ B .F A =G cos θ C .F B =G cos θD .F B =G cos θ 【例3】两物体M 、m 用跨过光滑定滑轮的轻绳相连,如图所示,OA 、OB 与水平面的夹角分别为30°、60°,物体M 的重力大小为20 N ,M 、m 均处于静止状态.则 ( )A .绳OA 对M 的拉力大小为10 NB .绳OB 对M 的拉力大小为10 NC .m 受到水平面的静摩擦力大小为10 3 ND .m 受到水平面的静摩擦力的方向水平向左两个共点力的合力范围:|F 1-F 2|≤F ≤F 1+F 2, 即两个力的大小不变时,其合力随夹角的增大而减小.当两个力反向时,合力最小,为|F 1-F 2|;当两个力同向时,合力最大,为F 1+F 2.思考:三个共点力F 1、F 2、F 3的合力范围呢?【例4】如图所示为两个共点力的合力F 随两分力的夹角θ变化的图像,则这两个分力的大小分别为( )A .1 N 和4 NB .2 N 和3 NC .1 N 和5 ND .2 N 和4 N【例5】 如图所示,用两根细线把A 、B 两小球悬挂在天花板上的同一点O ,并用第三根细线连接A 、B 两小球,然后用某个力F 作用在小球A 上,使三根细线均处于直线状态,且OB 细线恰好沿竖直方向,两小球均处于静止状态,则该力可能为图中的A .F 1B .F 2C .F 3D .F 4三角形法解决极值问题【例6】如图所示,用一根长为l 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向成30°角且绷紧,小球A 处于静止,对小球施加的最小的力是A.3mgB.32mg C.12 mg D.33mg三角形法解决动态平衡问题【例7】如图一小球放置在木板与竖直墙面之间.设墙面对球的压力大小为N 1,球对木板的压力大小为N 2,以木板与墙连接点所形成的水平直线为轴,将木板从图示位置开始缓慢地转到水平位置.不计摩擦,在此过程中( )A .N 1始终减小,N 2始终增大B .N 1始终减小,N 2始终减小C .N 1先增大后减小,N 2始终减小D .N 1先增大后减小,N 2先减小后增大【例8】如图6所示,一定质量的物块用两根轻绳悬在空中,其中绳OA 固定不动,绳OB 在竖直平面内由水平方向向上转动,则在绳OB 由水平转至竖直的过程中,绳OB 的张力大小将( )A .一直变大B .一直变小C .先变大后变小D .先变小后变大力的分解【例10】如图所示,质量为m 的物体在恒力F 作用下沿水平地面做匀速直线运动,物体与地面间动摩擦因数为μ,则物体受到的摩擦力的大小为A .F sin θB .F cos θC .μ(F sin θ+mg )D .μ(mg -F sin θ)【例11】如图所示,一个半径为r 、重为G 的光滑均匀球,用长度为r 的细绳挂在竖直光滑的墙壁上,则绳子的拉力F 和球对墙壁压力N 的大小分别是( )A .G ,G /2B .2G ,G C.3G ,3G /2D .23G /3,3G /3【例12】如图所示,在倾角为α的斜面上,放一质量为m 的小球,小球被竖直的木板挡住,不计摩擦,则球对挡板的压力是( )A .mg cos αB .mg tan αC.mgcos α D .mg受力分析和物体平衡先画出重力,然后找接触力(弹力、摩擦力),最后分析其他力(电磁力等).注意不要遗漏反作用力。
复习内容一、力的合成与分解1.合力与分力如果一个力产生的效果和其他几个力产生的效果相同,这个力就叫那几个力的合力,那几个力就叫这个力的分力。
2.力的合成:求几个力的合力叫做力的合成。
(1)平行四边形定则:如果一个力单独的作用效果与其它几个力共同的作用效果相同,这个力就是那几个力的“等效力”(合力)。
力的平行四边形定则是运用“等效”观点。
(2)共点的两个力合力的大小范围:|F 1-F 2| ≤ F 合≤ F 1+F 2(3)共点的三个力合力的最大值为三个力的大小之和,最小值可能为零。
F 1 F 2F O3.力的分解:求一个力的分力叫力的分解。
(1)力的分解遵循平行四边形法则,力的分解相当于已知对角线求邻边。
(2)两个力的合力惟一确定,一个力的两个分力在无附加条件时,从理论上讲可分解为无数组分力,但在具体问题中,应按照力实际产生的效果来分解。
4.力的合成与分解体现了用等效的方法研究物理问题。
合成与分解是为了研究问题的方便而引入的一种方法。
用合力来代替几个力时必须把合力与各分力脱钩,即考虑合力则不能考虑分力,同理在力的分解时只考虑分力而不能同时考虑合力。
5、几个特殊的夹角0 60 90 120 1805、共点力、平衡状态、平衡条件(二)☆考点点拨用正交分解法求解力的合成与分解问题正交分解法:把一个力分解成两个互相垂直的分力,这种分解方法称为正交分解法。
力的正交分解法是把作用在物体上的所有力分解到两个互相垂直的坐标轴上,分解最终往往是为了求合力(某一方向的合力或总的合力)。
三、考点落实训练1如图所示.有五个力作用于一点P,构成一个正六边形的两个邻边和三条对角线,设F3=10N,则这五个力的合力大小为()A.10(2+2)N B.20NC.30N D.02.关于二个共点力的合成.下列说法正确的是()A.合力必大于每一个力B.合力必大于两个力的大小之和C.合力的大小随两个力的夹角的增大而减小D.合力可以和其中一个力相等,但小于另一个力牛顿运动三定理一、牛顿第一定理1.伽利略的研究方法——理想实验研究法⎧⎪⎨⎪⎩内容:一切物体总保持匀速直线运动状态或2、牛顿第一运动定律(惯性定律)静止状态,直到有外力迫使它改变这种状态为止。
FF 1F 2F力的合成和分解一、力的合成1.一个力产生的效果如果能跟原来几个力共同产生的 ,这个力就叫那几个力的合力,那几个力就叫这个力的分力.求几个力的合力叫 .合力和分力的关系:等效..替代关系,并不同时作用于物体上,所以不能把合力和分力同时当成物体受的力。
2.共点力:几个力如果都作用在物体的 ,或者它们的 相交于同一点,这几个力叫做共点力.3.力的合成:已知分力求合力的过程。
在一条直线上的两个力F 1、F 2的合成:两个力的方向相同时,合力大小为 ,合力方向 两个力的方向相反时,合力大小为 ,合力方向 4.力的平行四边形定则:求两个互成角度的共点力的合力,可以用表示这两个力的线段为作 , 就表示合力的大小和方向,这就是力的平行四边形定则.5.三角形定则:把两个矢量首尾相接,从而求出合矢量的方法.由三角形定则还可以得到一个有用的推论:如果n 个力首尾相接组成一个封闭多边形,则这n 个力的合力为零。
6.两个力的合力:当F 1与F 2同向时,合力最大,F max = F 1+F 2 合力方向与这两个力的方向相同。
当F 1与F 2反向时,合力最小,F min = |F 1-F 2| 合力方向与较大的那个力方向相同。
范围: |F 1-F 2| ≤ F 合≤ F 1+F 2合力大小与二分力间的夹角的关系:两个大小一定的分力F 1、F 2,合力随它们间夹角的增大而减小。
合力大小与分力大小之间的关系:合力可能大于两分力,也可能小于两分力,也可能比一个大比另一个小,也可能等于两分力。
7.两个以上力的合成先求出任意两个力的合力,再求出这个合力跟第三个力的合力,以此类推,直到把所有的力都合成进去,最后得到的结果就是这些力的合力。
8.三个共点力的合成范围①最大值:三个力同向时,其合力最大,为F max =F 1+F 2+F 3.②最小值:先找任意两个力的合力范围,若第三个力在此范围内,则F min =0;如果不在,则合力的最小值为F min =F 1-|F 2+F 3|(F 1为三个力中最大的力).9. (1)矢量:既有大小又有方向的量.相加时遵从平行四边形定则.(2)标量:只有大小没有方向的量.求和时按代数法则相加.【例1】物体受到互相垂直的两个力F 1、F 2的作用,若两力大小分别为53N 、5 N ,求这两个力的合力.【例2】物体受到大小相等的两个拉力的作用,每个拉力都是2N,两个力的夹角为α,求这两个力的合力大小。
高一物理合力与分力一、合力与分力的概念(一)定义1. 分力- 如果一个力作用在物体上产生的效果与几个力共同作用在物体上产生的效果相同,这几个力就叫做那个力的分力。
例如,在斜面上的物体受到重力作用,我们可以将重力分解为沿斜面方向和垂直斜面方向的两个分力,这两个分力共同作用的效果与重力对物体的作用效果相同。
2. 合力- 一个力,如果它产生的效果与几个力共同作用产生的效果相同,这个力就叫做那几个力的合力。
两个人拉一个物体,一个人向东拉,一个人向北拉,物体所受的这两个拉力可以等效为一个合力,这个合力使物体产生的运动效果和这两个拉力共同作用的效果是一样的。
(二)力的合成与分解的关系1. 力的合成- 求几个力的合力的过程叫做力的合成。
力的合成遵循平行四边形定则(在高中阶段重点学习)。
2. 力的分解- 求一个力的分力的过程叫做力的分解。
力的分解是力的合成的逆运算,同样遵循平行四边形定则。
二、平行四边形定则(一)内容1. 以表示这两个力的线段为邻边作平行四边形,这两个邻边之间的对角线就代表合力的大小和方向。
2. 例如,有两个力F1和F2,它们的夹角为θ。
我们以F1和F2为邻边作平行四边形,那么从两力的共同作用点出发的对角线所表示的力F就是F1和F2的合力。
根据余弦定理可得合力的大小F = √(F_{1)^2+F_{2}^2+2F_{1}F_{2}cosθ},合力的方向可以用tanα=frac{F_{2}sinθ}{F_{1} + F_{2}cosθ}来表示(其中α是合力F与F1的夹角)。
(二)实验探究(人教版教材中的实验)1. 实验目的- 验证力的合成的平行四边形定则。
2. 实验器材- 方木板、白纸、弹簧测力计(两个)、橡皮条、细绳、三角板、刻度尺、图钉等。
3. 实验步骤- 用图钉把白纸钉在方木板上。
- 把橡皮条的一端固定在板上的A点,在橡皮条的另一端拴上两条细绳,细绳的另一端系着绳套。
- 用两个弹簧测力计分别钩住绳套,互成角度地拉橡皮条,使橡皮条伸长,结点到达某一位置O。