表面检测缺陷图谱的特征分析
- 格式:pdf
- 大小:277.67 KB
- 文档页数:5
缺陷名称纵裂 Longitudinal Crack照片缺陷形貌及特征:缺陷形貌及特征纵裂纹是距钢板边部有一定距离的沿轧制方向裂开的小裂口或有一定宽度的线状裂纹。
板厚大于20mm的钢板出现纵裂纹的机率较大。
缺陷成因:1. 板坯凝固过程中坯壳断裂,出结晶器后进一步扩展形成板坯纵向裂纹,在轧制过程中沿轧制方向扩展并开裂;2. 板坯存在横裂,在横向轧制过程中扩展和开裂形成。
预防:防止纵列纹产生的有效措施是使板坯坯壳厚度均匀,稳定冶炼,连铸工艺是减少纵裂纹产生的关键推荐处理措施:1. 深度较浅的纵裂可采用修磨去除。
2. 修磨后剩余厚度不满足合同要求的钢板可采用火切切除、改规的方法,由于纵裂有一定长度,一般不采用焊补的方法挽救;3. 纵裂面积较大时钢板可直接判次或判废可能混淆的缺陷1. 边部折叠2. 边部线状缺陷缺陷名称横裂 Transverse Crack缺陷形貌及特征:缺陷形貌及特征:裂纹与钢板轧制方向呈30°~90°夹角,呈不规则的条状或线状等形态,有可能呈M或Z型,横向裂纹通常有一定的深度。
缺陷成因:板坯在凝固过程中,局部产生超出材料迁都极限的拉伸应力导致板坯横裂,在轧制过程中扩展和开裂形成。
有可能是板坯振痕过深,造成钢坯横向微裂纹;钢坯中铝,氮含量较高,促使AIN沿奥氏体晶界析出,也可能诱发横裂纹;二次冷却强度过高也会造成板坯上的横裂预防:1. 减少板坯振痕;2. 控制板坯表面温度均匀并尽量减少板坯表面和边部的温度差;3. 根据港中不同合力选用保护渣;4. 合理控制钢中的铝、氮含量。
推荐处理措施:1. 深度较浅的横裂可用修磨的方法去除;2. 修磨后剩余厚度不满足合同要求的钢板可采用厚度改规或切除缺陷后改尺的方法;3. 缺陷面积较大时钢板可直接判次或判废;可能混淆的缺陷1. 夹渣2. 折叠3. 星型裂纹缺陷名称边裂 Edge Crack缺陷形貌及特征:边部裂纹是钢板边部表面开口的月牙型,半圆型裂口,通常位于钢板单侧或两侧100mm 范围内,一般沿钢板边部密集分布。
TOFD缺陷的图谱判别1.单个缺陷图谱①点状缺陷:点状缺陷(如气孔等)在侧向波信号与底波信号图像之间显示为单一多周期点图(如下图)。
点状缺陷通常显示一个TOFD信号图像,因缺陷高度小于脉冲宽度,点状缺陷图像常呈抛物线形,信号图像尾部向底面坠落。
②底面开口缺陷:工件底面开口缺陷(如根部单侧未熔合等)的TOFD图谱特点是:有连续不断的表面侧向波图像;底面反射信号在相关区段呈间断或中断现象(明显程度取决于底面开口缺陷尺寸)(如下图)。
③表面开口缺陷:工件表面开口缺陷(如焊趾裂纹等)的TOFD侧向波图像受干扰,侧向波信号在相关区段被缺陷切断(如下图)。
因此根据TOFD侧向波图像特征,即可判断缺陷是否表面开口。
有表面开口缺陷的下端波衍射信号图像位置,即可测定缺陷深度。
若工件表面缺陷不开口,即仅为近表面缺陷,则侧向波信号图像不间断。
若此近表面缺陷深度较浅,即小于侧向波脉冲宽度或仅几微米深,则用TOFD检测有可能发现不了。
此时,也可能显示一群由点状缺陷产生的信号图像。
④壁厚中部缺陷:壁厚中部缺陷(如中心未焊透等)的TOFD图谱有完整的侧向波和底波信号图像,并有缺陷上端部和下端部的衍射信号图像(如下图)。
缺陷上端部的回波信号描述实际缺陷的轮廓,呈白-黑-白图像;而下端部信号呈黑-白-黑图像,缺陷高度易于从黑-白图像上直接读出。
另外还可看到,在缺陷上端部衍射回波左侧,常出现双曲线图像,类似于点状缺陷图的点状缺陷效应,这对缺陷端部取点和准确侧长恨有利。
若内部缺陷较浅(即板厚方向高度较小),小于换能器脉冲宽度,则该缺陷上下端部信号难以分开,故缺陷上下端部难以识别,因此检测人员只能判断该缺陷小于脉冲宽度。
⑤根部未焊透:根部未焊透也属于底部开口缺陷。
但这种缺陷会给出很强的衍射信号(或更正确地说是反射信号),与底波信号反相(如下图所示)。
但不管是衍射信号还是反射信号,对TOFD特性并不重要,即使底波信号有扰动,在整个缺陷两侧还是能看到底波图像。
继超声波衍射时差法(TOFD)和相控阵超声检测(PAUT)技术之后,基于计算机成像技术(CITs)的FMC和TFM技术(全矩阵捕获和全聚焦法,简称双全法)已于2019年进入国际权威法规。
如ASME BPVC.V-2021《锅炉及压力容器规范无损检测》的第四章《焊缝UT》增补了两个新附录,分别为强制性附录Ⅺ《全矩阵捕获》和非强制性附录F 《焊缝全矩阵捕获法检测》。
2021年初,国际标准化组织(ISO)也已发布两个国际标准:ISO 23865:2021《无损检测超声检测全矩阵捕获/全聚焦技术(FMC/TFM)和相关技术的一般用法》和ISO 23864:2021《焊缝无损检测超声检测自动全聚焦技术(TFM)和相关技术的使用》。
全聚焦法主要有4大要领:1选对探头:探头参数包括阵元数、芯距、阵元宽高、频率等,大声阑(阵元芯距×阵元数)探头应加较高频,适于深位置聚焦;小声阑探头应加较低频,适于近表面聚焦。
2用对建模:针对要检测的缺陷类型(面积型、体积型)、方向(定向、无向、纵向、横向)、位置(表面、内部)等,选用声影响图(AIM)建模工具进行优化扫查。
3选对工具:应选用具有高强波幅保真度A F和包络算法的软件;A F应不大于2dB,以提高定量准确度,改善缺陷表征。
4合理布置:扫查路径的合理布置包括直接波程、间接波程和自串列波程,其目的是确保焊缝被检位置的体积全覆盖,善用融合波程有利于识别几何伪影和缺陷伪影。
下面首先回顾双全法检测原理,概述其新工具特征,而后就承压设备焊接接头典型缺陷的双全法成像图谱进行解读。
1双全法原理全聚焦法基于与常规相控阵超声检测相同的转向和聚焦法则,可在关注区(TFM区)处处聚焦。
超声检测使用的声波一般是线性的,也就是发射和接收(波束成形)特定波束的声波,其物理叠加可通过采集后求和来得到。
为进行与实际波束成形相对应的TFM合成波束成形,需从探头的发射声阑与接收声阑获取所有基本A扫描信号。
第二篇连铸板坯缺陷(AA)第二篇连铸板坯缺陷(AA) (1)2.1表面纵向裂纹(AA01) (4)2.2表面横裂纹(AA02) (6)2.3星状裂纹(AA03) (7)2.4角部横裂纹(AA04) (8)2.5角部纵裂纹(AA05) (10)2.6气孔(AA06) (11)2.7结疤(AA07) (12)2.8表面夹渣(AA08) (13)2.9划伤(AA09) (14)2.10接痕(AA13) (15)2.11鼓肚(AA11) (16)2.12脱方(AA10) (17)2.13弯曲(AA12) (18)2.14凹陷(AA14) (19)2.15镰刀弯(AA15) (20)2.16锥形(AA16) (21)2.17中心线裂纹(AA17) (22)2.18中心疏松(AA18) (23)2.19三角区裂纹(AA19) (25)2.20中心偏析(AA20) (27)2.21中间裂纹(AA21) (28)2.1表面纵向裂纹(AA01)图2-1-11、缺陷特征表面纵向裂纹沿浇注方向分布在连铸板坯上下表面,裂纹深度一般为2mm~15mm,裂纹部位伴有轻微凹陷。
在连铸浇注过程中,当连铸板坯坯壳在结晶器内所受到的应力超过了坯壳所能承受的抗拉强度时,即产生表面纵向裂纹。
表面纵向裂纹缺陷在结晶器内产生,出结晶器后若二次冷却不良,裂纹将进一步加剧。
2、产生原因及危害产生原因:①钢中碳含量处于裂纹敏感区内;②结晶器钢水液面异常波动。
当结晶器钢水液面波动超过10mm时,表面纵向裂纹缺陷易于产生;③结晶器保护渣性能不良。
保护渣液渣层过厚、过薄或渣膜厚薄不均,使连铸板坯凝固壳局部过薄而产生表面纵向裂纹;④中间包浸入式水口与结晶器对中不良,钢水产生偏流冲刷连铸板坯凝固壳,而产生表面纵向裂纹。
危害:轻微的表面纵裂纹经火焰清理后均能消除;表面纵向裂纹严重时可能会造成漏钢;表面纵向裂纹若送热轧进行轧制可能导致热轧产品出现分层、开裂缺陷。
1.外部缺陷在焊缝的表面,用肉眼或低倍放大镜就可看到,如咬边,焊瘤,弧坑,表面气孔和裂纹等。
2.内部缺陷位于焊缝内部,必须通过各种无损检测方法或破坏性试验才能发现。
内部缺陷有未焊透,未熔合,夹渣,气孔,裂纹等,这些缺陷是我们无损检测人员检查的主要对象。
焊缝缺陷的危害性:1、由于缺陷的存在,减少了焊缝的承载截面积,削弱了静力拉伸强度。
2、由于缺陷形成缺口,缺口尖端会发生应力集中和脆化现象,容易产生裂纹并扩展。
3、缺陷可能穿透焊缝,发生泄漏,影响致密性。
焊缝纵向裂纹示意图一、焊缝纵向裂纹X光底片焊缝纵向裂纹1 焊缝纵向裂纹2焊缝纵向裂纹3 焊缝纵向裂纹4焊缝纵向裂纹5 焊缝纵向裂纹6焊缝纵向裂纹7 焊缝纵向裂纹8焊缝纵向裂纹9 焊缝纵向裂纹10焊缝纵向裂纹11 焊缝纵向裂纹12焊缝纵向裂纹13 焊缝纵向裂纹14焊缝纵向裂纹15 焊缝纵向裂纹16焊缝纵向裂纹17 焊缝纵向裂纹18焊缝纵向裂纹19 焊缝纵向裂纹20 纵向裂纹的表面特征是沿焊缝长度方向出现的黑线,它既可以是连续线条,也可以是间断线条。
纵向裂纹影像产生的原因是沿焊缝长度破裂而导致的不连续黑线。
二、热影响区纵向裂纹X光底片热影响区纵裂1 热影响区纵裂2 热影响区撕裂呈线性黑色锯齿状,平行于熔合线,穿晶扩展,表面无明显氧化色彩,属脆性断口的延迟裂纹。
焊缝横向裂纹示意图三、焊缝横向裂纹X光底片焊缝横向裂纹1 焊缝横向裂纹25焊缝横向裂纹3 焊缝横向裂纹4焊缝横向裂纹的表征是横在焊接影像上的一根细小黑线(直线或曲线),它产生的原因是由焊缝上的金属破裂引起的。
当焊接应力为拉应力并与氢的析集和淬火脆化同时发生时,极易产生冷裂纹。
四、母材裂纹X光底片母材裂纹1 母材裂纹2裂纹:材料局部断裂形成的缺陷。
裂纹的分类方法:按延伸方向可分为纵向裂纹、横向裂纹、辐射状裂纹;按发生部位可分为焊缝裂纹、热影响区裂纹、熔合区裂纹、焊趾裂纹、弧坑裂纹、母材裂纹;按发生条件和时机可分为热裂纹、冷裂纹、再热裂纹。
表面缺陷检测方法(一)表面缺陷检测方法1. 介绍表面缺陷检测是制造业中重要的工艺环节,用于检测产品表面的缺陷,确保产品质量。
本文将详细介绍几种常用的表面缺陷检测方法。
2. 目视检测目视检测是最简单且最常用的表面缺陷检测方法,通过人眼直接观察和判断表面是否有缺陷。
优点是操作简单,成本低廉。
缺点是主观性较强,受到人员视觉疲劳和注意力不集中等因素的影响,容易产生误判。
3. 印刷检测印刷检测是一种常用的自动化表面缺陷检测方法,适用于印刷品等表面较大、重复性较强的产品。
通过光学传感器和图像处理技术,检测印刷品表面的颜色、墨点等指标,判断是否存在缺陷。
印刷检测具有高效率和高准确性的特点。
4. 红外热像检测红外热像检测是一种基于热量分布的表面缺陷检测方法。
通过红外热像仪捕捉物体表面的热辐射图像,分析图像中的热量分布情况,检测出潜在的缺陷。
红外热像检测适用于金属等导热性较好的物体,可以检测到表面的裂纹、烧伤等缺陷。
5. 光学膜检测光学膜检测是一种应用于光学薄膜制造的表面缺陷检测方法。
通过光学显微镜等设备观察和分析薄膜表面的缺陷,如气泡、颗粒等。
光学膜检测具有高分辨率和高灵敏度的特点,能够检测到微小的表面缺陷。
6. 激光散斑检测激光散斑检测是一种基于光学原理的非接触式表面缺陷检测方法。
通过激光照射物体表面产生的散斑图案,分析图案的形状和强度变化,检测出表面的凹凸、划痕等缺陷。
激光散斑检测适用于平整表面和非平整表面的缺陷检测。
7. 总结以上介绍了几种常用的表面缺陷检测方法。
不同的方法适用于不同的产品和缺陷类型,选择合适的方法可以提高检测效率和准确性。
随着科学技术的不断发展,表面缺陷检测方法将会越来越先进和智能化。
8. 图像处理检测图像处理检测是利用计算机视觉技术对表面缺陷进行自动检测的方法。
首先,将产品的表面图像获取到计算机中,然后利用图像处理算法进行缺陷分析和识别。
该方法能够实现高速、精准的缺陷检测,并且可以集成到生产线中,提高生产效率。
典型性缺陷的TOFD成像与射线成像比较一、点状缺陷图1图2 气孔图3 点状夹渣由于点状缺陷在射线片上显示形状大同小异,点状夹渣由于形状不规则,在底片上黑度不均匀,而气孔是体积型,中间充斥空气因此黑度较大,而且是中间深四周弱,在TOFD图谱上由于两种缺陷的形状不同显示出来的图像也有区别,图2为气孔的图像,基本上为一个平滑的抛物线状没有明显的长度,信号强度不强,没有明显的上下端点衍射,抛物线的顶点色度最浓;点状夹渣形状不规则,所形成的图像有明显的反射信号,因此信号较强,振荡周期较多,无明显长度指示,如图3所示二、密集型气孔和条状夹渣密集型气孔图像表现为多个独立的点状衍射的集合和叠加,各点衍射信号强度基本一致,条状夹渣图像表现为多个夹渣状衍射图像的连续,长度方向时断时续,深度不齐,无明显上、下端点衍射信号,形成图像比较杂乱,上端反射信号较强,成像对比度高;下端为较弱的衍射信号成像强度明显减弱。
三、裂纹裂纹类缺陷,是二维空间的面性缺陷,一般宽度很小,在射线透照时透照方向与裂纹方向垂直时,不易发现,裂纹在底片上成像一般比较细微,中间略宽,两端尖细,有时曲折多齿比较容易辨认。
在TOFD成像中对于垂直的裂纹有相当高的发现灵敏度,上、下端点图像清晰,长度方向平滑过渡,两端信号较弱,中部信号较强,上、下端点脉冲尖窄,分辨明显。
四、未熔合射线底片显示焊缝中存在侧壁未熔合情况,在TOFD图谱上亦有显示,如标记1所示,另一边在TOFD图谱上显示有密集小气孔,射线片上显示不明显。
由此可见,TOFD扫查方式对于细小缺陷有较高的发现和分辨能力。
侧壁未熔合缺陷在射线片上表现为有一定长度方向且黑度不均匀,位于焊缝熔合线位置,在TOFD图谱上亦有长度方向显示,且上下端点图形不平滑,呈波浪状或锯齿状,在射线片上黑度均匀位置,上下端点所形成的图像基本平行;黑度大的部位在TOFD图谱上,上、下端点之间距离明显增大,使得图像上看来上、下端点不平行呈发散状。
连铸板坯缺陷特征和缺陷图谱首钢京唐板坯质检编制2010年8月8日一.连铸坯质量特征综述1.1连铸坯质量定义和特征所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。
对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。
1.2铸坯的检查和清理的意义提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。
因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。
,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。
(1)火焰铸坯清理的注意事项1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。
2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。
这方面也应引起足够重视。
3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。
(2)不良的火焰清理的危害虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。
但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。
连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。
综述机器视觉表⾯缺陷检测0 引⾔中国是⼀个制造⼤国,每天都要⽣产⼤量的⼯业产品。
⽤户和⽣产企业对产品质量的要求越来越⾼,除要求满⾜使⽤性能外,还要有良好的外观,即良好的表⾯质量。
但是,在制造产品的过程中,表⾯缺陷的产⽣往往是不可避免的。
不同产品的表⾯缺陷有着不同的定义和类型,⼀般⽽⾔表⾯缺陷是产品表⾯局部物理或化学性质不均匀的区域,如⾦属表⾯的划痕、斑点、孔洞,纸张表⾯的⾊差、压痕,玻璃等⾮⾦属表⾯的夹杂、破损、污点,等等。
表⾯缺陷不仅影响产品的美观和舒适度,⽽且⼀般也会对其使⽤性能带来不良影响,所以⽣产企业对产品的表⾯缺陷检测⾮常重视,以便及时发现,从⽽有效控制产品质量,还可以根据检测结果分析⽣产⼯艺中存在的某些问题,从⽽杜绝或减少缺陷品的产⽣,同时防⽌潜在的贸易纠份,维护企业荣誉。
⼈⼯检测是产品表⾯缺陷的传统检测⽅法,该⽅法抽检率低、准确性不⾼、实时性差、效率低、劳动强度⼤、受⼈⼯经验和主观因素的影响⼤,⽽基于机器视觉的检测⽅法可以很⼤程度上克服上述弊端。
美国机器⼈⼯业协会(RIA)对机器视觉下的定义为:“机器视觉是通过光学的装置和⾮接触的传感器⾃动地接收和处理⼀个真实物体的图像,以获得所需信息或⽤于控制机器⼈运动的装置”[1]。
机器视觉是⼀种⽆接触、⽆损伤的⾃动检测技术,是实现设备⾃动化、智能化和精密控制的有效⼿段,具有安全可靠、光谱响应范围宽、可在恶劣环境下长时间⼯作和⽣产效率⾼等突出优点。
机器视觉检测系统通过适当的光源和图像传感器(CCD摄像机)获取产品的表⾯图像,利⽤相应的图像处理算法提取图像的特征信息,然后根据特征信息进⾏表⾯缺陷的定位、识别、分级等判别和统计、存储、查询等操作;视觉表⾯缺陷检测系统基本组成主要包括图像获取模块、图像处理模块、图像分析模块、数据管理及⼈机接⼝模块。
图像获取模块由CCD摄像机、光学镜头、光源及其夹持装置等组成,其功能是完成产品表⾯图像的采集。
在光源的照明下,通过光学镜头将产品表⾯成像于相机传感器上,光信号先转换成电信号,进⽽转换成计算机能处理的数字信号。