“上海方法”信号配时设计3
- 格式:doc
- 大小:1.10 MB
- 文档页数:28
“上海方法”信号配时设计到目前为止,定时信号的配时方法在国际上主要有英国的TRRL 法(也称Webster 法)、澳大利亚的ARRB 法以及美国的HCM 法等。
在我国有 “停车线法”和“冲突点法”等方法。
随着研究的不断深入,定时信号的配时方法也在进一步的改进之中。
这里,在综合研究英国、澳大利亚和美国等国家以及我国现有的配时方法的基础上,结合我国城市交通的特点,讨论定时信号配时的基本方法。
1.定时信号配时设计流程单个交叉口定时交通信号配时设计,要按照不同的流量时段来划分信号配时的时段,在同一时段内确定相应的配时方案。
改建、治理交叉口,具有各流向设计交通量数据时,信号配时设计的流程如图1所示。
2.确定信号相位基本方案1)对于新建交叉口,在缺乏交通量数据的情况下,十字交叉口,建议先按表1所列进口车道数与渠化方案选取初步试用方案;T 形交叉口,建议先用三相位信号;然后根据通车后实际交通各流向的流量调整渠化及信号相位方案。
2)交通信号相位设定在设定交通信号相位时,应遵循以下原则:(1)信号相位必须同交叉口进口道车道渠化(即车道功能划分)方案同时设定; (2)信号相位对应于左右转弯交通量及其专用车道的布置,常用基本方案示于图2; (3)有左转专用车道时,根据左转流向设计交通量计算的左转车每周期平均到达3辆时,宜用左转专用相位。
(4)同一相位各相关进口道左转车每周期平均到达量相近时,宜用双向左转专用相位,否则宜用单向左转专用相位。
3.确定设计交通量确定设计交通量时,应按交叉口每天交通量的时变规律,分为早高峰时段、下午高峰时段、晚高峰时段、早、晚低峰时段、中午低峰时段及一般平峰时段等各时段,然后确定相应的设计交通量。
已选定时段的设计交通量,须按该时段内交叉口各进口道不同流向分别确定,其计算公式如下:mn mn Q q d 154⨯= (1)式中:mn d q —— 配时时段中,进口道m 、流向n 的设计交通量(pcu/h) ;mn Q 15——配时时段中,进口道m 、流向n 的高峰小时中最高15分钟的流率(pcu/15min)。
信号配时的基本流程和方法下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!信号配时是交通工程中的一个重要概念,它涉及到交通信号灯的设置和时间分配,以优化交通流量和提高道路安全性。
交通信号配时方案设计1.交通流量调查:首先需要对路口周围的交通流量进行调查。
可以使用交通录像或者交通流量传感器等工具记录不同时间段内的车流量和行人流量。
2.信号配时区间划分:根据交通流量调查结果,将一天划分为不同的时间区间,如早高峰、晚高峰等。
每个时间区间内的交通流量情况可能不同,需要针对不同时间区间制定不同的信号配时方案。
3.信号控制方式选择:根据具体情况选择适合的信号控制方式,常见的有定时控制、感应控制和红绿灯相位控制等。
不同的控制方式适合不同的交通流量情况。
4.交通流量分析:根据交通流量调查结果,对每个时间区间内的交通流量进行分析。
将路口划分为主要道路和次要道路,分析车流量和行人流量的分布以及高峰期的特点。
根据不同的信号控制方式,确定每个时间区间内的信号配时方案。
5.信号时间分配:根据分析结果,确定每个信号相位的时间分配。
主要道路和次要道路的信号时间分配可以根据车辆和行人流量的比例来确定。
为了提高交通效率和安全性,应尽量减少交通拥堵和等待时间。
6.信号配时优化:在确定了初步配时方案后,可以利用交通仿真软件进行配时优化。
通过模拟车辆和行人的运动情况,评估不同方案的交通效果,找出最优的配时方案。
7.实施和监控:完成配时方案后,需要进行实施并监控效果。
可以通过实地观察、交通流量调查和交通仿真等方法来评估配时方案的有效性和可行性。
如果发现存在问题,可以进行调整和优化。
8.定期评估和更新:交通信号配时方案需要定期评估和更新。
随着交通流量和城市发展的变化,原始方案可能不再适用。
需要根据实际情况进行调整和更新,以保持交通信号配时方案的有效性和适用性。
通过以上步骤,一个合理的交通信号配时方案可以有效地提高路口交通的效率和安全性,减少交通拥堵和等待时间,提高交通运输的顺畅性和便捷性。
摘要城市道路交叉口是城市道路系统的重要组成部分,是城市道路上各类交通汇合、转换、通过的地点,是管理、组织道路各类交通的控制点。
在整个道路网中,交叉口成为通行能力与交通安全上的瓶颈。
据统计,在交叉口上发生的交通事故占总交通事故的20%左右,有些国家甚至高达40%,其原因是多方面的,比如交叉口的进口道设置不合理,缺乏恰当的交通渠化设施,信号配置不合理。
城市主干道沿线的大型交叉口,合理配置信号配时尤为重要。
该设计调查的交叉口为黄河路与联合路交叉口,黄河路是大连各大主干道之一,为双向八车道,联合路为双向六车道,是一个非常重要的交叉口。
本次设计实地调查了车道宽度、交通流量、车种类型、车头时距、信号灯周期等数据,通过交叉口的道路、交通和控制现状,主要是对其机动车通行能力,行车延误,行车速度,信号周期,服务水平和高峰小时的交通需求等进行定量和定量的分析,以得到该交叉口的信号配时方案。
到目前为止,定时信号的配时方法在国际上主要有英国的WEBSTER法,澳大利亚ARRB法及美国HCM法等。
我国有停车线法和冲突点法等方法。
随着研究不断深入,定时信号的配时方法也在进一步的改进。
本设计采用的方法以英国的WEBSTER法为主。
针对本次调查特性,选用了JSP语言来编写交叉口信号配时系统。
关键词:交通量通行能力延误服务水平信号周期目录摘要 (2)目录 (2)一设计概述 (3)1课题分析 (4)2目的及意义 (4)3理论方法和技术指标 (4)4完成课题的主要措施 (5)二交叉口现状调查与分析 (5)1交通口地理区位和使用现状 (5)2交通口交通量调查 (6)3通过交叉口车辆组成 (8)4 交叉口几何尺寸调查 (8)三信号配时 (8)1相位方案设计的基本事项 (9)2信号灯设置必要性分析 (9)3相位示意图 (10)4信号配时原理 (11)5信号配时计算 (12)四程序说明及运行结果 (13)五配时方案效益评价 (15)1通行能力分析 (15)2饱和度计算 (15)3延误估算 (16)4服务水平分析 (16)六交叉口存在问题及分析 (17)1城市发展溢出造成交通拥堵 (17)2交通规划不足 (18)3道路发展滞后性 (18)4交叉口交通组织不合理性 (18)七结果对比和误差分析 (19)参考文献 (20)附录 (21)1程序代码 (21)2实测数据 (26)一、交叉口现状调查与分析1、交叉口地理区位和使用现状根据实地观察测量和分析讨论,本组对整个交叉口形状、车道划分与交通流运行轨迹进行了绘制,如下图所示。
上海某交叉路口信号配时改进设计
任洪娟;马其华;程义
【期刊名称】《上海工程技术大学学报》
【年(卷),期】2009(023)004
【摘要】上海某交叉口首先运用"冲突点法"进行信号配时设计,然后针对该路口的实际情况,提出了一种新的交通组织方案:在不进行大面积施工的情况下,增设独立的左转车道,使原先的二相位信号控制转变为四相位信号控制,从资源上增加路口通行能力.评价结果表明,该方案切实有效,可为提高城市道路交叉口通行能力、缓解交通拥堵提供参考.
【总页数】4页(P317-320)
【作者】任洪娟;马其华;程义
【作者单位】上海工程技术大学汽车工程学院,上海,201620;上海工程技术大学汽车工程学院,上海,201620;上海工程技术大学汽车工程学院,上海,201620
【正文语种】中文
【中图分类】U491
【相关文献】
1.基于T型交叉口相位设计及信号配时的路口优化研究 [J], 杜熠鹏
2.BRT主动优先交叉口信号配时方法改进设计 [J], 盛明茴;晏秋
3.交叉口信号配时优化方法的改进设计 [J], 常争艳;郭富平;贾志绚
4.改进克隆小生境算法在交叉路口信号配时优化中的应用 [J], 高雪莲;田聪颖;陈银
红;陈彦宇
5.我国交叉路口设计的不足与改进 [J], 邹传平;肖静;郑冬喜
因版权原因,仅展示原文概要,查看原文内容请购买。
城市交通信号配时优化方法研究一、引言城市交通是现代城市运行的重要组成部分,交通信号配时是城市交通管理的核心内容之一。
良好的信号配时可以提高交通效率,减少交通拥堵,改善行车体验,降低交通事故发生率。
本文将探讨城市交通信号配时优化的方法。
二、传统方法传统的交通信号配时方法主要基于静态时间表,即根据道路的周边流量和信号控制的时间间隔来决定红绿灯的时间长度。
这种方法简单易行,但不具备适应性,容易导致交通拥堵和交通事故的发生。
三、智能交通系统随着科技的不断进步,智能交通系统的发展为交通信号配时提供了新的思路。
智能交通系统基于实时的交通信息和大数据分析,可以根据道路的实时流量和车辆的行驶速度调整信号配时。
这种方法可以根据交通状况实施动态信号配时,提高交通效率。
四、基于流量预测的优化方法流量预测是信号配时优化的关键环节,准确的流量预测可以为信号配时提供可靠的数据支持。
现有的流量预测方法主要基于统计模型和机器学习算法,通过对历史交通数据的分析,预测未来一段时间内道路的流量变化趋势。
在信号配时中,基于流量预测的优化方法可以根据未来的流量情况,提前调整信号配时,避免交通拥堵。
五、改进的信号配时策略改进的信号配时策略主要包括协调信号配时和自适应信号配时。
协调信号配时是在相邻的交叉口之间实现信号的同步和协调,减少交通阻塞和停车时间。
自适应信号配时是根据交通流量和车辆的行驶速度实时调整信号配时,使得交通信号能够根据实际情况作出相应的调整,避免交通拥堵。
六、仿真模拟实验为了验证改进的信号配时策略的有效性,可以进行仿真模拟实验。
通过构建交通仿真模型,引入实时流量数据和改进的信号配时策略,可以模拟城市交通的实际情况,评估信号配时策略的性能,并进行优化和调整。
七、案例分析选取某一城市的特定交叉口进行案例分析,使用上述方法对交通信号进行优化。
根据交通仿真模型的数据,调整信号配时策略并模拟实施,评估优化效果。
对比优化前后的交通状态和指标,可以验证改进的信号配时方法的有效性。
本次设计选择的路段上有四个交叉口,其中两个T字交叉口、两个十字交叉口。
四个交叉口均属于定时信号配时。
国际上对定时信号配时的方法较多,目前在我国常用的有美国的HCM法、英国的TRRL法(也称Webster法)、澳大利亚的ARRB法(也称阿克赛利克方法)、中国《城市道路设计规范》推荐方法、停车线法、冲突点法共六种方法。
本次设计运用的是比较经典的英国的TRRL法,即将F·韦伯斯特—B·柯布理论在信号配时方面的使用。
对单个交叉口的交通控制也称为“点控制”。
本节中使用TRRL法对各个交叉口的信号灯配时进行优化即是点控制中的主要内容。
在对一个交叉口的信号灯配时进行优化时,主要的是根据调查所得的交通流量先确定该点的相位数和周期时长,然后确定各个相位的绿灯时间即绿信比。
柯布(B.M.Cobbe)和韦伯斯特(F.V.Webester)在1950年提出TRRL法。
该配时方法的核心思想是以车辆通过交叉口的延误时间最短作为优化目标,根据现实条件下的各种限制条件进行修正,从而确定最佳的信号配时方案。
其公式计算过程如下:1.最短信号周期C m交叉口的信号配时,应选用同一相位流量比中最大的进行计算,采用最短信号周期C m时,要求在一个周期内到达交叉口的车辆恰好全部放完,即无停滞车辆,信号周期时间也无富余。
因此,C m恰好等于一个周期内损失时间之和加上全部到达车辆以饱和流量通过交叉口所需的时间,即:1212nm m m m nV V VC L C C C S S S =++++(4-8)式中:L ——周期损失时间(s );——第i 个相位的最大流量比。
由(4-8)计算可得:111m niL L C Yy ==--∑ (4-9)式中:Y ——全部相位的最大流量比之和。
2.最佳信号周期C 0最佳周期时长C 0是信号控制交叉口上,能使通车效益指标最佳的交通信号周期时长。
若以延误作为交通效益指标,使用如下的Webster 定时信号交叉口延误公式:122(25)32(1)0.65()2(1)2(1)C x C d x x q x q λλλ+-=+---(4-10)式中:d ——每辆车的平均延误; C ——周期长(s );λ——绿信比。
“上海方法”信号配时设计到目前为止,定时信号的配时方法在国际上主要有英国的TRRL 法(也称Webster 法)、澳大利亚的ARRB 法以及美国的HCM 法等。
在我国有 “停车线法”和“冲突点法”等方法。
随着研究的不断深入,定时信号的配时方法也在进一步的改进之中。
这里,在综合研究英国、澳大利亚和美国等国家以及我国现有的配时方法的基础上,结合我国城市交通的特点,讨论定时信号配时的基本方法。
1.定时信号配时设计流程单个交叉口定时交通信号配时设计,要按照不同的流量时段来划分信号配时的时段,在同一时段内确定相应的配时方案。
改建、治理交叉口,具有各流向设计交通量数据时,信号配时设计的流程如图1所示。
2.确定信号相位基本方案1)对于新建交叉口,在缺乏交通量数据的情况下,十字交叉口,建议先按表1所列进口车道数与渠化方案选取初步试用方案;T 形交叉口,建议先用三相位信号;然后根据通车后实际交通各流向的流量调整渠化及信号相位方案。
2)交通信号相位设定在设定交通信号相位时,应遵循以下原则:(1)信号相位必须同交叉口进口道车道渠化(即车道功能划分)方案同时设定; (2)信号相位对应于左右转弯交通量及其专用车道的布置,常用基本方案示于图2; (3)有左转专用车道时,根据左转流向设计交通量计算的左转车每周期平均到达3辆时,宜用左转专用相位。
(4)同一相位各相关进口道左转车每周期平均到达量相近时,宜用双向左转专用相位,否则宜用单向左转专用相位。
3.确定设计交通量确定设计交通量时,应按交叉口每天交通量的时变规律,分为早高峰时段、下午高峰时段、晚高峰时段、早、晚低峰时段、中午低峰时段及一般平峰时段等各时段,然后确定相应的设计交通量。
已选定时段的设计交通量,须按该时段内交叉口各进口道不同流向分别确定,其计算公式如下:mn mn Q q d 154⨯= (1)式中:mnd q —— 配时时段中,进口道m 、流向n 的设计交通量(pcu/h) ;mn Q 15——配时时段中,进口道m 、流向n 的高峰小时中最高15分钟的流率(pcu/15min)。
“上海方法”信号配时设计到目前为止,定时信号的配时方法在国际上主要有英国的TRRL 法(也称Webster 法)、澳大利亚的ARRB 法以及美国的HCM 法等。
在我国有 “停车线法”和“冲突点法”等方法。
随着研究的不断深入,定时信号的配时方法也在进一步的改进之中。
这里,在综合研究英国、澳大利亚和美国等国家以及我国现有的配时方法的基础上,结合我国城市交通的特点,讨论定时信号配时的基本方法。
1.定时信号配时设计流程单个交叉口定时交通信号配时设计,要按照不同的流量时段来划分信号配时的时段,在同一时段内确定相应的配时方案。
改建、治理交叉口,具有各流向设计交通量数据时,信号配时设计的流程如图1所示。
2.确定信号相位基本方案1)对于新建交叉口,在缺乏交通量数据的情况下,十字交叉口,建议先按表1所列进口车道数与渠化方案选取初步试用方案;T 形交叉口,建议先用三相位信号;然后根据通车后实际交通各流向的流量调整渠化及信号相位方案。
2)交通信号相位设定在设定交通信号相位时,应遵循以下原则:(1)信号相位必须同交叉口进口道车道渠化(即车道功能划分)方案同时设定; (2)信号相位对应于左右转弯交通量及其专用车道的布置,常用基本方案示于图2; (3)有左转专用车道时,根据左转流向设计交通量计算的左转车每周期平均到达3辆时,宜用左转专用相位。
(4)同一相位各相关进口道左转车每周期平均到达量相近时,宜用双向左转专用相位,否则宜用单向左转专用相位。
3.确定设计交通量确定设计交通量时,应按交叉口每天交通量的时变规律,分为早高峰时段、下午高峰时段、晚高峰时段、早、晚低峰时段、中午低峰时段及一般平峰时段等各时段,然后确定相应的设计交通量。
已选定时段的设计交通量,须按该时段内交叉口各进口道不同流向分别确定,其计算公式如下:mn mn Q q d 154⨯= (1)式中:mn d q —— 配时时段中,进口道m 、流向n 的设计交通量(pcu/h) ;mn Q 15——配时时段中,进口道m 、流向n 的高峰小时中最高15分钟的流率(pcu/15min)。
无最高15分钟流率的实测数据时,可按下式估算:()mnmnd PHF Q q mn =(2)Q——配时时段中,进口道m、流向n的高峰小时交通量(pcu/h);式中:mn()PHF——配时时段中,进口道m、流向n的高峰小时系数;主要进口道可取0.75,mn次要进口道可取0.8。
Array图1 定时信号配时设计程序注:表示该相位左转车应让直行车先行,即在直行车空档及末尾时允许左转车通行。
图2信号相位常用基本方案4. 饱和流量饱和流量的定义是:在一次连续的绿灯信号时间内,进口道上一列连续车队能通过进口道停车线的最大流量,单位是pcu /绿灯小时。
饱和流量随交叉口几何因素、渠化方式、信号配时及各流向交通冲突等情况而异,比较复杂。
因此,应尽量采用实测数据,实在无法取得实测数据时,如新建交叉口设计时,才考虑用以下估算方法。
交叉口进口道经划分车道并加渠化以后,进口道饱和流量随进口道车道数及渠化方案而异,所以必须分别计算各条进口车道的饱和流量,然后再把各条车道的饱和流量累计成进口道的饱和流量。
饱和流量用实测平均基本饱和流量乘以各影响因素校正系数的方法估算。
即:进口车道的估算饱和流量:()i bi f F f S S ⨯= (3)式中:bi S —— 第i 条进口车道基本饱和流量(pcu/h);()i F f —— 各类进口车道各类校正系数。
1)基本饱和流量各类进口车道各有其专用相位时的基本饱和流量S bi ,可采用表2数值:各类进口车道的基本饱和流量(pcu/h ) 表2注:进口车道宽度:3.0m ~3.5m 。
2)各类车道通用校正系数 (1)车道宽度校正:()⎪⎩⎪⎨⎧>+≤≤--==5.3)5.16(05.00.37.25.04.05.30.31W W W W W f W(4)式中:W —— 车道宽度(m )。
(2)坡度及大车校正:g f =1- (G+HV) (5)式中:G —— 道路纵坡,下坡时取0;HV —— 大车率,这里,HV 不大于0.50。
3)直行车道饱和流量直行车流受同相位绿灯初期左转自行车的影响时,直行车道设计饱和流量除须作通用校正外,尚须作自行车影响校正,自行车影响校正系数按下式计算:eLb g b f +-=11 (6)式中:b L ——绿初左转自行车数(辆/周期)。
b L 应用实测数据,无实测数据时,可用下式估算:Cg C B b e b L )(-=β (7)式中:B ——自行车流量(辆/周期); βb ——自行车左转率; C ——周期时长(s ),先用初始周期时长计算; g e ——有效绿灯时长(s ),无信号配时数据时,按下式粗略确定:j Gg e e = (8)式中:j ——周期内的相位数。
直行车道饱和流量:b g W bT T f f f S S ⨯⨯⨯= (9)式中:bT S —— 直行车道基本饱和流量,见表2。
4)左转专用车道饱和流量 (1)有专用相位时:g W bL L f f S S ⨯⨯= (10)式中:bL S —— 左转专用车道有专用相位时的基本饱和流量,见表2。
(2)无专用相位时:L g W bL L f f f S S ⨯⨯⨯='(11)左转校正系数 :1.0001.0exp 0:-⎪⎭⎫⎝⎛-=λξT L q f (12) 式中:ξ—— 对向直行车道数的影响系数,见3。
0T q —— 对向直行车流量( pcu/h)λ—— 绿信比,缺信号配时数据时,按下式粗略估算λ:(13)jCG e =λ对向直行车道数的影响系数ξ 表35 (1)专用相位时:r g W bR R f f f S S ⨯⨯⨯= (14)式中:bR S —— 右转专用车道基本饱和流量,见表2;r f —— 转弯半径校正系数,按下式计算:⎪⎩⎪⎨⎧≤+>=m r r m r f r 15305.0151 (15) 式中:r —— 转弯半径(m )。
(2)无专用相位时:pb r g W bR Rf f f f S S ⨯⨯⨯⨯=' (16) 式中:pb f ——行人或自行车影响校正系数[]b p pb f f f ,min = (17)行人影响校正系数p f :()()Cg gg p f p Re pfp -+-=1 (18)式中: f p —— 右转绿灯时间中,因过街行人干扰,右转车降低率;p g —— 过街行人消耗绿灯时间(s );R e g —— 右转相位有效绿灯时间(s );C —— 信号周期时长(s )。
按上式估算有困难时,建议按表4取p f 。
行人影响校正系数p f 表4自行车影响校正系数f b :jT b g t f -=1 (19) 式中:g j ——周期显示绿灯时长(s );t T ——直行自行车绿初驶出停车线所占用的时间(s )。
b TD TDTSTS T WS b S b t 3600⎪⎪⎭⎫ ⎝⎛+= (20)式中:b TS ——红灯期到达停在停车线前排队的直行自行车的交通量(辆/周期);b TD ——绿灯期到达接在排队自行车队后直接连续驶出停车线的直行自行车的交通量(辆/周期);S TS ——红灯期到达排队自行车绿初驶出停车线的饱和流量,建议取3600辆/m•h 。
S TD ——绿灯期到达直接驶出停车线自行车的饱和流量,建议取1600辆/m•h 。
W b ——自行车道宽度(m )交通量应用实测数据,无实测数据时只得用简化方法估算t T :()bTS T T W S b t λ-=13600 (21)式中:b T ——直行自行车每周期平均交通量(辆/周期)。
6)直左合用车道饱和流量TL T TL f S S ⨯= (22)直左合流校正系数:()TL T TL q q q f '+=/ (23) T L L Tq q K q +=' (24) LT L S S K '= (25)式中:T q —— 合用车道中直行车交通量(pcu/h );L q —— 合用车道中左转车交通量(pcu/h ); T q '—— 合用车道的直行车当量(pcu/h ); L K —— 合用车道中的左转系数。
7)直右合用车道饱和流量TR T TR f S S ⨯= (26)直右合流校正系数:()TT R TR q q q f '+=/ (27) T R R Tq q K q +=' (28) RT R S S K '= (29)式中:T q —— 合用车道中直行车交通量(pcu/h ); R q —— 合用车道中右转车交通量(pcu/h );T q '—— 合用车道直行车当量(pcu/h );R K —— 合用车道中的右转系数。
8)直左右合用车道饱和流量(1)普通相位兼有行人影响取第6)和第7)条计算结果的较小值。
(2)有单向左转相位或单向交通 参照第3)条计算。
9)左右合用车道饱和流量(三岔路口)LR L LR f S S ⨯= (30)左右合流校正系数:()TR L LR q q q f '+=/ (31) L R R Tq q K q +=' (32) RL R S S K '= (33)式中:L q —— 合用车道中左转车交通量(pcu/h ); R q —— 合用车道中右转车交通量(pcu/h );T q '—— 合用车道的左转车当量(pcu/h ); R K —— 合用车道中的右转系数。
10)短车道饱和流量校正当进口车道实际供排队长度()q L 小于要求排队长度()r L 时,进口车道属短车道,须作短车道饱和流量校正。
3600/pcu e f r L g S L = (34)式中:f S —— 经各类校正后的饱和流量(pcu/h );e g —— 有效绿灯时长(s );pcu L —— 排队中一辆小轿车的平均占位长度,一般取6m 。
(1)左转专用与右转专用车道短车道校正系数专用车道本身的校正系数:()L L x u u f -+=1η (35)专用车道相邻车道的校正系数:()()L L S u u f --+=11η (36)rqL L L u =(37)式中:η—— 使用专用车道的车辆比率。
(2)合用车道短车道校正系数TL x f f ⨯=正系数直左合用车道短车道校 (38) TR x f f ⨯=正系数直右合用车道短车道校 (39) 5. 配时参数计算1)信号周期时长须选用最佳周期时长,按下式计算:YLC -=10 (40) 2)信号总损失时间,按下式计算:()∑-+=kk s A I L L (41)式中:s L —— 起动损失时间,应实测,无实测数据时可取3s ; A —— 黄灯时长,可定为3s ; I —— 绿灯间隔时间(s );k —— 一个周期内的绿灯间隔数。