第六章 金属电子论
- 格式:ppt
- 大小:2.73 MB
- 文档页数:70
第六章 金属电子论这一章与下一章讨论固体中电子运动的(一般)规律 这一章讨论固体中的一类:金属的电子运动规律及性质§6-0 引子1. 金属的一些基本物理性质:良导体:Ohm 定律 V=RI j E σ=金属一般是顺磁体 0MH χ=>χ:10-5~10-6良导热体:比热数值小 〈〈 晶格比热 光学 : 有光泽(强反射)但不透射 2. 物理基础微观粒子 + 多体问题量子 相互作用复杂 ⎧⎨⎩电子间晶格与电子间3. 经典模型:(Drude - Lorentz ) 1900年1.模型 经典:单体-牛顿 多体-Boltzmann 统计自由:相互作用可忽略 → “气体”仅有与原子实碰撞 扩展态-非局域(3)对物理性质定性解释• 扩展、自由 ▬ 导电、导热好 • 外场(光 → 电磁场)→ 电子吸收能量(激发 态)⇒ 不透明 激发态 → 基态 ⇒放出 光学⇒反射• 不能解释电子气的比热(实验仅为理论的1%)经典:能量均分-自由度与晶格相比拟§6.1 金属自由电子气的量子理论三部分:1.单电子的基本问题(p k = ,E ϖ= ,ψ) 2.关于 ψ,k , E 的讨论 ()k ρ ()E ρ 3.讨论相应的物理量 V C一、 金属中单自由电子量子理论 1.模型: 量子 + 自由具体:一个立方金属固体, V 体积 自由:电子在V 内不受力 V(x,y,z)= 0 边界:电子不能脱离体内 V(x,y,z)= ∞三维 无限深势阱2.S.E. 及其解22E m-∇ψ=ψ 令 222222(,,)()()()()22x y z x y z x y z k E k k k m mψψψψ===++⇒ ()x x ik xik xx x x A eB eψ-=+ ()y y ik yik yy y y A eB eψ-=+()zzik z ik z z z z A e B e ψ-=+周期性边界条件: ()()x L x ψψ+= ()()y L y ψψ+= ()()z L z ψψ+=⇒ ()(,,)x y z i k x k y k z ik rx y z AeAe++ψ==⇒ 2i i k n Lπ= (,,)i x y z =3/21A L == 归一化常数22222222(2)()22x y z k E n n n m m Lπ==++3. 讨论: ()r ψ平面波2C ψ= 在金属内找到电子得几率处处一样 0P v ⇒≠ 行波若用自然边界条件:ψψ(x=0)=(x=L)=0 (,,)sin sin sin x y z x y z A k x k y k z ψ=(,,)x y z ψ=驻波2C ψ≠在体内找到电子几率各处不一样ˆ||00Pp v ψψ⇒=⇒= 驻波与实际模型不符二、状态分布 ⇒()k ρ与()E ρ的讨论因为由少体到多体 ⇒ 物性、比热等1、k 空间与()k ρx y z k k i k j k k =++(1)2(,,)i i k n i x y z Lπ== 是分立值(2)每个点间距离 2i k Lπ∆=⇒3(2)x yzk k k k Vπ∆=∆∆∆= (3)态密度:31()(2)V k k ρπ==∆(4)状态数 k k d k →+(球壳内)23()()4(2)V d z k d k k d x d y d z k d kρρππ===2、()E ρ222h k E m = E 一定,k 空间→球面半径k在k 空间两个等能面间的状态数对应222h k k E m→= ( 一一对应,一个k 对应一个E) 2()()()4E dE k dk k k dkρρρπ==311222222()4()42()()4()k k dkk k m E g E V E CE dE dEdkρπρπρπ=====同样可求出: 2D : ()C o n E ρ==常数1D :12()E Eρ-低能态⇒状态密度大→ 涨落 ↑()E V ρ V 增大 则()E ρ增大这是测不准关系的直接结果:x p ∆∆≥V 增大,x ∆增大, p ∆降低 表示p ∆占k 空间位置小 单位k 空间中的状态数多 ()E ρ↑三、电子气的Fermi 能量E F ,Fermi 波矢K F , Fermi T F 1、 引入:自由电子量子性质之二: F-D 分步,(多体) ( 之一: S.E , 少体)处于热平衡状态下能量为E 的状态的几率为: 1()1FB E E k Tf E e-=+2、E F 的意义 (1)热力学意义 若将电子系统⇒热力学系统.F E =μ化学势()F V FE Nμ∂==∂体积不变,系统增加一个电子所需要的能量(2)统计与固体中意义(i )T=0K()Ff E ⎧⎪=⎨⎪⎩0F0 0 E>E 1 E<E (a )0F E 为T=0K ,电子填充的最高能级(b )并且为电子填充态与未填充态的分界面(ii )0T K ≠时0()F F F F F F E E n T E E n T E E E E E E n T E E n T-⎧⎪-⎪⎪-==⎨⎪>≥⎪⎪<≤⎩ B B B B 个k 个k 个k 个kE F 是其占有状态几率为1/2的能量3.数学表达式T=0K :由泡利原理 态和电子数一一对应0021/21/2202203/3()()2()(3)()32/FFE EF F dN dZ E f E dE N dN CEf E dE C E E n m dE C E n N Vπρ∞∴========⎰⎰⎰0030300120210410~51010/5~1~102F F B F F F F n cm E eV E k E k k m mT K ---→==⇒A ⨯完全是量子效应 !0T K ≠()()N dN E f E dE ρ∞∞==⎰⎰数学处理:(i )分步积分(ii )()F F fE E E E δ∂∂ 仅在大 (iii )令:3/23E ()2H g E dE C E =⋅⎰E()= 其中:C = 4πV(2m/h)2可以在E F 附近展开:222/32138B F F k T N CE E π⎡⎤⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦ 又 ()2/3032F N C E =022202112B F F F k TE E E π⎡⎤-⎢⎥⎣⎦讨论:(i )0F F E E <(ii )00421010FB F F FE k T E E =>∴(iii )只有F E 以下能量为B k T的电子被激发到F E 以上B k T 范围。