制冷原理及压焓图基本知识
- 格式:ppt
- 大小:338.50 KB
- 文档页数:12
制冷剂的压焓图
1.压焓图的构成
制冷剂的压焓图又称lgp-h图,是根据1kg制冷剂的状态变化绘制的。
横坐标表示焓h,标度是均匀的;纵坐标表示压力P,为使低压区内交点更清晰,采用对数坐标,标度是不均匀的。
坐标系内的每一点都对应着制冷剂的一种状态。
为了使用方便,图中还绘制了各种曲线,主要的几种曲线是:
1)等压线和等焓线
图中平行于横轴的直线为等压线,平行于纵轴的直线为等焓线。
2)饱和液体线和干饱和蒸气线
饱和液体线用x=0表示,在这条线上,制冷剂总是处于饱和液体状态;干饱和蒸气线用x=1表示,在这条线上,制冷剂总处于干饱和蒸气状态。
这两条线的交点叫临界点,用K表示。
这两条线将lgp-h图分为三个区域:x=0左边的区域称过冷区,在这个区域,制冷剂总是处于过冷液状态;x=1右边的区域,称为过热蒸气区,在这个区域,制冷剂总是处于过热蒸气状态;中间的区域称为饱和区,制冷剂在这个区域总保持湿蒸气状态。
3)等温线
等温线用t表示,是一条折线:在过冷区为竖虚线;在饱和区为水平虚线与等压线重合;在过热蒸气区为向下的斜线,用虚线绘制。
4)等比体积线
等比体积线用v表示,用点画线绘制。
5)等熵线
等熵线用S表示,为向右上方倾斜的曲线。
6)等干度线
它只存在于饱和区内,用X表示。
在实际应用中,以上各种曲线都有若干条,并标明相应的数据。
制冷原理的压焓图应用1. 简介制冷原理中,压焓图(Pressure-Enthalpy Diagram)是一种重要的图示方法,用于描述和分析制冷循环过程中的热力学性质变化。
本文将介绍制冷原理中压焓图的基本概念和应用。
2. 压焓图概述压焓图是一种在压力-焓坐标系下绘制的图形,用于分析和展示制冷系统中的热力学性质变化。
在压焓图中,横轴表示焓(即热含量)而纵轴表示压力。
通过绘制制冷循环过程的轨迹,可以直观地了解制冷系统中的性质变化。
3. 压焓图的绘制制冷系统的压焓图可以通过实际测量数据或理论计算得到。
一般情况下,制冷系统的工作流程可以分为压缩、冷凝、膨胀和蒸发四个阶段。
根据不同的制冷循环类型,可以得到相应的压焓图。
下面以蒸氨制冷循环为例,简要介绍压焓图的绘制过程:1.根据制冷系统中的工质和工作参数,确定系统所处的工质状态点。
2.在压焓图上标出各个状态点,并相应地绘制系统的工作流程轨迹。
3.根据工质的热力学性质,计算各个状态点的焓值,并将其标在图上。
4.连接各个状态点,得到系统的工作流程轨迹。
4. 压焓图的应用压焓图在制冷领域中有广泛的应用,下面列举几个常见的应用场景:4.1 制冷剂选择制冷剂的选择是制冷系统设计中的重要一环。
通过压焓图,可以对比不同制冷剂的性能指标,如蒸发温度、冷凝温度、压缩功率等。
利用压焓图中的等温线和等熵线分析,可以找到系统最优的制冷剂。
4.2 制冷循环分析压焓图可以帮助工程师对制冷循环过程进行详细的分析。
通过观察压焓图上的轨迹,可以判断制冷系统中存在的问题,如液态回流、过热过冷程度不合理等。
同时,可以对制冷系统的性能进行评估和优化。
4.3 热交换器设计在制冷系统中,热交换器是实现热量传递的关键设备。
通过压焓图,可以确定制冷循环中的热量传递过程。
通过计算不同状态点的焓差,可以确定热交换器的设计参数,如传热面积、换热系数等。
4.4 节能改造通过分析制冷循环中的能量流动和损失,可以找到节能改造的潜力。
⼗分钟掌握:制冷系统与压焓图(附视频讲解)本次福利:1纯物质的特性纯物质的特性可以绘制成图表。
1、压⼒ – 温度图(P - T 图)2、温度 – 熵图(T - S 图)3、温度 – 焓图(T - h 图)4、压⼒ – 焓图(P - h 图)注意:压⼒ – 焓图经常⽤于制冷和空调系统。
现在举例如下:1、温度 – 焓图(T-h 图)⽔的温度 – 焓图⽔的温度 – 焓图(不同压⼒)2、压⼒ – 温度图(CO2 相态图)CO2 的压⼒ – 温度图3、压⼒ – 焓图(P-h 图)4、压⼒ – 焓图(P-h 图)1、压⼒-焓图是纯物质的特性图。
2、图中包含物质的⼀些更为重要的特性,例如温度、压⼒、⽐容、密度、⽐热、焓或熵。
5、P-h 图和 Log(P)-h 图2压⼒ – 焓图(Log(P)-h 图)压焓图(lgp-h图)指压⼒与焓值的曲线图,,压焓图以绝对压⼒为纵坐标(为了缩⼩图的尺⼨,提⾼低压区域的精度,通常纵坐标取对数坐标),以焓值为横坐标。
压焓图是分析蒸⽓压缩式制冷循环的重要⼯具,常⽤于制冷循环设计、计算和分析。
1、压焓图概述1)、图中有三个区域,分别表⽰液体-混合物- 蒸⽓2)、这些区域⽤蓝⾊的半圆形曲线隔开,这条曲线叫做饱和曲线。
在半圆形区域内,制冷剂达到热平衡,以蒸⽓和液体的混合物形式存在。
3)、混合物中的蒸⽓含量从 0%(饱和半圆的左侧)变为 100%(半圆的右侧)。
4)、在饱和曲线的左外侧,制冷剂仅以液体形式存在。
在饱和曲线的右外侧,制冷剂仅以蒸⽓形式存在。
2、压焓图与制冷循环现在我们⽤ Log(P)-h 图来表现⼀个制冷循环。
3、详细理解压焓图我们来看看如何阅读真正的制冷剂——R134a 的压焓图1)、等温线的绘制2)、等容线的绘制3)、等熵线的绘制4)、等湿线的绘制5)完整的压焓图在压焓图上,我们可以把它分为:⼀点、⼆线、三区、五态、六线。
⼀点:指临界点,临界点为两根粗实线的交点。
在该点,制冷剂的液态和⽓态差别消失。
制冷剂压-焓图(lgP-h图)介绍制冷剂的热力学性质可通过热力参数之间的关系来描述,而制冷剂的热力参数之间的关系是通过实验方法测定出来的,一般用热力学性质图、表来表示。
制冷剂的lgP—h图:(又称莫里尔图(Molliev Diagram))图中:K ——临界点 P ——等压线 h ——等焓线 t ——等温度线s ——等熵线 v ——等比容线 x ——等干度线在lgP—h图上任意一点都能表示制冷剂的一种热力状态,在一个状态点上,制冷剂具有确定的压力、温度、比容、焓和熵,以及蒸气所占的比例,即干度值X。
X = 制冷剂蒸气质量 / 制冷剂总质量饱和液体线(X=0):在lgP—h图上,将不同温度下的饱和液体的各点连接起来的曲线叫做饱和液体线。
在饱和液体线上的各点所表示的是制冷剂饱和液体在此点压力下的饱和温度。
干饱和蒸气线(X=1):在lgP—h图上,将不同温度下的干饱和蒸气的各点连接起来的曲线叫做干饱和蒸气线。
在干饱和蒸气线上的各点所表示的是制冷剂干饱和蒸气在此点压力下的饱和温度。
饱和液体线和干饱和蒸气线均为粗实线,相交于临界点,这两条线将lgP—h图分成三个区域。
饱和液体线左边是过冷液体区,干饱和蒸气线右边是过热蒸气区,两条曲线中间的区域为饱和区,也就是湿蒸气区,在这个区域内的制冷剂为饱和状态,区域内各点上的饱和蒸气均为湿蒸气。
等温线(t):将表示温度相同的各点用点划线连接起来成一条折线,这条折线就是等温线。
等温线在过冷液体区为竖直线,与等焓线重合;在湿蒸气区为水平直线,与等压线重合;在过热蒸气区为向右下方向的曲线。
等比容线(v):将比容相同的各点用虚线连接起来的曲线叫做等比容线。
等熵线(h):将熵值相同的各点用细实线连接起来的曲线叫做等熵线。
等干度线(x):在饱和区内将干度相同的点连接而成的曲线叫做等干度线。
在lgP—h图中,箭头所指的方向表示各参数数值增加的方向。
另外,可以根据任意两个状态参数就能确定其在lgP—h图上的状态点,通过这个点,就可以查出其它几个状态参数。
第四讲压焓图压力:垂直于物体表面的作用力,单位牛顿(N)。
压强:单位面积所受到的作用力,单位帕(Pa)。
焓:物体内能与压力能之和。
单位焦(J)。
等压过程中,系统从外界所吸收的热量等于系统焓值的增加。
比焓:1kg某物质的焓值。
单位kj/kg。
在压焓图上,X轴所表示的单位为比焓。
Y轴所表示的单位为压强。
为缩小尺寸,提高低压表示的精度,故取对数。
熵:能与绝对温度的比值,表示热量转换成功的程度。
在绝热过程中系统的熵不变。
单位J/K。
系统的熵在可逆绝热过程中不变,在不可逆绝热过程中单调增大。
这就是熵增加原理。
由于孤立系统内部的一切变化与外界无关,必然是绝热过程,所以熵增加原理也可表为:一个孤立系统的熵永远不会减少。
它表明随着孤立系统由非平衡态趋于平衡态,其熵单调增大,当系统达到平衡态时,熵达到最大值。
熵的变化和最大值确定了孤立系统过程进行的方向和限度,熵增加原理就是热力学第二定律。
温度:表征物体冷热程度的物理量。
标志着物体内部无规则运动的剧烈程度。
一切相互热平衡的系统,温度一定相同。
温标:表示温度数值的方法称为温标。
常用为摄氏温标与理想气体温标。
等温线:在气体区,液体区,都随压力下降温度直线下降,只有在饱和区内,与等压线重合,平行于X轴。
为此,通过压力与库温比较,可以知道蒸发温度是否正常(要加减系数),以判断故障。
干度:气液共存区域中,气态含量所占百分比称为干度。
当制冷剂在有限密闭空间内气液共存时,称为饱和状态。
饱和状态下的液体和蒸汽称为饱和液体与饱和蒸汽。
相态:物质所呈现的状态。
物质的三种形态又称为三种物相。
物态变化,简称相变。
三相点:物质三种物相同时存在,并达到平衡时的温度压力点。
每种物质,只有唯一的一个点。
水的三相点为0℃,610.5帕(绝对压力)。
是温标的校正点。
临界点:物质相态变化所达到的温度,压力状态点。
比容:单位质量的物质所占有的容积称为比容,用符号"V"表示。
其数值是密度的倒数。
⽤压焓图这样进⾏制冷系统故障的分析,简单易懂!⼀、压⼒– 焓图概念1、压焓图概述1)图中有三个区域,分别表⽰液体-混合物- 蒸⽓2 )这些区域⽤蓝⾊的半圆形曲线隔开,这条曲线叫做饱和曲线。
在半圆形区域内,制冷剂达到热平衡,以蒸⽓和液体的混合物形式存在。
3)混合物中的蒸⽓含量从0%(饱和半圆的左侧)变为99%以上(半圆的右侧)。
4)在饱和曲线的左外侧,制冷剂仅以液体形式存在。
在饱和曲线的右外侧,制冷剂仅以蒸⽓形式存在。
2、压焓图与制冷循环现在我们⽤Log(P)-h 图来表现⼀个制冷循环。
⼆、压焓图分析冷媒不⾜压缩机电流:因为冷媒少,流经压缩机的冷媒也少,因此压缩机负荷⼩,电流⼩。
⾼压压⼒:制冷系统⾥⾯的制冷剂少,没有⾜够的制冷剂在冷凝器⾥⾯,所以⾼压要低。
低压压⼒:低压也低,原因跟⾼压⼀样;排⽓温度(壳体温度):冷媒少,系统的回⽓过热多⼤,压缩机的排温也升⾼;冷媒循环量少了,压缩机的冷却效果差,所以压缩机内冷却条件差。
吸⽓温度(过热度):因为冷媒少,蒸发过早的结束,导致蒸发器后端的制冷剂都在吸收热量,过热度就增⼤,吸⽓温度就⾼。
压焓图:三、压焓图分析冷媒过多压缩机电流:因为冷媒多,流经压缩机的冷媒也多,因此压缩机负荷⼤,电流⼤。
⾼压压⼒:制冷系统⾥⾯的制冷剂多,占据了冷凝器的换热⾯积,所以⾼压要低。
低压压⼒:低压也⾼,原因跟⾼压⼀样;排⽓温度(壳体温度):冷媒多,系统的回⽓过热多⼩,压缩机的排温也升⾼;冷媒循环量多了,压缩机的冷却效果好,所以压缩机内冷却条件好。
吸⽓温度(过热度):因为冷媒多,蒸发器⾥⾯的冷媒不能全部蒸发,导致蒸发器后端甚⾄吸⽓管的制冷剂都在吸收热量,过热度基本没有,吸⽓温度就低。
压焓图:四、压焓图分析蒸发不良故障压缩机电流:因为低压侧蒸发不良,吸⼊压缩机的⽓体量较少,所以压缩机的负荷⼩了,压缩机的电流也⼩⾼压压⼒:低压压⼒降低,在同样压缩⽐的条件⼩,排⽓压⼒就低,⾼压压⼒也就低。