水工建筑物重力坝设计计算书
- 格式:doc
- 大小:598.00 KB
- 文档页数:20
重力坝设计说明书《水工建筑物》课程设计姓名:专业:学号:基本资料一、基本情况本重力坝水库坝高53.9m,坝底高程31.0m,坝顶高程84.9m,坝基为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强。
水库死水位51.0m,死库容0.3亿m3,正常水位80.0m,设计状况时上游水位82.5m、下游水位45.5m,校核状况上游戏水位84.72m、下游水位46.45m。
二、气候特征1、根据当地气象局50年统计资料,多年平均最大风速14m/s,重现期50年最大风速23m/s,设计洪水位时2.6km,校核洪水位时3.0km;2、最大冻土层深度为125m;3、河流结冰期平均为150天左右,最大冰层1.05m。
三、工程地质条件1、坝址地形地质(1)、左岸:覆盖层2-3m,全风化带厚3-5,强风化加弱风化带厚3m,微风化层厚4m;(2)、河床:岩面较平整,冲积沙砾层厚约0-1.5m,弱风化层厚1m左右,微风化层厚3-6m;坝址处河床岩面高程约在38m 左右,整理个河床皆为微、弱风化的花岗岩层,致密坚硬,强度高,抗冲能力强;(3)、右岸:覆盖层3-5m,全风化带厚5-7,强风化加弱风化带厚1-3m,弱风化带厚1-3m,微风化层厚1-4m。
2、天然建筑材料:粘土料、砂石料和石料在坝址上下游2-3km 均可开采,储量足。
粘土料各项指标均满足土坝防渗体土料质量技术要求。
砂石料满足砼重力坝要求。
大坝设计一、工程等级本水库死库容0.3亿m3,最大库容未知,估算约为5亿m3左右。
根据现行《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),按水库总库容确定本工程等别为Ⅱ等,工程规模为大(2)型水库。
枢纽主要建筑物挡水、泄水、引水系统进水口建筑物为2级建筑物,施工导流建筑物为3级建筑物。
二、坝型确定坝型选择与地形、地质、建筑材料和施工条件等因素有关。
本枢纽坝址区为较坚硬的砂岩,当地石料丰富,确定本水库大坝为浆砌块石重力坝。
水利水电工程专业专项设计说明书水工建筑物课程设计题目:重力坝设计(西山水利枢纽)班级:水电1141姓名韩磊指导教师:**长春工程学院水利与环境工程学院水工教研室2013 年3月3日目录1 挡水坝段 (1)1.1 剖面轮廓及尺寸 (1)1.1.1 坝顶高程的确定 (1)1.2 坝体稳定应力分析 (4)1.2.1 挡水坝段荷载计算 (4)1.2.2 稳定验算 (18)1.2.3 坝基面应力计算 (19)1.2.4 坝体内部应力的计算 (25)2 溢流坝段 (34)2.1 孔口尺寸和泄流能力 (34)2.1.1 确定孔口尺寸和孔口数量 (34)2.1.1.2溢流坝最大高度和坡度的拟定。
(35)2.1.2 泄洪能力的验算 (35)2.2 检修门槽空蚀性能验算 (37)2.2.1校核洪水位时堰顶压力验算 (37)2.2.2 平板门门槽空蚀验算 (37)2.3 溢流坝曲面设计 (37)2.3.1 上游前缘段计算 (37)2.3.2顶部曲线段 (38)2.3.3 中间直线段 (38)2.3.4 反弧段 (38)2.3.5 桥面布置 (39)2.4 堰面水深的校和计算 (40)2.4.1堰面水深计算 (40)2.4.2 直线段水深计算 (41)2.4.3 反弧段水深计算 (41)2.4.4 渗气后水深计算 (42)2.5 消力池的计算 (42)2.5.1判断消能方式 (42)2.5.2 判断是否要修消力池 (42)2.5.3 消力池尺寸的计算 (43)2.5.4 基本组合(2) (44)2.6 溢流坝算段的稳定、应力计 (48)2.6.1 荷载计算 (48)2.6.2 稳定验算 (52)2.6.3 坝基面应力计算 (53)2.6.4 坝体内部应力的计算 (54)3、设计参考资料 (55)谢辞 (55)1 挡水坝段1.1 剖面轮廓及尺寸1.1.1 坝顶高程的确定由于设计洪水位低于正常洪水位,故取正常洪水位和校核洪水位作为控制情况。
山王庙水库大坝稳定及应力计算1 基本资料1.1坝型选择:山王庙水库大坝采用砼重力坝。
1.2为了保证大坝的安全,下游设护坦。
1.3大坝的高度:计算得上游校核水位为2108.98m设计水位为2108.71m,下游校核水位为2079.00m 设计水位为2078.60m,开挖高程为2075m坝顶高程为2111.00m,堰顶高程为2108.00m。
粗估最大坝高:2111-2075=36.00m。
1.4溢流堰:可用曲线型实用堰(长研型、克奥型、WES型)、折线型;利用当地材料,且为小型溢流坝,采用WES型。
1.5大坝的稳定及边缘应力计算:计算时可以考虑风浪及泥沙压力。
建筑物等级为5级建筑物。
1.5.1实用堰的剖面尺寸:坝轴线长12.0m;溢流堰口长10.0m;堰顶水深:校核水深为0.98m、设计水位为0.71m;下游水深t :校核水深为4.00m、设计水位为3.60m;1.5.2非溢流坝段的剖面尺寸:坝轴线长:左岸3个坝段、55.0m,右岸6个坝段、100.0m;上游水位:校核水位为2108.98m 设计水位为2108.71m;下游水深t :校核水深为4.00m、设计水位为3.50m;2溢流坝段的稳定和应力计算:只计算最不利情况一一校核洪水时溢流情况;下游水位:坝址水位~流量曲线得为2079.0m;上游水位:2108.98m;2.1荷载计算: 表2-1溢流坝段荷载计算表荷载及代号 荷载计算(10KN )方向力臂计算(m力矩(10KN.m )坝体自重G (1/2) X 27.4 X 33.0 X 2.4=1085.04+30.0/2-2.6-27.6/3=3.2 3472.128 坝体自重G 2 (1/2 )X 2.6 X 13.0 X 2.4=40.5630/2-2/3 X 2.6=13.267 538.096 上游水重W (1/2 ) (33.98+20.98 )X 2.6=71.44830/2-1.3=13.7 978.838 上游泥沙重W (1/2 )X 2.6 X 14.36 X 0.8=14.934 t 30/2-2.6/3=14.133 211.07 下游水重W (1/2 )X 3.2 X 4.0=6.40 + -(30/2-3.20/3 ) =-13.93-89.17 上游水压力P 2 (1/2 )X 33.98 X 33.98=577.32―33.98/3=11.33 -6539.11 上游泥沙压力P r (1/2 ) X 14.98 X 14.98 X 0.53 X 0.8=47.57 —14.98/3=4.99 -237.53 下游水压力P l 2(1/2 )X 4.0 =8.0V — (1/3 )X 4.0=1.333 10.67 堰面动水压力:1.94 X 20 (COS25^COS53) /9.8=1.2064— 6.07.23 1.94 X 20 ( SIN250+SIN530) /9.8=4.84 + 15-2.715=12.285 -59.40 浮托力V 30.0 X 4.0=120.0t 0渗透压力U (1/2 )X 29.98 X 0.25 X 25.0=93.69 t -(30/2-5-25/3) =-1.667-156.15 渗透压力U 2(1/2 )X( 29.98+7.495 )X 5.0=93.69t-(30/2-5/2 ) =-12.5-1171.10合计刀W刀P刀M不计入扬压力合计— 1218.382616.89 -1655.008 计入扬压力合计911.002616.89-2982.2582.602.2验算抗滑稳定性:(1) 采用抗剪断强度公式计算,其稳定安全系数为:K= (f,刀W+CA) / 刀P;查前述地质提供的数据:f,=1.0 , C=1.10Mpa,代入公式:K= (1.0 X 911.002+1.10 X 30.0 X 100) /616.89=6.83 > 2.5 (见规范要求), 满足稳定要求。
重力坝坝体工程量计算非溢流坝段1#:右岸断面1混凝土面积为17.5㎡,土方开挖为24.38㎡;断面2混凝土面积为128.71㎡,土方开挖为120.69㎡;断面3混凝土面积为128.71㎡,土方开挖为27.12㎡。
断面1与断面2距离为12.26m,断面2与断面3距离为8m则坝段1#混凝土方量为(17.5+128.71)/2*12.26+128.71*8=1925.947 m³土方开挖量为(24.38+120.69)/2*12.26+(120.69+27.12)/2*8=1480.519 m³非溢流坝段2#:右岸断面3混凝土面积为128.71㎡,土方开挖为27.12㎡;断面4混凝土面积为365.09㎡,土方开挖为163.88㎡;断面5混凝土面积为365.09㎡,土方开挖为120.69㎡。
断面3与断面4距离为14m,断面4与断面5距离为8m则坝段2#混凝土方量为(128.71+365.09)/2*14+365.09*8=6377.32 m³土方开挖量为(27.12+163.88)/2*14+(163.88+120.69)/2*8=2475.28 m³非溢流坝段3#:右岸断面5混凝土面积为365.09㎡,土方开挖为120.69㎡;断面6混凝土面积为982.6㎡,土方开挖为605.06㎡;断面7混凝土面积为982.6㎡,土方开挖为248.77㎡。
断面5与断面6距离为14m,断面6与断面7距离为8m则坝段3#混凝土方量为(982.6+365.09)/2*14+982.6*8=17294.63 m³土方开挖量为(120.69+605.06)/2*14+(605.06+248.77)/2*8=8495.57 m³非溢流坝段4#:右岸断面7混凝土面积为982.6㎡,土方开挖为248.77㎡,断面8混凝土面积为2380.91㎡,土方开挖为616.29㎡;断面9混凝土面积为2380.91㎡,砂砾石开挖为907.56㎡;。
一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m=2h l+ h0+ h c=0.98+0.30+0.3=1.58m 坝顶高出水库静水位的高度△h校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
重力坝坝顶超高计算书标准格式混凝土重力坝坝顶超高计算书标准格式工程设计分院坝工室2006.3.核定:审查:校核:编写:——水电站工程(或水库工程、水利枢纽工程)混凝土重力坝坝顶高程计算书1 计算说明1.1 适用范围(设计阶段)本计算书仅适用于工程设计阶段的(坝型)坝顶超高/高程计算。
1.2 工程概况工程位于省市(县)的江(河)上。
该工程是以为主,兼顾、、等综合利用的水利水电枢纽工程。
本工程规划设计阶段(或预可行性研究阶段,可行性研究阶段/初步设计阶段,招标设计阶段)设计报告已于年月经审查通过。
水库总库容×108m3,有效库容×108m3,死库容×108m3;灌溉面积亩;水电站装机容量MW,多年平均发电量×108 kW·h,保证出力MW。
选定坝址为,选定坝型为。
根据《水电枢纽工程等级划分及设计安全标准》DL5180—2003,工程等别为等型工程,拦河坝为级永久水工建筑物。
(因拦河大坝坝高已超过其规定的高度,拦河坝应提高级,按级建筑物设计。
)1.3 计算目的和要求通过混凝土重力坝坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位高差的计算,以确定防浪墙顶高程和大坝高度,为坝体断面设计及坝体工程量计算提供可靠的依据。
1.4 计算原则和方法1.4.1 计算原则(1)坝顶上游防浪墙顶与正常蓄水位、设计洪水位或校核洪水位的高差,包括最大浪高、波浪中心线至水库静水位的高度和安全超高。
(2)确定的坝顶高程不得低于水库正常蓄水位及设计洪水位。
(3)坝顶高程的确定尚需考虑枢纽中其他建筑物(如船闸坝顶桥下通航净空) 对坝顶高程的要求。
1.4.2 计算方法因选定坝型为(混凝土重力坝),防浪墙顶在水库静水位以上的高差按《混凝土重力坝设计规范》DL 5108-1999式(11.1.1)计算,即:∆h=h1%+h z+h c式中,∆h—防浪墙顶至水库静水位的高差,m;h1%—浪高,m;h z−波浪中心线至水库静水位的高度,m;h c−安全超高,m。
水工建筑物课程设计(重力坝)1000字一、前言重力坝是水利工程中广泛应用的水工建筑物之一,具有简单、稳定、可靠等特点。
为了能够更好地学习和理解重力坝的设计与施工,本文将结合实际工程案例,介绍重力坝的基本概念、设计要点、施工过程以及安全措施。
二、概述重力坝是指靠坝体自身的重力抵抗水压力,并使坝体能够保持在平衡状态的坝。
重力坝通常具有比较宽的顶宽、大坝底宽,以及垂直或近垂直的坝面。
三、设计要点1. 坝体稳定性重力坝的稳定性是设计的重点之一,因此坝体的自重和坝前水柱作用所产生的水压力必须能够平衡。
为了保证坝体的稳定性,需要进行相应的坝体截面优化和稳定分析。
2. 溢洪道设计溢洪道是重力坝防洪的主要措施之一,需要根据坝址洪水特征和设计洪水确定相应的溢洪道参数。
一般来说,溢洪道的设计应该充分考虑坝上游的泄洪需求,同时确保洪水能够安全地通过坝址,避免发生洪水冲毁等事故。
3. 切尾设计切尾是指将河床河岸的土质挖出,以便于坝底的施工和加强重力坝的水密性。
在切尾的设计中应该充分考虑河床河岸土质的稳定性,避免在切尾过程中发生坍塌和滑坡等不安全情况。
四、工程案例以南岸水库为例,该水库位于河南省某市,总库容为 3.3亿立方米,控制流域面积为1117.1平方千米,最大蓄水位为265.5米。
该水库为一座重力坝,具体参数如下:1. 坝址基础岩层接触深度: -76米2. 坝顶标高: 277.5米3. 坝顶长度: 534.75米4. 坝顶宽度: 10.5米5. 坝脚标高: 206米6. 坝脚长度: 342米7. 坝脚宽度: 42米8. 坝高: 71.5米五、施工过程1. 剥离坝址土层:将坝址表土和浮石剥离至基岩层,同时进行基岩凿打和清理。
2. 贴面铺垫:在坝址的基础岩层上进行界板定位和方案确认,贴面铺垫,同时进行模板安装。
3. 混凝土浇筑:进行混凝土浇筑之前,需要对混凝土原材料进行检测和质量监控,保证混凝土强度和性能符合设计要求。
院:土木工程学院专业:水利水电工程专业年级: 2012学号:学生姓名:杨林指导教师:邹爽老师2015年7月16日目录一、设计坝顶高程1.确定坝基开挖高程 (1)2.计算坝顶高程 (1)二、绘制坝基开挖线 (2)三、设计非溢流坝段1.设计实用剖面 (3)2.实用坝体剖面稳定及强度验算 (4)四、设计溢流坝段1.孔口形式及溢流坝前沿总长 (15)2.溢流面体型设计 (15)五、溢流坝段稳定验算1.溢流坝段剖面图 (18)2.设计洪水位状况 (19)3.校核洪水位情况 (21)六、设计消能工1.选择鼻坎形式 (24)2.确定挑角、鼻坎高程和反弧半径 (24)3.计算挑距和下游冲刷坑深度 (24)七、坝体细部构造拟定1.横缝布置 (28)2.坝顶的布置 (28)3.廊道系统 (28)4.横缝灌浆,固结灌浆,排水措施 (29)八、附录重力坝设计资料 (30)一、设计坝顶高程1.确定坝基开挖高程由相关水文、地质等资料初步估计坝高为50米左右,可建在微风化至弱风化上部基岩上,又下坝址河面高程1858.60m ,综合槽探、硐探、钻探和地表地质勘察资料,坝址区左右岸坡残坡积层厚度达3~5m ,局部地段深达10m ,河床上第四纪冲积覆盖层厚度为8.8m 左右;结合风化线深度,初步拟定坝基最低开挖高程为1843.50m 。
大坝校核洪水为500年一遇,坝体级别为4级。
2.计算坝顶高程坝顶应高于校核洪水位,坝顶上游防浪墙顶的高程应高于波浪顶高程,其与正常蓄水位或校核洪水位的高差,选择两者中防浪墙顶高程的高者作为选定高程。
(1).相关资料(2). 计算h l 根据官厅公式计算: 当20gDV =20~250 时,为累计频率5%的波高h 5%; 当20V gD=250~1000 时,为累计频率10%的波高h 10%; 本设计20V gD=(9.8×0.6×103)/20.72=13.723 故取h l ≈h 5%.(3).计算防浪墙顶高程及基本剖面坝高二、绘制坝基开挖线坝高超过100m时,坝可建在新鲜、微风化或弱风化下部基岩上;坝高在50~100m时,可建在微风化至弱风化上部基岩上;坝高小于50m时,可建在弱风化中部至上部基岩上。
一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m坝顶高出水库静水位的高度△h=2h l+ h0+ h c=0.98+0.30+0.3=1.58m校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
一、非溢流坝设计(一)、初步拟定坝型的轮廓尺寸(1)坝顶高程的确定①校核洪水位情况下:波浪高度2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m波浪长度2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m安全超高按Ⅲ级建筑物取值h c=0.3m坝顶高出水库静水位的高度△h=2h l+ h0+ h c=0.98+0.30+0.3=1.58m校②设计洪水位情况下:波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m波浪长度2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m安全超高按Ⅲ级建筑物取值h c=0.4m=2h l+ h0+ h c=1.62+0.54+0.4=2.56m 坝顶高出水库静水位的高度△h设③两种情况下的坝顶高程分别如下:校核洪水位时:225.3+1.58=226.9m设计洪水位时:224.0+2.56=226.56m坝顶高程选两种情况最大值226.9 m,可按227.00m设计,则坝高227.00-174.5=52.5m。
(2)坝顶宽度的确定本工程按人行行道要求并设置有发电进水口,布置闸门设备,应适当加宽以满足闸门设备的布置,运行和工作交通要求,故取8米。
(3)坝坡的确定考虑到利用部分水重增加稳定,根据工程经验,上游坡采用1:0.2,下游坡按坝底宽度约为坝高的0.7~0.9倍,挡水坝段和厂房坝段均采用1:0.7。
(4)上下游折坡点高程的确定理论分析和工程实验证明,混凝土重力坝上游面可做成折坡,折坡点一般位于1/3~2/3坝高处,以便利用上游坝面水重增加坝体的稳定。
根据坝高确定为52.5m,则1/3H=1/3×52.5=17.5m,折坡点高程=174.5+17.5=192m;2/3H=2/3×52.5=35m,折坡点高程=174.5+35=209.5m,所以折坡点高程适合位于192m~209.5m之间,则取折坡点高程为203.00m。
挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。
(5)坝底宽度的确定由几何关系可得坝底宽度为T=(203-174.5)×0.2+8+(216.5-174.5)×0.7=43.1m(6)廊道的确定坝内设有基础灌浆排水廊道,距上游坝面6.1m,廊道底距基岩面4m,尺寸2.5×3.0m(宽×高)。
(7)非溢流坝段纵剖面示意图(二)、基本组合荷载计算及稳定分析由上述非溢流剖面设计计算得知校核洪水位情况下的波浪三要数:波浪中心线到静水面的高度h0=0.3m波浪高度2h l=0.98m波浪长2L l=10.23m因为gD/v2=9.81×4000/182=121.11m ,在20~250m之间所以波高应安转换为累计频率1%时的波高:2h l(1%)=0.98×1.24=1.22m 。
又因为半个波长L l=10.23/2=5.12<H(坝前水深H=50.8m),所以浪压力P l按深水波计算。
式中:其中灌浆处及排水处扬压力折减系数取α=0.25水重度Υ=9.81KN/m3混泥土等级强度C10混泥土重度24KN/m3坝前淤沙浮容重0.95T/m3=9.5KN/ m3水下淤沙内摩擦角Φ=18°。
(1)正常洪水位情况正常洪水位情况下荷载计算示意图正常洪水位情况下的荷载计算过程见附表1.附表1非溢流重力坝基本荷载计算表上游水位:217.00m下游水位:180.00m坝高:52.5m 计算情形:正常洪水位217.00m情况注:垂直力以↓为正,↑为负;水平力以→为正,←为负;力矩以顺时针为正,逆时针为负..②抗滑稳定分析=[0.9×(23368.24-5542.88)+700×43.1]/9752.39=4.74>[3.0] ,满足抗滑稳定要求。
(2)校核洪水位情况校核洪水位情况下荷载计算示意图①校核洪水位情况下的荷载计算过程见附表2∑∑'+-'='PACUWfsK)(.附表2非溢流重力坝基本荷载计算表上游水位:225.30m下游水位:190.65m坝高:52.5m计算情形:校核洪水位225.30m情况注:垂直力以↓为正,↑为负;水平力以→为正,←为负;力矩以顺时针为正,逆时针为负。
.② 抗滑稳定分析=[0.9×(20324.20-9842.49)+700×43.1] /12419.82 =3.19>[2.5],满足抗滑稳定要求。
四、应力分析(运行期) (一)正常洪水位情况下 1、水平截面上的正应力2、剪应力上游面水压力强度:下游面水压力强度 :剪应力:3、水平应力)(25.2837.056.32796.53kPa m P d d xd =⨯+=+=τσ4、主应力)(48.5621.4345.628261.4304.22586622kPa B M BW yu=⨯+=+=∑∑σ)(89.5211.4345.628261.4304.22586622kPa B M BW yd=⨯-=-=∑∑σ)(25.92.0)48.56222.516()(kPa n P yu u u -=⨯-=-=στ)(56.3277.0)96.5389.521()(kPa m P d yd d =⨯-=-=στ)(07.5182.0)25.9(22.516kPa n P u u xu =⨯--=-=τσ)(33.5642.022.51648.562)2.01()1(22221kPa n P n u yu u =⨯-⨯+=-+=σσ)(18.7517.096.5389.521)7.01()1(22221kPa m P m d yd d =⨯-⨯+=-+=σσ)(22.5162kPa P u u ==σ)(96.532kPa P d d ==σ)(96.535.581.92kPa H r P w d =⨯==)(22.516)21845(tan 8.195.95.4281.9)245(tan 221kPa H r H r P sb w u =︒-︒⨯+⨯=-︒+=α淤∑∑'+-'='PAC U W f s K )((二)校核洪水位情况下 1、水平截面上的正应力2、剪应力上游面水压力强度:下游面水压力强度 : 剪应力3、水平应力4、主应力)(03.7671.4378.9147761.4320.20324622kPa B M BW yu=⨯+=+=∑∑σ)(09.1761.4378.9147761.4320.20324622kPa B M BW yd=⨯-=-=∑∑σ)(64.597)21845(tan 8.195.98.5081.9)245(tan 221kPa H r H r P sb w u =︒-︒⨯+⨯=-︒+=α淤)(88.332.0)03.76764.597()(kPa n P yu u u -=⨯-=-=στ)(36.127.0)43.15809.176()(kPa m P d yd d =⨯-=-=στ)(42.6042.0)88.33(64.597kPa n P u u xu=⨯--=-=τσ)(80.7732.064.59703.767)2.01()1(22221kPa n P n u yu u =⨯-⨯+=-+=σσ)(74.1847.043.15809.176)7.01()1(22221kPa m P m d yd d =⨯-⨯+=-+=σσ)(64.5972kPa P u u ==σ)(43.1582kPa P d d ==σ)(43.15815.1681.92kPa H r P w d =⨯==)(08.1677.036.1243.158kPa m P d d xd =⨯+=+=τσ五、内部应力计算 (一)正常洪水位情况下坐标原点设在下游坝面,由偏心受压公式可以得出系数a 和b ,如下具体坝内应力计算过程见附表3 (二)校核洪水位情况下坐标原点设在下游坝面,由偏心受压公式可以得出系数a 和b ,如下具体坝内应力计算过程见附表489.5211.4345.628261.4304.22586622=⨯-=-=∑∑BM BW a 52.01.4345.6282121233=⨯==∑B M b 09.1761.4378.9147761.4324.23368622=⨯-=-=∑∑BM BW a 71.131.4378.91477121233=⨯==∑B M b.附表3非溢流坝坝内应力分析计算表正常洪水位情况下..附表4非溢流坝坝内应力分析计算表校核洪水位情况下.六、坝内应力分析图根据坝内应力分析计算成果,可做出坝内应力分布图,如下所示:(1)正常洪水位情况下(2)校核洪水位情况下二、溢流坝设计一、 孔口型式及尺寸拟定已知:校核洪水位时泄流量为3340 m³/s设计洪水位时泄流量2600 m³/s 设:单宽流量为q=80 m³/s·m闸门孔口数为5孔,每孔净宽为8m 。
①前缘净宽校核洪水位时: L=Q 溢/q=3340/80=41.75(m ) 设计洪水位时: L=Q 溢/q=2600/80=32.5(m ) 综上所述,取L=40m ② 堰顶高程由资料可知,堰顶高程为213.00m 。
二、 溢流坝的堰面曲线设计 ①顶部曲线段开敞式溢流堰面曲线,采用幂曲线时按下式计算:定型设计水头,按堰顶最大作用水头的75%-95%计算,m ;n 、K— 与上游坝面坡度有关的指数和系数;x 、y —— 溢流面曲线的坐标,其原点设在颜面曲线的最高点。
按85%计算,则: 上游坝面铅直:k=2 , n=1.85x-y 关系如下表: ③ 原点上游曲线段R1=0.5Hd=0.5×10.46=5.23(m), 0.175Hd=0.175×10.46=1.83(m); R2=0.2Hd=0.2×10.46=2.09(m), 0.276Hd=0.276×10.46=2.89(m); R3=0.04Hd=0.04×10.46=0.42(m), 0.282Hd=0.282×10.46=2.95(m)。