管片基础知识与管片选型
- 格式:ppt
- 大小:10.55 MB
- 文档页数:63
管片选型1、管片选型的原则1、管片选型要适合隧道设计线路;2、管片选型要适应盾构机的姿态。
1.1 管片选型要适合隧道设计线路依照曲线的圆心角与转弯环产生的偏转角的关系,可以计算出区间线路曲线段的转弯环与标准环的布置方式。
转弯环偏转角的计算公式:转弯环偏转角的计算公式:θ=2γ=2arctgδ/D式中:θ―――转弯环的偏转角δ―――转弯环的最大楔形量的一半D―――管片直径将数据代入得出θ=0.3629根据圆心角的计算公式:α=180L/πR式中:L―――一段线路中心线的长度R―――曲线半径而θ=α,将之代入,得出L值上式表明,可以算出圆曲线拼装关系,结合线路就可以将管片大致排列出来。
1.2 管片选型要适应盾构机姿态管片是在盾尾内拼装,所以不可避免地受到盾构机姿态的约制。
管片平面应尽量垂直于盾构机轴线,也就是盾构机的推进油缸能垂直地推在管片上,这样可以使管片受力均匀,掘进时不会产生管片破损。
同时也兼顾管片与盾尾之间地间隙,避免盾构机与管片发生碰撞而损坏管片。
在实际掘进过程中,盾构机因为地质不均、推力不均等原因,经常要偏离隧道设计线路。
所以当盾构机偏离设计线路或进行纠偏时,都要十分注意管片选型,避免发生重大事故。
2、管片选型2.1 管片的拼装点位转弯环在实际拼装过程中,可以根据不同的拼装点位来控制不同方向上的偏移量。
这里所说的拼装点位是管片拼装时K块所在的位置。
区间的管片拼装点位为在圆周上按时钟分成12个点,即管片拼装的12个点位,相邻点位的旋转角度为36°。
由于是错缝拼装,所以相邻两块管片的点位不能相差2的整数倍。
一般情况下,本着有利于隧道防水的要求,都只使用上部6个点位。
根据工程实际情况,选择拼装不同点位的转弯环,就可以得到不同方向的楔形量(如左、右、上、下等)。
管片左转弯环不同点位的契形量计算表:左转弯环楔形量计算表表12.2 根据盾尾间隙进行管片选型如图2所示,通常将盾尾与管片之间的间隙叫盾尾间隙。
隧道盾构法施工中的管片选型盾构法施工作为现代隧道施工比较先进的科学的方法,具有对围岩扰动小、速度快、作业安全、建成后投入运行早等优点。
在盾构法施工中采用预制钢筋砼块(管片)做为永久支护,或永久支护的一部分。
目前常用的是将管片分为左、右转弯环和标准环三种类型。
管片生产可以由专门从事砼制品的厂家提前制作,从而缩小施工用地、加快施工速度,特别对于城市中昂贵的地价、工期相对较短具有重大的意义,同时也使施工工厂化成为可能。
笔者根据从事盾构施工的经验和心得体会,对盾构施工中管片选型问题进行一下讨论。
一、管片与隧道线路隧道设计线路的特征决定了管片拼装成环后横断面的走向,同时也在总量上限制了管片在一个施工合同中的类型分布。
1、曲线地段曲线地段应根据线路的曲线要素、纵向坡度的大小、不同衬砌环的组合特征(楔形量、锥度、偏移量等)来决定要安装的管片类型。
线路所要求提供的圆心角:α=180L/πR式中:L—一段线路中心线的长度;R—线路曲线半径。
K块(封顶块)不同位置时管片锥度的计算:β=2arctg(δ×cosθ/2D)式中: β—管片成环后的锥度。
标准环为0。
δ—转弯环楔形量,即转弯环管片12:00时水平方向内外宽度差。
D—管片外径。
θ—K块所在位置对应的角度。
我们追求的是X环不同类型及封顶块的组合提供的锥度β′和X环管片长线路所需要的圆心角α相等的X环不同类型的组合,管片选型时应按这种组合为基准来实施。
如广州地铁二号线越三区间隧道盾构工程中左转弯曲线:R=399.863m, δ=50mm, D=6000mm, 通过计算L12+T+L1+T为最佳组合。
(备注:L12为左转弯12:00,T为标准环,装L1是满足线路为下坡及管片环与环间错缝拼装的要求。
)2、直线地段直线地段原则上装标准环,只是在适当的时候靠转弯环来完成线路的纵向坡度,以及调整盾构机掘进过程中偏移中线的纠偏量。
二、管片与盾构机姿态1、盾构机姿态决定管片选型盾构机姿态在某种程度上决定了管片选型。
地铁管片选型技术一、设计标准地铁设计标准:1.地铁主体结构设计使用年限为100年。
2.区间隧道防水等级为二级。
3.混凝土允许裂缝开展,管片最大允许裂缝宽度为0.2mm,并不得有贯穿裂缝。
4. 管片混凝土强度等级C50,抗渗等级为P12。
管片设计标准:衬砌环构造:管片外径6000mm,内径5400mm。
管片幅宽:线路曲线半径大于400mm时,采用1500mm宽管片,线路半径小于或者等于400mm时,采用1200mm的管片。
管片厚度300mm。
每环衬砌环由6块管片组成,1块封顶块,2块邻接块,3块标准块。
采用直线+左右楔形环拟合不同曲线。
成都地铁采用的楔形环为双面楔形,单面楔形量为19mm,转角为0.1814°,整环楔形总量为38mm,转角为0.363°。
管片连接:衬砌环纵、环缝采用弯螺栓连接,对于1500mm管片,每环纵缝采用12根M27螺栓,每个环缝采用10根M27螺栓;对于1200mm 管片,每环纵缝采用12根M24螺栓,每个环缝采用10根M24螺栓。
二、管片选型分析拼装点位:管片拼装点位表示每一环管片中封顶块所在的位置。
根据地铁管片设计构造特点,管片拼装分为10个点位。
拼装点位分布如下图所示。
拼装点位的选取原则。
1.相邻环管片不通缝。
2.楔形环不同楔形量使用合理,有利于调整盾尾间隙、油缸行程差和拟合隧道中心线。
拼装点位选择:现为了保证隧道的美观和防水效果,将管片的点位划分为两类:上半区点位(1点、2点、3点、9点、10点、11点),下半区点位(4点、5点、7点、8点)。
其中上半区点位位于隧道中线以上(含中线),有利于管片拼装和隧道的防水质量,因此上半区作为管片点位选择的主要区域。
+1环管片点位选取办法:根据联络通道第一环开口位置对应的管片点位,按里程推算至+1环,相隔偶数环则+1环选用不通缝点位,相隔奇数环则考虑通缝点位。
提醒:1.如果+1环管片点位选择错误,影响联络通道开口方向,则过程中可采用1.2米管片进行调整。
管片选型方法1、引言管片选型的目的就是按照设计线路的要求,选择适宜的点位将管片拼装成型,尽可能得符合设计线路。
管片选型的基本思路是根据设计线路和盾构机姿态,计算已成型管片与设计线路的相对趋向,选择下一环管片的安装点位,以拟合成型管片与设计线路的相对误差,同时管片选型还需兼顾盾尾间隙。
2、趋向2.1趋向的定义趋向,实际是角度,只是代表的含义不同,趋向表示以此角度的方向上前进1米而在该角度上变化多少毫米,故趋向的单位是mm/m。
例如盾构机与设计线路的相对趋向,实为盾构机轴向与设计线路中线的夹角,若VMT上显示盾构机的水平趋向为4,其意义为盾构机按目前的方向每往前推进1米,则盾构机水平方向要偏离设计线路中线+4毫米。
垂直方向上的趋向理解同上。
盾构机与设计线路的相对趋向为α,后续管片与盾构机的相对趋向为β,则后续管片与设计线路之间相对趋向为α+β。
2.2趋向的计算现以海瑞克盾构机(刀盘6.28米)为例,进行趋向的计算。
按常规操作规定水平方向右为正,左为负;垂直方向上为正,下为负。
海瑞克盾构机VMT测量系统前点位于切口换处,后点位于中盾内,前点和后点的距离为3.92米,为计算方便取4米;盾构机推进油缸位置处于中心对称半径为2.85米的圆上,相邻油缸距离约4米。
根据VMT测量系统的显示能得知盾构机前点为(x1,y1),后点为(x2,y2),故盾构机相对设计线路的水平趋向为α1=(x1-x2 )/4 ,垂直趋向为α2=(y1- y2 )/4。
同理,管片相对盾构机的趋向可以根据推进油缸的行程计算得出。
设四组油缸行程分别为L A、L B、 L C、L D,根据推进油缸中心对称的原理得知,水平方向油缸行程差为L A- L D = L B - L C,垂直方向油缸行程差为L A- L B = L D - L C,故管片相对盾构机的水平趋向为β1=(L A- L D)/4 ,垂直趋向为β2=(L A- L B)/4。
所以管片与设计线路的水平趋向为α1+β1=(x1-x2 )/4+(L A- L D)/4,垂直趋向为α2+β2 =(y1- y2 )/4+(L A- L B)/4;管片选型的目标是尽量使管片与设计线路的趋向接近于零,故下环管片应尽量选取管片自身水平趋向为-(α1+β1),垂直趋向为-(α2+β2)的点位。
一定的标准环和一定的楔形环按照一定的数量和合适顺序排列,能够拟合出不同半径的曲线隧道,这种管片排列的计算叫做管片对隧道的拟合计算. 当规划管片的总体制造计划和管片的运送计划以及施工场地的管片储存计划时,就要用到拟合计算,拟合计算对管片的选型也有直接的指导作用。
下面分别介绍在直线、缓和曲线、圆曲线段管片对隧道的拟合计算。
隧道直线段管片对隧道的拟合计算。
直线段理论上只需要标准环,但在掘进和管片安装时,油缸推力的不均、主机的蛇行、已安装管片的沉降等因素会造成盾尾间隙和推进油缸行程的不均衡,当这种不利的影响累加到一定程度时就必须安装楔形环进行管片纠偏。
在缓和曲线段,楔形环的数量要满足隧道转弯造成的隧道总的超前量的需要。
例如:缓和曲线的长度为65m;圆曲线半径为400m;管片宽度为1.5m;每环超前量为50mm。
经过计算已经知道整个缓和曲线段隧道内外两侧的超前量总和为463mm。
整个缓和曲线段需要的管片总数量为
65m/1.5m=44环,其中需要的楔形环数量为463mm/50mm=10 环,需要的标准环数量为44-10=34环。
管片对圆曲线的拟合相对缓和曲线要更简单一些。
它的计算步骤如下:
计算在曲线上每掘进一环(1.5m)左右推进油缸产生的油缸行差ΔL;
计算楔形环在对应油缸位置的超前量,为47.5mm(计算过程见前文的介绍);
假设拟合这样曲线半径的隧道需要T块标准环,需要Z块楔形环,找到下面方程式中未知数T、Z的最接近结果的最小整数解: (Z+T)×ΔL=Z×47.5
求解偏差:Δ=(Z+T)ΔL-Z×47.5;
对进行结果进行修正,列出圆曲线段的管片拼装拟合方程式。