一次函数应用题专题
- 格式:doc
- 大小:149.50 KB
- 文档页数:11
一次函数应用 姓名 班级1.某地长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图像如图所示. 求:(1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李多少公斤.2.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。
下面是蟋蟀所叫次数与温度变化情况对照表:蟋蟀叫次数 … 84 98 119 … 温度(℃)…151720…(1)根据表中数据确定该一次函数的关系式;(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?3.如图,折线ABC 是在江门市乘出租车所付车费y (元)与行车里程x (km )•之间的函数关系图象. ①求当x≥3时该图象的函数关系式;②某人乘坐2.5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?4.某医药研究所开发了一种新药,•在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(ug )随时间x(h)•的变化情况如图所示.(1) 当成人按规定剂量服药后_______h ,血液中含药量最高,达每毫升______ug ,接着逐步衰减. (2)当成人按规定剂量服药后5h ,血液中含药量为每毫升________ug . (3)求当x ≤ 2时,y 与x 之间的函数关系式. (4)求当x ≥ 2时,y 与x 之间的函数关系式是.5.如图,1l 反映了甲离开A 的时间与离A 地的距离的关系,2l 反映了乙离开A 地的时间与离A 地的距离之间的关系,根据图象填空: (1)当时间 时,甲、乙两人离A 地距离相等。
(2)当时间 时,甲在乙的前面,当时间 时,乙超过了甲。
(3)求1l 对应的函数表达式和2l 对应的函数表达式6/已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;7.如图,一次函数y =kx +b 的图像 经过A 、B 两点,与x 轴相交于点C 。
一次函数应用题(选择方案)(一)1类型一: 利用函数值的大小选择方案例1 紧俏商品,经过市场调查发现,如果月初出售,可获得15%的利润,并可用本和利再投资其他商品,到月末又可获利10%;如果月末出售可获利30%,但要付存储费700元,请根据商场的资金情况,判断一下选择哪种销售方式获利较多,并说明商场投资25000元时,哪种销售方式获利较多。
2 类型二选择购买方案例2 甲乙两家体育器材商店出售同样地乒乓球拍和乒乓球,球拍每幅定价60元,乒乓求每盒定价10元。
今年世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠。
某校乒乓球队需要2副乒乓球拍,乒乓球若干盒(不少于4盒)设该校要买乒乓求x盒,所需商品在甲商店购买需用y1元,在乙商店购买需要用y2元。
(1)请分别写出y1、y2与之间的函数解析式(不注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案。
例3、商店出售茶壶和茶杯,茶壶每只定价为20元,茶杯每只定价为5元,该店制定了两种优惠办法:(1)买一只茶壶送一只茶杯;(2)按总价的92%付款。
某顾客需购茶壶4只,茶杯若干只(不少于4只),若设购买茶杯数为x(只),付款数为y(元),试分别写出两种优惠办法中y(元)与x(只)之间的函数解析式,并讨论两种办法中哪种更省钱。
3类型三选择生产方案问题例4、某工厂生产某种产品,每件产品出厂价为1万元,其原材料成本价(含其他损耗)为0.55万元,同时在生产过程中平均每生产一件产品有1吨的废渣产出,为达到国家环保要求,需要对废渣进行处理,现有两种方案可供选择:方案一:由工厂对废渣直接处理,每处理1吨废渣所用的原料费为0.05万元,并且每月设备维护及损耗费为20万元。
方案二:工厂将废渣集中到废渣厂处理,每处理一吨需付0.1万元的处理费。
一次函数型应用题:1、我市某乡A 、B 两村盛产柑橘,A 村有柑橘200吨,B 村有柑橘300吨。
先将这些柑橘运到C 、D 两个冷藏仓库。
已知C 仓库可储存240吨,D 仓库可储存260吨。
从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元。
设从A 村运往C 仓库的柑橘重量为x 吨,A 、B 两村运往两仓库的柑橘运输费用分别为y A 元和y B 元. (1(2(3)、考虑到B 村的经济承受能力,B 村的柑橘运费不得超过4830元,在这种情况下,怎样调运,才使两村运费之和最小?求出这个最小值。
A YB =15(240-x )+18(x+60)=3x+4680⑵:当Y A =Y B 时,-5x+5000=3x+4680 ∴x=40当Y A >Y B 时,-5x+5000>3x+4680 ∴x <40 当Y A <Y B 时,-5x+5000)<3x+4680 ∴x >40 ∴当x=40时, 两村运费相同; 当0≤x <40时, B 村运费较少; 当40<x ≤200时, A 村运费较少;⑶:由Y B ≤4830得:3x+4680≤4830 ∴x ≤50设两村运费之和为y , 则y=Y A +Y B =(-5x+5000)+(3x+4680)=-2x+9680 ∵ k=-2<0 ∴ y 随x 增大而减小;∴ 当x =50时,y 最小。
此时,y =-2×50+9680=9580 ∴ 调运方案为:A 村调往C 库50吨、D 库150吨;B 村调往c 库190吨,D 库110吨。
这时,两村运费之和最小,是9580元。
2、甲乙两个仓库要向A 、B 两地运水泥,已知甲库可调出100吨水泥,乙库可调运80吨,而A 地需水泥70吨,B 地需水泥110吨,两库到A 、B 两地的路程和运费如下表: ((2) 当甲乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省是多少? )+20×8(x+10)=-30x +39200⑵:由题意得:⎪⎪⎩⎪⎪⎨⎧≥+≥-≥-≥01001000700x x x x ∴0≤x ≤70∵y =-30x +39200又∵k=-2<0 ∴y 随x 增大而减小;∴当x =70时,y 最小。
1.一次函数y=2x-5,当自变量x≥-2时,y
的取值范围( ) .
2.一次函数y=-3x-2,当-1≤x≤4时,y的最
大值为( ),最小值为( ).
3.一次函数y=ax-3(a<0), 当-2≤x≤0时,y
的最大值为( ), 最小值为( )。
典例(2016孝感,22)孝感市在创建国家级园林城市中,绿化档
次不断提升.某校计划购进A,B两种树木共100棵进行校园
绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,
共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?
(2)因布局需要,购买A种树木的数量不少于B种树木数量的
3倍.学校与中标公司签订的合同中规定:在市场价格不变的情
况下(不考虑其他因素),实际付款总金额按市场价九折优惠,
请设计一种购买树木的方案,使实际所花费用最省,并求出最省
的费用。
例某食品加工厂生产两种产品:水果饮料和水果罐头,这两种产品都由水果,蔗糖和其他原料制成,已知生产1吨饮料要消耗0.4吨水果,1吨蔗糖;生产1吨罐头要消耗0.9吨水果,0.3吨蔗糖。
工厂仓库库存水果有36吨,蔗糖29吨,若工厂计划生产水果饮料和水果罐头共计50吨,已知每吨水果饮料全部售出可获利0.8万元,每吨水果罐头全部售出可获利1.2万元。
(1)若工厂计划将生产的两种产品全部售出后能获得最大利润,工厂应该怎样设计生产方案?
(2)若受生产能力限制,水果饮料产量不低于水果罐头产量的37/63,工厂怎样安排生产方案可获最大利润,最大利润是多少?(3)在(2)的条件下,工厂准备将每吨水果饮料的售价上调a万元,那么工厂怎样调整生产方案可使利润最大?。
一次函数精选应用题1.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2.某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值。
3..某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?A 型利润B 型利润 甲店 200 170 乙店 160 150 空调机 电冰箱 甲连锁店 200 170 乙连锁店 160 1504..2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”。
为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求。
一次函数应用题初一()班姓名:学号:.1、一次时装表演会预算中票价定位每张100 元,容纳观众人数不超过2000 人,毛利润 y(百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000 人时,表演会组织者需向保险公司交纳定额平安保险费5000 元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过 1000 人时,毛利润 y(百元)关于观众人数 x(百人)的函数解析式和成本费用 s(百元)关于观众人数 x(百人)的函数解析式;⑵若要使这次表演会获得36000 元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000 人时,表演会的毛利润=门票收入—成本费用;当观众人数超过 1000 人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位: A) 1 1.7 1.9 2.1 2.4 氧化铁回收率( %)75 79 88 87 78 如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点( 1,70))(2) 用线段将题( 1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y 关于通过电流 x 的函数关系,试写出该函数在 1.7 y(% )≤x≤2.4时的表达式;(3)利用( 2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到 0.1 A) . 858075O ( 1, 70)(2,70)x(A )3、如图( 1),在矩形中, = 10 cm , = 8 cm. 点 P 从 A 点出发,沿 → → →ABCDABBCA B C D路线运动,到 D 停止;点 Q 从 D 出发,沿 D →C → B → A 路线运动,到 A 停止 . 若点 P 、点 Q 同时 出发,点 P 的速度为每秒 1 cm ,点 Q 的速度为每秒 2 cm , a 秒时,点 P 、点 Q 同时改变 .. .. 速度,点 P 的速度变为每秒 b cm ,点 Q 的速度变为每秒 d cm. 图( 2)是点 P 出发 x 秒后△APD 的面积2)与 x (秒)的函数关系图象;图(3)是点 Q 出发 x 秒后△ AQD 的面积..S1 ( cm..2S 2 ( cm )与 x (秒)的函数关系图象 .22DQ →C40 S 1(cm )40 S 2(cm )24A P→ B Oa 8 c x (秒) O22x (秒)( 1)( 2)( 3)( 1)参照图( 2),求 a 、 b 及图( 2)中 c 的值; ( 2)求 d 的值;( 3)设点 P 离开点 A 的路程为 y 1( cm ),点 Q 到点 A 还需要走的路程为 y 2 ( cm ),请分别写出改变速度后 y 1 、 y 2 与出发后的运动时间 x (秒)的函数关系式,并求出 P 、 Q 相遇时 x 的值;( 4)当点 Q 出发 _________秒时,点 、点 Q 在运动路线上相距的路程为25cm.P4、教室里放有一台饮水机,饮水机上有两个放水管。
一次函数的应用练习题一、选择题1. 下列哪个选项表示的是一次函数?A. y = 2x^2 + 1B. y = 3x + 5C. y = √x + 2D. y = 4/x2. 一次函数y = 3x 2的图象经过哪个象限?A. 第一、二象限B. 第一、三象限C. 第一、二、三象限D. 第一、二、四象限3. 一次函数y = kx + b的图象与y轴的交点为(0,3),则b 的值为:A. 3B. 3C. 0D. 14. 下列哪个一次函数的图象是一条过原点的直线?A. y = 2x + 1B. y = 3xC. y = x 2D. y = x^2二、填空题1. 一次函数的一般形式是______。
2. 一次函数y = 5x 3的斜率为______,y轴截距为______。
3. 若一次函数y = kx + b的图象经过点(1,3)和(2,5),则k的值为______,b的值为______。
4. 当x > 0时,一次函数y = 2x + 7的值随着x的增大而______。
三、解答题1. 已知一次函数y = 4x 1的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
2. 一次函数y = kx + b的图象经过点(1,2)和(3,4),求该一次函数的表达式。
3. 在平面直角坐标系中,一次函数y = 3x + 6与y轴相交于点C,与x轴相交于点D,求三角形OCD的面积(O为坐标原点)。
4. 小明从家出发,沿直线道路去图书馆,距离图书馆的距离y(单位:千米)与时间x(单位:小时)的关系为y = 5 4x。
求小明家到图书馆的距离,以及小明走到图书馆所需的时间。
5. 某商品的原价为1000元,商场进行打折促销,折后价格为y 元,打折系数为x(0 < x < 1)。
求折后价格y与打折系数x之间的函数关系式。
四、应用题1. 甲、乙两地相距120公里,甲地有一辆汽车以每小时60公里的速度前往乙地,同时乙地有一辆摩托车以每小时40公里的速度前往甲地。
例一:某居民小区按照分期付款的形式福利售房,政府给予一定的贴息。
小明家购得一套现价为120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000远与上一年剩余欠款利息的和,设剩余欠款年利率为0.4%。
⑴若第x(x≥2)年小明家交付房款y元,求年付房款y(元)与x(年)的函数关系式;⑵将第三、第十年应付房款填入下表中:例二:已知雅美服装厂现有A种布料70米,B种布料52米,现计划用这两种布料生产M,N两种型号的时装共80套。
已知做一套M型号的时装需要A种布料0.6米,B种布料0.9米,可获利润45员;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。
若设生产N型号的时装套数为x,用这批布料生产这两种型号的时装所获总利润为y元。
(1)求y与x的函数关系式,并求出自变量的取值范围;(2)雅美服装厂在生产这批服装中,当N型号的时装为多少套时,所获利润最大?最大利润是多少?例五:某市电话的月租费是20元,可打60次免费电话(每次3分钟),超过60次后,超过部分每次0.13元。
(1)写出每月电话费y (元)与通话次数x之间的函数关系式;(2)分别求出月通话50次、100次的电话费;(3)如果某月的电话费是27.8元,求该月通话的次数。
三、解答题1、一小水库有进水闸、放水闸各一个,单独进水4小时可以装满一库水,单独放水6小时可以放完一库水。
当库中的水占满水的时同时开进水闸和放水闸,设两闸开放的时间用表示,水库中的水占满库水的几分之几用。
表示(1)求与之间的函数关系式,并写出自变量的取值范围;(2)在直角坐标系中画出(1)小题中函数的图象;(3)求当水库中从有库水到半库水时两闸开放的时间。
2、如图公路上有A、B、C三站,一辆汽车在上午8时从离A站10千米的P地出发向C站匀速前进,15分钟后离A站20千米。
(1)设出发x小时后,汽车离A站y千米,写出y与x之间的函数关系式;(2)当汽车行驶到离A站150千米的B站时,接到通知要在中午12点前赶到离B站30千米的C站。
v1.0 可编辑可修改第七讲一次函数应用题1.(2015•蓬安县自主招生)在一条笔直的公路上有A、B两地,甲骑自行车从A地到B地,乙骑摩托车从B地到A地,到达A地后立即按原路返回,是甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数图象,根据图象解答以下问题:(1)A、B两地之间的距离为km;(2)直接写出y甲,y乙与x之间的函数关系式(不写过程),求出点M的坐标,并解释该点坐标所表示的实际意义;(3)若两人之间的距离不超过3km时,能够用无线对讲机保持联系,求甲、乙两人能够用无线对讲机保持联系时x的取值范围.2.(2015•吉林模拟)某电信公司提供了A,B两种通讯方案,其通讯费用y(元)与通话时间x(分)之间的关系如图所示,观察图象,回答下列问题:(1)某人若按A方案通话时间为150分钟时通讯费用为元;若通讯费用为60元,则B方案比A方案的通话时间多分钟;(2)求B方案的通讯费用y(元)与通话时间x(分)之间的函数关系式;(3)当B方案的通讯费用为50元,通话时间为170分钟时,若两种方案的通讯费用相差10元,求通话时间相差多少分钟.3.(2014•河南)某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.4.(2014•泉州)某学校开展“青少年科技创新比赛”活动,“喜洋洋”代表队设计了一个遥控车沿直线轨道AC做匀速直线运动的模型.甲、乙两车同时分别从A,B两处出发,沿轨道到达C处,B在AC上,甲的速度是乙的速度的倍,设t(分)后甲、乙两遥控车与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图,试根据图象解决下列问题:v1.0 可编辑可修改与t的函数关系式:(2)写出d1(3)若甲、乙两遥控车的距离超过10米时信号不会产生相互干扰,试探求什么时间两遥控车的信号不会产生相互干扰5.(2014•遵义)为倡导低碳生活,绿色出行,某自行车俱乐部利用周末组织“远游骑行”活动.自行车队从甲地出发,途径乙地短暂休息完成补给后,继续骑行至目的地丙地,自行车队出发1小时后,恰有一辆邮政车从甲地出发,沿自行车队行进路线前往丙地,在丙地完成2小时装卸工作后按原路返回甲地,自行车队与邮政车行驶速度均保持不变,并且邮政车行驶速度是自行车队行驶速度的倍,如图表示自行车队、邮政车离甲地的路程y(km)与自行车队离开甲地时间x(h)的函数关系图象,请根据图象提供的信息解答下列各题:(1)自行车队行驶的速度是km/h;(2)邮政车出发多少小时与自行车队首次相遇(3)邮政车在返程途中与自行车队再次相遇时的地点距离甲地多远6.(2014•烟台)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A 型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A 型车每辆售价多少元(用列方程的方法解答) (2)该车行计划新进一批A 型车和新款B 型车共60辆,且B 型车的进货数量不超过A 型车数量的两倍,应如何进货才能使这批车获利最多A ,B 两种型号车的进货和销售价格如下表:7.(2014•昆明)某校运动会需购买A ,B 两种奖品,若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元. (1)求A 、B 两种奖品的单价各是多少元(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍,设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式.求出自变量m 的取值范围,并确定最少费用W 的值. A 型车 B 型车 进货价格(元) 11001400销售价格(元) 今年的销售价格 20008.(2014•聊城)甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.(1)求出图中m,a的值;(2)求出甲车行驶路程y(km)与时间x(h)的函数解析式,并写出相应的x的取值范围;(3)当乙车行驶多长时间时,两车恰好相距50km.9.(2014•黔东南州)黔东南州某超市计划购进一批甲、乙两种玩具,已知5件甲种玩具的进价与3件乙种玩具的进价的和为231元,2件甲种玩具的进价与3件乙种玩具的进价的和为141元.(1)求每件甲种、乙种玩具的进价分别是多少元(2)如果购进甲种玩具有优惠,优惠方法是:购进甲种玩具超过20件,超出部分可以享受7折优惠,若购进x(x>0)件甲种玩具需要花费y元,请你求出y与x的函数关系式;(3)在(2)的条件下,超市决定在甲、乙两种玩具中选购其中一种,且数量超过20件,请你帮助超市判断购进哪种玩具省钱.10.(2014•盐城)一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后都停留一段时间,然后分别按原速一同驶往甲地后停车.设慢车行驶的时间为x小时,两车之间的距离为y千米,图中折线表示y与x之间的函数图象,请根据图象解决下列问题:(1)甲乙两地之间的距离为千米;(2)求快车和慢车的速度;(3)求线段DE所表示的y与x之间的函数关系式,并写出自变量x的取值范围.11.(2014•齐齐哈尔)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间12.(2014•黑龙江)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发.不久,第二列快车也从甲地发往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分后,第二列快车与慢车相遇.设慢车行驶的时间为x(单位:时),慢车与第一、第二列快车之间的距离y(单位:千米)与x(单位:时)之间的函数关系如图1、图2,根据图象信息解答下列问题:(1)甲、乙两地之间的距离为千米.(2)求图1中线段CD所表示的y与x之间的函数关系式,并写出自变量x的取值范围.(3)请直接在图2中的()内填上正确的数.13.(2014•十堰)某市政府为了增强城镇居民抵御大病风险的能力,积极完善城镇居民医疗保险制度,纳入医疗保险的居民的大病住院医疗费用的报销比例标准如下表:医疗费用范围报销比例标准不超过8000元不予报销超过8000元且不超过30000元的部分50%超过30000元且不超过50000元的部分60%超过50000元的部分70%设享受医保的某居民一年的大病住院医疗费用为x元,按上述标准报销的金额为y元.(1)直接写出x≤50000时,y关于x的函数关系式,并注明自变量x的取值范围;(2)若某居民大病住院医疗费用按标准报销了20000元,问他住院医疗费用是多少元14.(2014•吉林)甲,乙两辆汽车分别从A,B两地同时出发,沿同一条公路相向而行,乙车出发2h后休息,与甲车相遇后,继续行驶.设甲、乙两车与B地的路程分别为y甲(km),y乙(km),甲车行驶的时间为x(h),y,y与x之间的函数图象如图所示,结合图象解答下列问题:(2)求乙车与甲车相遇后y与x的函数解析式,并写出自变量x的取值范围;乙(3)当两车相距40km时,直接写出x的值.15.(2014•牡丹江)快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图,请结合图象信息解答下列问题:(1)直接写出慢车的行驶速度和a的值;(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米(3)两车出发后几小时相距的路程为200千米请直接写出答案.16.(2014•天津)在平面直角坐标系中,O为原点,直线l:x=1,点A(2,0),点E,点F,点M都在直线l上,且点E和点F关于点M对称,直线EA与直线OF交于点P.(Ⅰ)若点M的坐标为(1,﹣1),①当点F的坐标为(1,1)时,如图,求点P的坐标;②当点F为直线l上的动点时,记点P(x,y),求y关于x的函数解析式.(Ⅱ)若点M(1,m),点F(1,t),其中t≠0,过点P作PQ⊥l于点Q,当OQ=PQ时,试用含t的式子表示m.20.(2015•峄城区校级模拟)甲船从A港出发顺流匀速驶向B港,行至某处,发现船上一救生圈不知何时落入水中,立刻原路返回,找到救生圈后,继续顺流驶向B港.乙船从B港出发逆流匀速驶向A港.已、知救生圈漂流的速度和水流速度相同;甲、乙两船在静水中的速度相同.甲、乙两船到A港的距离y1y(km)与行驶时间x(h)之间的函数图象如图所示.2(1)写出乙船在逆流中行驶的速度;(2)求甲船在逆流中行驶的路程;(3)求甲船到A港的距离y与行驶时间x之间的函数关系式;1(4)求救生圈落入水中时,甲船到A港的距离.v1.0 可编辑可修改21.(2015•日照模拟)自来水公司有甲、乙两个蓄水池,现将甲池的中水匀速注入乙池,甲、乙两个蓄水池中水的深度y(米)与注水时间x(时)之间的函数图象如下所示,结合图象回答下列问题.(1)分别求出甲、乙两个蓄水池中水的深度y与注水时间x之间的函数表达式;(2)求注入多长时间甲、乙两个蓄水池水的深度相同;(3)求注入多长时间甲、乙两个蓄水的池蓄水量相同;(4)3小时后,若将乙蓄水池中的水按原速全部注入甲蓄水池,又需多长时间22.(2014•绍兴)已知甲、乙两地相距90km,A,B两人沿同一公路从甲地出发到乙地,A骑摩托车,B骑电动车,图中DE,OC分别表示A,B离开甲地的路程s(km)与时间t(h)的函数关系的图象,根据图象解答下列问题.(1)A比B后出发几个小时B的速度是多少(2)在B出发后几小时,两人相遇11第11页(共11页)。