第5章 流动阻力与水头损失分析
- 格式:ppt
- 大小:1.72 MB
- 文档页数:8
水头损失的类型及其与阻力的关系一、产生水头损失的原因及水头损失的分类实际液体在流动过程中,与边界面接触的液体质点黏附于固体表面,流速为零。
在边界面的法线方向上流速从零迅速加大,过水断面上的流速分布于不均匀状态。
如果选取相邻两流层来研究(如图4-1),由于两流层间存在相对运动,实际液体又具有黏滞性,所以在有相对运动的相邻流层间就会产生内摩擦力。
液体流动过程中要克服这种摩擦阻力,损耗一部分液流的机械能,转化为热能而散失。
单位重量液体从一断面流至另一断面所损失的机械能,就叫做两断面之间的单位能量损失。
图4-1在固体边界顺直的河道中,水流的边界形状的尺寸沿水流方向不变或基本不变,水流的流线便是平行的直线,或者近似为平行的直线,其水流属于均匀流或渐变流。
这种情况下产h表示。
生的水头损失,是沿程都有并随流程的长度而增加,所以叫做沿程水头损失,常用f 在边界形状和大小沿流程发生改变的流段,水流的流线发生弯曲。
由于水流的惯性作用,水流在边界突变处会产生与边界的分离并且水流与边界之间形成旋涡。
因此,在水流边界突变处的水流属于急变流(如图4-2所示)。
在急变流段内,由于水流的扩散的旋涡的形成,使水流在此段形成了比内摩擦阻力大得多的水流阻力,产生了较大的水头损失,这种能量损h表示。
失是发生在局部范围之内的,所以叫做局部水头损失,常用j图4-2综上所述,我们可以将水流阻力和水头损失分成两类:(1)由各流层之间的相对运动而产生的阻力,称为内摩擦阻力。
它由于均匀地分布在水流的整个流程上,故又称为沿程阻力。
为克服沿程阻力而引起单位重量水体在运动过程中的能量损失,称为沿程水头损失,如输水管道、隧洞和河渠中的均匀流及渐变流流段内的水头损失,就是沿程水头损失。
(2)当流动边界沿程发生急剧变化时(如突然扩大、突然缩小、转弯、阀门等处),局部流段内的水流产生了附加的阻力,额外消耗了大量的机械能,通常称这种附加的阻力为局部阻力,克服局部阻力而造成单位重量水体的机械能损失为局部水头损失。
第5章圆管流动一.学习目的和任务1.本章学习目的(1)掌握流体流动的两种状态与雷诺数之间的关系;(2)切实掌握计算阻力损失的知识,为管路计算打基础。
2.本章学习任务了解雷诺实验过程及层流、紊流的流态特点,熟练掌握流态判别标准;掌握圆管层流基本规律,了解紊流的机理和脉动、时均化以及混合长度理论;了解尼古拉兹实验和莫迪图的使用,掌握阻力系数的确定方法;理解流动阻力的两种形式,掌握管路沿程损失和局部损失的计算;了解边界层概念、边界层分离和绕流阻力。
二.重点、难点重点:雷诺数及流态判别,圆管层流运动规律,沿程阻力系数的确定,沿程损失和局部损失计算。
难点:紊流流速分布和紊流阻力分析。
由于实际流体存在黏性,流体在圆管中流动会受到阻力的作用,从而引起流体能量的损失。
本章将主要讨论实际流体在圆管内流动的情况和能量损失的计算。
5.1 雷诺(Osborne Reynolds)实验和流态判据5.1.1 雷诺实验1883年,英国科学家雷诺通过实验发现,流体在流动时存在两种不同的状态,对应的流体微团运动呈现完全不同的规律。
这就是著名的雷诺实验,它是流体力学中最重要实验之一。
105如图5-1所示为雷诺实验的装置。
其中的阀门T1保持水箱A 内的水位不变,使流动处在恒定流状态;水管B 上相距为l 处分别装有一根测压管,用来测量两处的沿程损失f h ,管末端装有一个调节流量的阀门T3,容器C 用来计量流量;容器D 盛有颜色液体,T2控制其流量。
进行实验时,先微开阀门T3,使水管中保持小速度稳定水流,然后打开颜色液体阀门T2放出连续的细流,可以观察到水管内颜色液体成一条直的流线,如图5-2(a )所示;从这一现象可以看出,在管中流速较小时,它与水流不相混和,管中的液体质点均保持直线运动,水流层与层间互不干扰,这种流动称为层流(Laminar flow )。
比如,实际中黏性较大的液体在极缓慢流动时,属层流运动。
随后,逐渐开大阀门T3,增大管中液体流速,流速达到一定速度时,管内颜色液体开始抖动,具有波形轮廓,如图5-2(b )所示。