1-3 水流阻力与水头损失.-水头损失
- 格式:ppt
- 大小:311.57 KB
- 文档页数:84
水头损失的类型及其与阻力的关系一、产生水头损失的原因及水头损失的分类实际液体在流动过程中,与边界面接触的液体质点黏附于固体表面,流速为零。
在边界面的法线方向上流速从零迅速加大,过水断面上的流速分布于不均匀状态。
如果选取相邻两流层来研究(如图4-1),由于两流层间存在相对运动,实际液体又具有黏滞性,所以在有相对运动的相邻流层间就会产生内摩擦力。
液体流动过程中要克服这种摩擦阻力,损耗一部分液流的机械能,转化为热能而散失。
单位重量液体从一断面流至另一断面所损失的机械能,就叫做两断面之间的单位能量损失。
图4-1在固体边界顺直的河道中,水流的边界形状的尺寸沿水流方向不变或基本不变,水流的流线便是平行的直线,或者近似为平行的直线,其水流属于均匀流或渐变流。
这种情况下产h表示。
生的水头损失,是沿程都有并随流程的长度而增加,所以叫做沿程水头损失,常用f 在边界形状和大小沿流程发生改变的流段,水流的流线发生弯曲。
由于水流的惯性作用,水流在边界突变处会产生与边界的分离并且水流与边界之间形成旋涡。
因此,在水流边界突变处的水流属于急变流(如图4-2所示)。
在急变流段内,由于水流的扩散的旋涡的形成,使水流在此段形成了比内摩擦阻力大得多的水流阻力,产生了较大的水头损失,这种能量损h表示。
失是发生在局部范围之内的,所以叫做局部水头损失,常用j图4-2综上所述,我们可以将水流阻力和水头损失分成两类:(1)由各流层之间的相对运动而产生的阻力,称为内摩擦阻力。
它由于均匀地分布在水流的整个流程上,故又称为沿程阻力。
为克服沿程阻力而引起单位重量水体在运动过程中的能量损失,称为沿程水头损失,如输水管道、隧洞和河渠中的均匀流及渐变流流段内的水头损失,就是沿程水头损失。
(2)当流动边界沿程发生急剧变化时(如突然扩大、突然缩小、转弯、阀门等处),局部流段内的水流产生了附加的阻力,额外消耗了大量的机械能,通常称这种附加的阻力为局部阻力,克服局部阻力而造成单位重量水体的机械能损失为局部水头损失。
流体力学概念总结1.连续介质模型:在流体力学的研究中,将实际由分子组成的结构用流体微元代替。
流体微元有足够数量的分子,连续充满它所占据的空间,这就是连续介质模型。
2.质量力:处于某种力场中的流体,所有质点均受有与质量成正比的力,这个力称为质量力。
3.表面力:相邻流体作用于此流体微团各表面的力,包括:压力、剪力和表面张力。
4.粘性:当流体在外力作用下,流体微元间出现相对运动时,随之产生阻碍流体层间相对运动的内摩擦力,流体产生内摩擦力的这种性质称为粘性。
5.动力粘度:单位速度梯度时内摩擦力的大小μ=τ∕(dv∕dh)6.运动粘度:动力粘度和流体密度的比值。
υ=μ/ρ7.恩氏粘度:被测液体与水粘度的比较值。
8.理想流体:一种假想的没有粘性的流体。
9.牛顿流体:在流体力学的研究中,凡切应力与速度梯度成线性关系,即服从牛顿内摩擦定律的流体,称为牛顿流体。
10.表面张力:引起液体自由表面欲成球形的收缩趋势的力称为表面张力。
11.湿润现象:液体分子与固体分子之间的相互吸引力(附着力)大于液体分子之间的相互吸引力(内聚力)时产生的湿润固体的现象。
12.毛细现象:液体和固体接触时,液体沿壁面上升或下降的现象。
毛细管越细,液面差越大。
13.静压强:当流体处于绝对静止或相对静止状态时,流体中的压强称为流体静压强。
14.有势质量力:质量力所做的功只与起点和终点的位置有关,这样的质量力称为有势质量力。
15.力的势函数:某函数对相应坐标的偏导数,等于单位质量力在相应坐标轴上的投影,该函数称为力的势函数。
16.等压面:在充满平衡流体的空间,连接压强相等的各点所组成的面称等压面。
17.压力体:由所研究的曲面,通过曲面周界所作的垂直柱面和流体的自由表面(或其延伸面)所围成的封闭体积叫做压力体。
18.实压力体:当所讨论的流体作用面为压力体的内表面时,称该压力体为实压力体。
19.虚压力体:当所讨论的流体作用面为压力体的外表面时,称该压力体为虚压力体。
各种管道水头损失的简便计算公式各种管道水头损失的简便计算公式(879)摘要:从计算水头损失的最根本公式出发,将各种管道的计算公式加以推导,得出了计算水头损失的简便公式,使得管道工程设计人员从繁琐的计算中解脱出来,提高了工作效率。
关键词:水头损失塑料管钢管铸铁管混凝土管钢筋混凝土管在给水工程应用中经常要用到水头损失的计算公式,一般情况下计算水头损失都是从水力摩阻系数λ等基本参数出发,一步一步的代入计算。
其实各个公式之间是有一定的联系的,有的参数在计算当中可以抵消。
如果公式中只剩下流速、流量、管径这些基本参数,那么就会给计算者省去不少的麻烦。
在此我们充分利用了各参数之间以及水头损失与水温的关系,将公式整理简化,供大家参考。
1、PVC-U、PE的水头损失计算根据《埋地硬聚氯乙烯给水管道工程技术规程》规定,塑料管道沿程水头损失hf应按下式计算:(式1-1)式中λ—水力摩阻系数;L—管段长度(m);di—管道内径(m);v—平均流速(m/s);g—重力加速度,9.81m/s2。
因考虑到在通常的流速条件下,常用热塑性塑料给水管PVC-U、PE管一般处于水力光滑区,管壁绝对当量粗糙度对结果的影响非常小或没有影响,故水力摩阻系数λ可按下式计算:(式1-2)式中Re—雷诺数。
雷诺数Re应按下式计算:(式1-3)式中γ—水的运动粘滞度(m3/s),在不同温度时可按表1采用。
表1水在不同温度时的γ值(×10-6)水温℃0510********40γ(m3/s)1.78 1.52 1.31 1.14 1.000.890.800.66从前面的计算可知,若要计算水头损失,需将表1中的数据代入,并逐步计算,最少需要3个公式,计算较为繁琐。
为将公式和计算简化,以减少工作量,特推导如下:因具体工程水温的变化较大,水力计算中通常按照基准温度计算,然后根据具体情况,决定是否进行校正。
冷水管的基准温度多选择10℃。
当水温为10℃时的γ=1.31×10-6 m3/s,代入式1-3得(式1-4)将式1-4代入式1-2(式1-5)再将式1-5代入式1-1得(式1-6)取L为单位长度时,hf即等同于单位长度的水头损失i,所以(式1-7)又因为(式1-8)(式1-9)(式1-10)现可用式1-7或式1-10代替式式1-1、式1-2和式1-3,式1-7适用于流速为已知的条件下,式1-10适用于规定流量的条件下。
水流型态与水头损失任何实际液体都具有粘性,粘性的存在会使液体在运动过程中克服阻力作功,将一部分机械能不可逆地转化为热能而散失,形成能量损失。
单位重量液体的机械能损失称为水头损失。
本章主要研究恒定流的阻力和水头损失规律,它是水动力学基本理论的重要组成部分。
首先,从雷诺实验出发介绍流动的两种型态——层流和紊流,并在此基础上引出液体在管道和明渠内流动时水头损失的计算。
5.1水流阻力与水头损失的两种型式液流边界不同,对断面流速分布有一定影响,进而影响流动阻力和水头损失。
为了便于计算,根据流动边界情况,把水头损失h w分为沿程水头损失h f和局部水头损失h j两种型式。
5.1.1 沿程阻力和沿程水头损失当固体边界使液体作均匀流动时,水流阻力中只有沿程不变的切应力,称为沿程阻力;克服沿程阻力作功而引起的水头损失则称为沿程水头损失,以h f表示。
当液体作较接近于均匀流的渐变流动时,可将十分接近的两过水断面之间的渐变流动看作是均匀流动,并引用均匀流的沿程水头损失计算公式,实践表明是完全可以的。
5.1.2 局部阻力及局部水头损失液流因固体边界急剧改变而引起速度分布的急剧改组,由此产生的附加阻力称为局部阻力,克服局部阻力做功而引起的水头损失称为局部水头损失,以h j表示。
它一般发生在水流边界突变处附近,例如图2-19中水流经过“弯头”、“缩小”、“放大”及“闸门”等处。
图2-19因此,流段两截面间的水头损失可以表示为两截面间的所有沿程损失和所有局部损失的总和,即∑∑(2-28)hw hf hj=+5.2 实际流动的两种型态液体运动存在着两种型态:层流和紊流。
5.2.1 雷诺实验雷诺实验的装置如图2-20所示。
由水箱A中引出水平固定的玻璃管B,上游端连接一光滑钟形进口,另一端有阀门C用以调节流量。
容器D内装有重度与水相近的色液,经细管E流入玻璃管中,阀门F可以调节色液的流量。
图2-20试验时容器中装满水,并始终保持液面稳定,使水流为恒定流。