线性控制系统运动分析
- 格式:pptx
- 大小:397.62 KB
- 文档页数:25
Chapter 3 Analysis of Linear System3.1 INTRODUCTION运动分析的数学实质:从数学的角度,运动分析的实质就是求解系统的状态方程。
以解析形式或数值分析形式,建立系统状态随输入和初始状态的演化规律。
(Solving the time-invariant state equation)3.2 连续时间线性时不变系统的运动分析SOLVING THE TIME-INVARIANT STATE EQUATION系统响应=系统的零输入响应+系统的零状态响应System response=a term consisting of the transition of the initial state +a term arising from the input vector零输入响应:自由运动,由系统矩阵决定,不受外输入影响。
零状态响应:强迫运动,响应稳态时具有和输入相同的函数形态。
01!k k ∞−+=∑0k k b t ∞=+=∑2012Ab Ab t Ab t +=+++b k 0)b +Equating the coefficients of the equal powers of t, we obtain By substituting this assumed solution in to Equation (1)解的说明:1.零输入响应是状态空间中由初始状态经线性变换矩阵所导出的一个变换点。
2.自由运动3.自由运动的轨迹由唯一决定。
4.当自由运动轨迹趋于平衡状态时,则系统是渐近稳定的。
At e0x Ate 0=x若初始时间取为t 0≠0则0)(,)(0t t x e t x t t A ou ≥=−00)(x t x =01!k k ∞−+=∑+232322332323332)()2!3!F F I Ft t t F t A t A Ft AF t F t ++++++0+=0,1,2,))AtAt Ae A e A ++=+=利用性质+λ)neλ)n t0000i i λλ⎤⎥⎥⎥⎥⎥⎥⎦12)l J t J tJ t e e 0i i t t e e e λλ⎤⎥⎥⎥⎥⎥⎥⎥⎦系统状态运动规律的基本表达式设系统的状态空间描述为有表达式⎰⎰≥−+=+=−t A Att t A At t d t Bu e x e d Bu e x e t x 000)(00,)(,)()(ττττττ⎰≥+=−−t t t A t t A t t d Bu e x e t x 000)(0)(,)()(τττ对初始时刻t 0=0 情形有表达式注意:物理意义解的讨论:(1)卷积特征;(2)零初始响应的几何特征;(3)可达性;(4)任意时刻的表达式00≥,=)(),(+=t t x t x t Bu Ax x3.3连续时间线性时不变系统的状态转移矩阵State-Transition Matrix设连续时间线性时不变系统,状态方程为:as To verify this, note thatWe thus confirm that Equation (2) is the solution of Equation (1))2()0()()(x t t x Φ=where )(Φt is n n ⨯Matrix and is the unique solution of)0()0()0()0(x x x =Φ=Ate t =)(Φ)(=)0()(Φ=)0()(Φ=)(t Ax x t A x t t xI t A t =)0(Φ)(Φ=)(Φ )1(=Ax x and状态转移矩阵的形式为()()()0000,0000t t e t t t t e t t t t A At ≥=−Φ≠≥=Φ=−时,时,基于状态转移矩阵的系统响应表达式()()()()()()()()()⎰⎰−Φ+−Φ=≥−Φ=−Φ=tt t t ox ou d Bu t x t t t x t t d Bu t t x x t t t x 0000000ττττττ。
线性系统状态空间分析和运动解状态空间分析方法是一种用来描述线性系统的分析方法。
它将系统的动态特性用一组状态变量来表示,并通过矩阵形式的状态方程进行分析和求解。
状态空间方法是目前广泛应用于自动控制系统设计与分析的一种方法,它可以对系统的稳定性、可控性、可观性以及性能等进行定量分析。
在状态空间分析方法中,首先需要将系统的微分方程表示为矩阵形式的状态方程。
状态方程描述了各个状态变量和它们的变化率之间的关系。
假设系统有n个状态变量x1, x2, ..., xn和m个输入变量u1, u2, ..., um,状态方程可以表示为:dx/dt = Ax + Bu其中,dx/dt是状态变量的变化率,A是状态矩阵,描述状态变量之间的耦合关系,B是输入矩阵,描述输入变量对状态变量的影响。
状态空间分析方法的基本思想是将系统转化为状态空间表达式,然后通过对状态方程进行分析和求解来得到系统的特性和响应。
常见的分析方法包括对系统的稳定性、可控性和可观性进行评估。
稳定性是系统的基本性质之一,用来描述系统在受到扰动时是否能够恢复到平衡状态。
在状态空间方法中,通过研究系统的特征根(或特征值)可以判断系统的稳定性。
特征根是状态方程的解的根,系统的稳定性与特征根的实部有关。
如果特征根的实部都小于零,则系统是稳定的;如果特征根存在实部大于零的情况,则系统是不稳定的。
可控性是指系统是否可以通过输入变量来控制系统的状态变量。
在状态空间方法中,通过可控性矩阵来判断系统的可控性。
如果可控性矩阵的秩等于系统的状态变量个数,则系统是可控的;如果可控性矩阵的秩小于系统的状态变量个数,则系统是不可控的。
可观性是指系统的状态变量是否可以通过观测变量来测量得到。
在状态空间方法中,通过可观性矩阵来判断系统的可观性。
如果可观性矩阵的秩等于系统的状态变量个数,则系统是可观的;如果可观性矩阵的秩小于系统的状态变量个数,则系统是不可观的。
除了稳定性、可控性和可观性外,状态空间分析方法还可以用来分析系统的性能指标,如系统的响应时间、稳态误差和系统的最大误差等。
第二章 线性控制系统的运动分析2-1 线性定常系统齐次状态方程的解设齐次向量微分方程为:其中A 为n ×n 常系数矩阵,其解为: 写成矩阵形式:式中b 0、b 1、b 2、…b k 均为n 维列向量,则 由待定系数法,得: 考虑到初始条件: 最后得:)0()(0X t X AX Xt === ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++++++++++++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡= k nk n n n kk k k n t b t b t b b t b t b t b b t b t b t b b t x t x t x t X 2210222221201212111021)()()()(+++++=k k t b t b t b b t X 2210)(+++==++++=-k k k k t Ab t Ab Ab AX t kb t b b X 1012120102301201!11!3131!2121Ab k Ab kb Ab Ab b Ab Ab b Ab b k k =======-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡====)0()0()0()0()0()(2100n t x x x X b X t X定义状态转移矩阵:则齐次状态方程的解可写为: 若初始条件为: 可以令:可以求出:关于线性定常齐次状态方程的求解,也可以应用拉氏变换,即: 两边拉氏变换:可见状态转移矩阵: 证明:由于:)0()!1!21()(22X t A k t A At I t X k k +++++= +++++==k k At t A k t A At I e t !1!21)(22φ)0()0()()(X e X t t X At ==φ)()(00t X t X t t ==+-++-+-+=k k t t b t t b t t b b t X )()()()(0202010)()()()(0)(000t X e t X t t t X t t A -=-=φ)0()(0X t X AX Xt === )0(])[()()0()()()()0()(111X A sI L t X X A sI s X s AX X s sX ----=-==-])[()(11---==A sI L e t At φ例:设系统状态方程为:试求状态方程的解。
第二章 线性控制系统的运动分析2-1 线性定常系统齐次状态方程的解设齐次向量微分方程为:其中A 为n ×n 常系数矩阵,其解为: 写成矩阵形式:式中b 0、b 1、b 2、…b k 均为n 维列向量,则 由待定系数法,得: 考虑到初始条件: 最后得:)0()(0X t X AX Xt === ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+++++++++++++++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=k nk n n n kk k k n t b t b t b b t b t b t b b t b t b t b b t x t x t x t X 2210222221201212111021)()()()(+++++=k k t b t b t b b t X 2210)(+++==++++=-k k k k t Ab t Ab Ab AX t kb t b b X 1012120102301201!11!3131!2121Ab k Ab kb Ab Ab b Ab Ab b Ab b k k =======-⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡====)0()0()0()0()0()(2100n t x x x X b X t X现代控制理论基础定义状态转移矩阵:则齐次状态方程的解可写为: 若初始条件为: 可以令:可以求出:关于线性定常齐次状态方程的求解,也可以应用拉氏变换,即: 两边拉氏变换:可见状态转移矩阵:)0()!1!21()(22X t A k t A At I t X k k +++++= +++++==k k At t A k t A At I e t !1!21)(22φ)0()0()()(X e X t t X At ==φ)()(00t X t X t t ==+-++-+-+=k k t t b t t b t t b b t X )()()()(0202010)()()()(0)(000t X e t X t t t X t t A -=-=φ)0()(0X t X AX Xt === )0(])[()()0()()()()0()(111X A sI L t X X A sI s X s AX X s sX ----=-==-])[()(11---==A sI L e t At φ证明:由于:例:设系统状态方程为:试求状态方程的解。