中考数学圆中基本图形及结论
- 格式:doc
- 大小:285.50 KB
- 文档页数:12
一、基础知识(一)圆的有关概念:圆:在同一平面内,到定点的距离等于定长的点的集合。
其中,定点为圆心,定长为半径。
弦:连接圆上任意两点的线段。
经过圆心的弦是直径。
弧:圆上任意两点间的部分叫弧。
圆上任一条直径的两个端点把圆分成的两条弧,每一条弧都叫做半圆。
大于半圆的弧角做优弧,小于半圆的弧叫劣弧。
(二)圆的性质:1.同圆或等圆中:半径、直径都相等。
2.圆有无数条弦,其中最长的弦为直径。
3.圆是轴对称图形,对称轴为直径所在的直线,有无数条。
圆是中心对称图形,并且无论绕圆心旋转多少度,都可以和原图形重合。
二、重难点分析本课教学重点:弦和弧的概念、弧的表示方法和点与圆的位置关系.本课教学难点:点和圆的位置关系及判定。
通过日常生活在生产中的实例引导学生对学习圆的兴趣。
三、典例精析:例1:(2014•长春二模)如图,AB是⊙O的直径,点C、D在⊙O上,且点C、D在AB的异侧,连结AD、OD、OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为()A.70°B.60°C.50°D.40°∴∠DAO=∠AOC=70°例2.如图,以AB为直径的半圆O上有两点D、E,ED与BA的延长线交于点C,且有DC=OE,若∠C=20°,则∠EOB的度数是。
四、感悟中考1、(2013•温州)在△ABC 中,∠C 为锐角,分别以AB ,AC 为直径作半圆,过点B ,A ,C 作BAC ,如图所示.若AB =4,AC =2,S 1-S 2=4π,则S 3-S 4的值是( )A.429π B.423π C.411π D.45π2、如图,已知同心圆O ,大圆的半径AO 、BO 分别交小圆于C 、D ,试判断四边形ABDC 的形状.并说明理由.∠A五、专项训练。
(一)基础练习1、已知:如图,在⊙O中,AB为弦,C、D两点在AB上,且AC=BD.求证:△OAC≌△OBD.2、如图,AB、CD为⊙O中两条直径,点E、F在直径CD上,且CE=DF.求证:AF=BE.【点评】本题考查圆的基本性质、全等三角形判定。
托勒密定理、婆氏定理——圆中基本模型专题1.基本图形与结论:如图1,当A、B、C、D四点共圆,则AC×BD=AB×DC+AD×BC.2.简单证明:在线段BD上取一点E,连AE,使∠AEB=∠ADC,易得△AEB∽△ADC,AC CD AC BE AB CD=⇒⨯=⨯①AB BE旋转一拖二得△ABC∽△AED,AC BC AC DE BC AD=⇒⨯=⨯②AD DE由①+②得:AC×(BE+DE)=AC×BD=AB×DC+AD×BC.3.模型识别:具体情境中出现四点共圆,且四点构成的四边形边长、对角线长信息较多,可以尝试用托勒密定理进行计算.※4.广义托勒密定理:对于任意凸四边形ABCD,则有AC×BD≤AB×DC+AD×BC.证明从略···【模块二对角互补模型→旋转视角】1.基本图形与模型识别:如图2,对角互补且一组邻边相等...........的四边形,可通过旋转变换将四边形转化为等腰三角形(等腰思旋转).2.四类常见对角互补模型:①模型一:等边60°对120°型条件:如图3,在四边形ABCD中,AB=AD,∠BAD=60°,∠BCD=120°结论:(1)CA平分∠BCD;(2)BC+CD=AC.证明:证明:如图,将△ACD绕点A逆时针旋转60°至△AMB,使AD,AB重合,则△ACD≌△AMB,∴∠ADC=∠ABM,AC=AM,CD=BM,∠ACD=∠M,∵∠BAD=60°,∠BCD=120°,∴∠ABC+∠ADC=180°,∴∠ABC+∠ABM=180°,∴M,B,C三点共线,∵∠MAC=∠BAD=60°,∴△MAC为等边三角形,∴MC=AC,∠M=∠ACD,∴MB+BC=AC,∠ACB=∠ACD,∴CA平分∠DCB,CB+CD=AC.②模型二:等腰直角对直角型条件:如图4,在四边形ABCD中,AB=AD,∠BAD=∠BCD=90°.结论:(1)CA 平分∠DCB ;(2)CB +CD 2.证明:略···③模型三:等腰顶角120°对60°型条件:如图5,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠BCD =60°.结论:(1)CA 平分∠BCD ;(2)CB +CD 3.证明:略···※④模型四:同侧双直角型条件:如图6,在四边形ABCD 中,AB =AD ,∠BAD =90°,∠BCD =90°.结论:CB -CD 2AC .证明:略···【模块三对角互补模型→托密视角】1.等腰△三角函数计算:如图7,2cos 2cos BC AB m αα=⋅=⋅2.托勒密定理应用:①如图8,对角互补型:2cos 2cos ma mb c m a b c αα+=⋅⋅⇒+=⋅结论:当α=60°时,a +b =c当α=45°时,a +b 2当α=30°时,a +b 3※利用角平分线性质也可直接得2cos a b c α+=⋅②如图9,同侧等角型:2cos 2cos a m mb mc c b a αα⋅⋅+=⇒-=⋅结论:当α=45°时,c -b 2···【模块四婆罗摩笈多定理】婆罗摩笈多(约公元598-约660年)是一位印度数学家和天文学家,他出身于古印度的婆罗门种姓,婆罗门掌管着解释和预言天象的权力,掌握着天文学知识,以及测量和计算天体运行的工具——数学.婆罗摩笈多著有两部关于数学和天文学的书籍,他的一些数学成就在世界数学史上有较高的地位,他的负数及加减法运算仅晚于中国九章算术,而他的负数乘除法法则在全世界都是领先的.婆罗摩笈多还提出了著名的婆罗摩笈多定理,简称“婆氏定理”.若圆内接四边形的对角线相互垂直,则垂直于一边且过对角线交点的直线将平分对边.1.简单证明:已知:如图,四边形ABCD 内接于圆O ,对角线AC ⊥BD 于点M ,ME ⊥BC 于点E ,延长EM 交CD 于点F ,求证:F 是AD 中点.证明:∵AC ⊥BD ,ME ⊥BC∴∠CBD =∠CME∵∠CBD =∠CAD ,∠CME =∠AMF∴∠CAD =∠AMF∴AF =MF∵∠AMD =90°,同时∠MAD +∠MDA =90°∴∠FMD =∠FDM∴MF =DF ,∴AF =DF 即F 是AD 中点.2.婆罗摩笈多逆定理请你阅读婆罗摩笈多定理的证明过程,试证明婆罗摩笈多逆定理:(1)如图1,四边形ABCD 内接于圆O ,对角线AC ⊥BD 于点M ,F 为AD 中点,连接FM 并延长交BC 于点E ,求证:ME ⊥BC .(2)如图2,△ABC 内接于圆O ,∠B =30°,∠ACB =45°,AB =2,点D 在圆O 上,∠BCD =60°,连接AD 交BC 于点P ,作ON ⊥CD 于点N ,连接并延长NP 交AB 于点M ,求证PM ⊥BA ,并求PN 的长.3.共顶等腰直模型(婆罗摩笈多模型)已知:如图,两个等腰直角三角形Rt △ABO 和Rt △CDO ,顶点重合,连接AC ,BD .结论:①如果F 是AC 中点,那么一定有EF ⊥BD ;②如果EF ⊥BD ,那么一定有F 是AC 中点;③S △BOD =S △AOC ;④2FO =BD .证明:(1)法一:(外)弦图构造法,如图1(2)法二:导角构造→全等构造法,如图2【例1】如图3所示,试证明:上述共顶等腰直模型中①②结论.【例2】如图,向△ABC的外侧作正方形ABDE、ACFG:(1)过A作AH⊥BC于H,AH与EG交于M,求证:①EM=MG,②BC=2AM.(2)若M为EG的中点,求证:AH⊥BC.【模块四真题探究】【例3】(改编)如图1,⊙O的半径为1,A,P,B,C是⊙O上的四个点,∠APC=∠CPB=60°.(1)判断△ABC的形状,并说明理由;(2)试探究线段PA,PB,PC之间的数量关系,并证明你的结论;(3)当点P位于 AB的什么位置时,四边形APBC的面积最大?求出最大面积.【例4】(2013·成都中考改编)如图2,A ,B ,C 为⊙O 上相邻的三个n 等分点, AB BC=,点E 在 BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与A'重合,点B 与B'重合,连接EB',EC ,EA'.设EB'=b ,EC =c ,EA '=p .现探究b ,c ,p 三者的数量关系:发现当n =3时,p =b +c ;请继续探究b ,c ,p 三者的数量关系:当n =4时,p =__________;当n =8时,p =__________;当n =12时,p =__________.(参考数据:62sin15=cos 75=4-︒︒,62cos15=sin 75=4+︒︒)本讲反思:。
中考数学圆的复习人生处处是考场,本日各为中考忙。
斗智斗勇齐亮相,得失成败走一场。
考场潇洒不虚枉,多年以后话沧桑!下面是作者给大家带来的中考数学圆的考点总结,欢迎大家浏览参考,我们一起来看看吧!中考数学圆的考点总结一、考点分析考点一、点和圆的位置关系设⊙O的半径是r,点P到圆心O的距离为d,则有:d r点p在⊙o内; p=d=r点P在⊙O上;d r点P在⊙O外。
考点二、过三点的圆1、过三点的圆不在同一直线上的三个点肯定一个圆。
2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。
3、三角形的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。
4、圆内接四边形性质(四点共圆的判定条件)圆内接四边形对角互补。
考点三、直线与圆的位置关系直线和圆有三种位置关系,具体以下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯独公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。
如果⊙O的半径为r,圆心O到直线l的距离为d,那么:直线l与⊙O相交d p=直线l与⊙O相切d=r;直线l与⊙O相离d考点四、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。
1、切线的判定定理:过半径外端且垂直于半径的直线是切线;两个条件:过半径外端且垂直半径,二者缺一不可2、性质定理:切线垂直于过切点的半径(如上图)推论1:过圆心垂直于切线的直线必过切点。
推论2:过切点垂直于切线的直线必过圆心。
以上三个定理及推论也称二推一定理:即:①过圆心;②过切点;③垂直切线,三个条件中知道其中两个条件就可以推出最后一个。
考点五、切线长定理切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心连线平分两条切线的夹角。
考点六、三角形的内切圆和外接圆1、三角形的内切圆与三角形的各边都相切的圆叫做三角形的内切圆。
数学九年级下册圆的知识点圆是数学几何中的一个重要概念,广泛应用于各个领域。
在九年级的数学学习中,我们将更加深入地学习圆的相关知识。
本文将围绕圆的定义、性质、公式和应用等方面展开详细介绍。
一、圆的定义在数学中,圆是由平面上到一个固定点距离相等的所有点组成的图形。
其中,距离固定点最远的点称为圆的半径,固定点称为圆心。
圆心与圆上任意一点之间的线段称为半径。
二、圆的性质1. 圆的半径相等性质:圆上任意两点间的线段都是半径,且长度相等。
2. 圆的直径性质:圆的直径是圆上任意两点的连线,且长度是半径的两倍。
3. 圆的弦性质:圆上的弦分为等弦和不等弦两种。
等弦对应的弦长相等,而不等弦对应的弦长不相等。
4. 圆的切线性质:过圆上一点可以作无数条切线,这些切线与以该点为顶点的两条切线相等,且相互垂直。
三、圆的公式1. 圆的周长公式:圆的周长称为圆周长,通常用C表示,公式为C = 2πr,其中r为圆的半径,π取近似值3.14。
2. 圆的面积公式:圆的面积称为圆面积,通常用A表示,公式为A = πr²,其中r为圆的半径,π取近似值3.14。
四、圆的应用1. 圆的运动学应用:在物理学中,圆的运动学应用非常广泛,例如机械运动中的回转运动、行星围绕太阳的椭圆轨道等。
2. 圆的建筑应用:在建筑学中,圆被广泛应用于设计和构建中,例如建筑物中的圆形窗户、圆形拱门等。
3. 圆的电子应用:在电子工程中,圆被广泛应用于电路板设计、天线设计等领域。
4. 圆的地理应用:在地理学中,圆被用于表示地球的形状,地球是近似于一个球体。
总结:在数学九年级下册中,我们系统学习了圆的定义、性质、公式和应用等知识点。
掌握了这些知识,我们能够更好地理解圆的特性,应用于各种实际问题中。
通过灵活运用圆的相关知识,我们可以提高解决问题的能力和思维能力,为今后的数学学习打下坚实的基础。
第十二讲圆专项一圆的相关概念及性质知识清单1.圆的定义及其相关概念圆:如图1,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做______.其固定的端点O叫做______,线段OA叫做______.弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做______,如图1,AC,BC是弦,BC是直径.弧:圆上任意两点间的部分叫做圆弧,简称弧.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.大于半圆的弧叫做______(用三个点表示,如图1中的ABC),小于半圆的弧叫做______(如图1中的AC).圆心角:顶点在______的角叫做圆心角(如图1中的∠AOB是AB所对的圆心角).圆周角:顶点在______上,并且两边都与圆相交的角叫做圆周角(如图1中的∠ACB是AB所对的圆周角).2.圆是轴对称图形,对称轴是_____________,由此可得垂径定理:垂直于弦的直径______弦,并且______弦所对的两条弧.推论:平分弦(不是______)的直径______弦,并且______弦所对的两条弧.3.圆是中心对称图形,对称中心是_____________,由此可得在同圆或等圆中,两个圆心角、两条弧、两条弦中如果有一组量相等,那么它们所对应的其余各组量________.4.圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半,即∠BAC=12∠BOC(如图2).推论1:同弧或等弧所对的圆周角相等,即∠BAC=∠BDC(如图2).推论2:半圆(或直径)所对的圆周角是______,即∠BCA=90°(如图2);90°的圆周角所对的弦是直径.推论3:圆内接四边形的对角______.考点例析例1 往水平放置的半径为13 cm的圆柱形容器内装入一些水以后,截面图如图1所示.若水面宽度AB=24 cm,则水的最大深度为()A.5 cm B.8 cm C.10 cm D.12 cm图1分析:如图1,作与弦AB垂直的半径,先利用垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长.归纳:过圆心作弦的垂线可以构造垂径定理基本图形,常结合勾股定理求线段长.在图1所示的AB,OB,OD,CD四个量中,OB=OD+CD,2222ABOD OB⎛⎫+=⎪⎝⎭,利用这两个关系式,知道其中任何两个,其余两个都能求出来.例2 如图2,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.图2分析:根据圆内接四边形的性质可得∠ABC的度数,连接OA,OC,由圆周角定理求出∠AOC的度数,判断△OAC的形状后,可求⊙O的半径.例3如图3,已知AB是⊙O的直径,∠ACD是AD所对的圆周角,∠ACD=30°.(1)求∠DAB的度数;(2)过点D作DE⊥AB,垂足为E,DE的延长线交⊙O于点F.若AB=4,求DF的长.图3分析:(1)连接BD,根据同弧所对的圆周角相等可得∠B=∠ACD=30°,再由AB是⊙O的直径,可得∠ADB=90°,进而可求∠DAB的度数;(2)在Rt△ABD中,根据30°角所对的直角边等于斜边的一半可得AD的长,在Rt△ADE中,DE=AD·sin∠DAE,再结合垂径定理可求出DF的长.解:归纳:在圆中经常构造直径所对的圆周角,利用圆周角定理与直角三角形的性质解题.跟踪训练1.如图,AB为⊙O的直径,C,D为⊙O上的两点.若∠ABD=54°,则∠C的度数为()A.34°B.36°C.46°D.54°第1题图2.P是⊙O内一点,过点P的最长弦的长为10 cm,最短弦的长为6 cm,则OP的长为()A.3 cm B.4 cm C.5 cm D.6 cm3.如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°第3题图第4题图4.如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B,C在⊙O上,边AB,AC分别交⊙O于D,E 两点,点B是CD的中点,则∠ABE=.5.如图,AB为⊙O的弦,D,C为ACB的三等分点,AC∥BE.(1)求证:∠A=∠E;(2)若BC=3,BE=5,求CE的长.第5题图专项二与圆有关的位置关系知识清单1. 点与圆的位置关系设⊙O的半径为r,点P到圆心O的距离为d,则有点P在圆外⇔d___r;点P在____⇔d____r;点P在圆内⇔d____r.2. 直线与圆的位置关系设⊙O的半径为r,圆心O到直线l的距离为d,则有直线l与⊙O相交⇔d___r;直线l与⊙O相切⇔d___r;直线l与⊙O____⇔d___r.3. 切线的性质定理:圆的切线____于过切点的半径.4.切线的判定(1)和圆只有____个公共点的直线是圆的切线.(2)经过半径的外端并且____于这条半径的直线是圆的切线.(3)如果圆心到一条直线的距离____圆的半径,那么这条直线是圆的切线.5. 切线长定理(选学)切线长:经过圆外一点的圆的切线上,这点和切点之间____叫做这点到圆的切线长.定理:从圆外一点可以引圆的两条切线,它们的切线长____,这一点和圆心的连线____两条切线的夹角.6. 三角形的外接圆与内切圆外接圆内切圆圆心名称三角形的外心三角形的内心圆心位置三角形三条边的垂直平分线的交点三角形三条角平分线的交点性质三角形的外心到三角形三个顶点的距离相等三角形的内心到三角形三边的距离相等考点例析例1 如图1-①,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为.①②图1分析:如图1-②,当⊙O平移最靠近点C,即当⊙O与CB,CD相切时,点A到⊙O上的点Q的距离最大,结合切线的性质定理和切线长定理求解.例2 如图2,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若CD=3,DE=52,求⊙O的直径.图2分析:(1)连接OD,根据直角三角形斜边上中线的性质与等腰三角形的性质,可证∠EDO=90°,从而判定DE与⊙O相切;(2)先在Rt△BDC中求出BC,BD的长,再借助相似三角形求出AC的长,即得⊙O的直径.解:归纳:切线的判定方法主要有两种:若直线与圆有交点,则连接过交点的半径,证其与直线垂直(连半径,证垂直);若不能确定直线与圆有交点,则过圆心向直线作垂线段,证圆心到直线的距离等于半径(作垂线,证半径).跟踪训练1.如图,∠BAC=36°,点O在边AB上,⊙O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD的度数为()A.27°B.29°C.35°D.37°第1题图第2题图2.如图,P A,PB是⊙O的切线,A,B是切点.若∠P=70°,则∠ABO等于()A.30°B.35°C.45°D.55°3.如图,F A,GB,HC,ID,JE是五边形ABCDE的外接圆的切线,则∠BAF+∠CBG+∠DCH+∠EDI+∠AEJ=°.第3题图4.如图①,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.(1)求证:∠BAC=∠DOC;(2)如图②,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.①②第4题图5.如图,△ABC内接于⊙O,AB是⊙O的直径,E为AB上一点,BE=BC,延长CE交AD于点D,AD =AC.(1)求证:AD是⊙O的切线;(2)若tan∠ACE=13,OE=3,求BC的长.第5题图专项三弧长与扇形面积的计算知识清单1.弧长公式:在半径为R的圆中,n°的圆心角所对的弧长l =_______.2.扇形面积公式:在半径为R的圆中,圆心角为n°的扇形的面积S=_______;在半径为R的圆中,圆心角所对的弧长为l的扇形的面积S=_______.考点例析例1如图1,传送带的一个转动轮的半径为18 cm,转动轮转n°,传送带上的物品A被传送12π cm,则n =.图1分析:物品A被传送的距离等于转动轮转n°的弧长,根据弧长公式求弧所对的圆心角的度数即为n值.例2 如图2,正六边形ABCDEF的边长为2,以A为圆心,AC的长为半径画弧,得EC,连接AC,AE,则图中阴影部分的面积为()A.2πB.4πC.33πD.233π图2分析:阴影部分是以AC为半径、以∠CAE为圆心角的扇形,借助正六边形的性质,分别求出AC的长与∠CAE的度数,根据扇形的面积公式计算.例3设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积()A.有最大值94πB.有最小值94πC.有最大值92πD.有最小值92π分析:根据扇形的面积公式结合关系式2r+l=6,列出圆锥的侧面积与r之间的函数解析式,再通过函数的性质求圆锥的侧面积的最大值或最小值.归纳:对于圆锥,要熟悉立体图形与展开图(平面图形)之间的对应关系:圆锥的侧面展开图为扇形,圆锥的母线长是扇形的半径,圆锥的底面周长是扇形的弧长.跟踪训练1.图①是一把扇形书法纸扇,图②是其完全打开后的示意图,外侧两竹条OA和OB的夹角为150°,OA 的长为30 cm,贴纸部分的宽AC为18cm,则CD的长为()A.5π cm B.10π cm C.20π cm D.25π cm①②第1题图2.如图,一根5 m长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只小羊A(羊只能在草地上活动),那么小羊A在草地上的最大活动区域面积是()A.1712π m2B.7712π m2C.254π m2D.176π m2第2题图3.已知圆锥的母线长为10,高为8,则该圆锥的侧面展开图(扇形)的弧长为(用含π的代数式表示),圆心角为度.4.如图所示的网格中,每个小正方形的边长均为1,点A,B,D均在小正方形的顶点上,且点B,C在AD 上,∠BAC=22.5°,则BC的长为.第4题图专项四正多边形与圆知识清单1.正多边形和圆的关系:只要把一个圆分成相等的一些弧,就可以做出这个圆的______,这个圆就是这个正多边形的______.2.与正多边形有关的概念如图,已知正n边形的边长为a,半径为R,则这个正n边形的每个内角为180nn(-2),中心角α=______,边心距r=______,周长l=na,面积S=12 nar.考点例析例1 如图1,面积为18的正方形ABCD内接于⊙O,则AB的长度为()A.9πB.92πC.32πD.94π图1分析:连接OA,OB,则△OAB为等腰直角三角形.由正方形ABCD的面积为18,可求得边长AB,进而可得半径OA,根据弧长公式可求AB的长.例2(2021·河北)如图2,⊙O的半径为6,将该圆周12等分后得到表盘模型,其中整钟点为A n(n为1~12的整数),过点A7作⊙O的切线交A1A11的延长线于点P.(1)通过计算比较直径和劣弧711A A的长度哪个更长;(2)连接A7A11,则A7A11和P A1有什么特殊位置关系?请简要说明理由;(3)求切线长P A7的值.图2分析:(1)利用弧长公式求劣弧711A A的长度,与直径比较大小;(2)先直觉观察猜想结论,再利用圆周角定理证明;(3)由切线的性质可得Rt△P A1A7,解此三角形可得P A7的值.解:跟踪训练1.(2021·贵阳)如图,⊙O与正五边形ABCDE的两边AE,CD相切于A,C两点,则∠AOC的度数是()A.144°B.130°C.129°D.108°第1题图2.(2021·绥化)边长为4 cm的正六边形,它的外接圆与内切圆半径的比值是.3.(2021·湘潭)德国著名的天文学家开普勒说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割.如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.”如图①,点C把线段AB分成两部分,如果512CBAC=≈0.618,那么称点C为线段AB的黄金分割点.第3题图(1)特例感知:在图①中,若AB=100,求AC的长;(结果保留根号)(2)知识探究:如图②,作⊙O的内接正五边形;①作两条相互垂直的直径MN,AI;②作ON的中点P,以P为圆心,P A为半径画弧交OM于点Q;③以点A为圆心,AQ为半径,在⊙O上连续截取等弧,使弦AB=BC=CD=DE=AQ,连接AE;则五边形ABCDE为正五边形.在该正五边形作法中,点Q是否为线段OM的黄金分割点?请说明理由;(3)拓展应用:国旗和国徽上的五角星是革命和光明的象征,是一个非常优美的几何图形,与黄金分割有着密切的联系.延长题(2)中的正五边形ABCDE的每条边,相交可得到五角星,摆正后如图③,点E是线段PD的黄金分割点,请利用题中的条件,求cos72°的值.专项五圆中的数学思想1. 方程思想例1(2021·西宁)如图1,AB是⊙O的直径,弦CD⊥AB于点E,CD=10,BE=2,则⊙O的半径OC =.图1分析:先由垂径定理求得CE的长,再在Rt△OCE中由勾股定理得出关于半径的方程,解方程即可.2. 分类讨论思想例2(2021·朝阳)已知⊙O的半径是7,AB是⊙O的弦,且AB的长为3AB所对的圆周角的度数为.分析:弦AB所对圆周角的顶点可能在优弧上,也可能在劣弧上,所以需要分两种情况讨论.解答时,利用垂径定理构造直角三角形,借助三角函数求弦AB所对的圆心角的度数,再根据圆周角定理及其推论求弦AB 所对的圆周角的度数.3.转化思想例3 (2021·枣庄)如图2,正方形ABCD 的边长为2,O 为对角线的交点,点E ,F 分别为BC ,AD 的中点.以C 为圆心,2为半径作BD ,再分别以E ,F 为圆心,1为半径作圆弧BO ,OD ,则图中阴影部分的面积为( )A .π﹣1B .π﹣3C .π﹣2D .4﹣π图2分析:连接BD ,则OD 与线段OD 围成的图形面积等于OB 与线段OB 围成的图形面积,故阴影部分的面积等于扇形CBD 与直角三角形CBD 的面积之差.归纳:求不规则图形的面积,经常通过割补法或等积法将其转化为规则图形,再利用面积公式进行计算. 跟踪训练1.(2021·兴安盟)如图,两个半径长均为2的直角扇形的圆心分别在对方的圆弧上,扇形CFD 的圆心C 是AB 的中点,且扇形CFD 绕着点C 旋转,半径AE ,CF 交于点G ,半径BE ,CD 交于点H ,则图中阴影部分的面积等于( )A .2π﹣1B .2π﹣2C .π﹣1D .π﹣2第1题图2.(2021·青海)点P 是非圆上一点,若点P 到⊙O 上的点的最小距离是4 cm ,最大距离是9cm ,则⊙O 的半径是 .3.(2021·绥化)一条弧所对的圆心角为135°,弧长等于半径为5 cm 的圆的周长的3倍,则这条弧的半径为 cm .参考答案专项一圆的相关概念及性质例1 B 例2 2例3(1)连接BD.因为∠ACD=30°,所以∠B=∠ACD=30°.因为AB是⊙O的直径,所以∠ADB=90°.所以∠DAB=90°﹣∠B=60°.(2)因为∠ADB=90°,∠B=30°,AB=4,所以AD=12AB=2.因为∠DAB=60°,DE⊥AB,且AB是直径,所以EF=DE=AD·sin60°所以DF=2DE=1.B 2.B 3.B 4.13°5.(1)证明:因为AC∥BE,所以∠E=∠ACD.因为D,C为ACB的三等分点,所以BC CD AD==.所以∠ACD=∠A.所以∠E=∠A.(2)解:由(1)知BC CD AD==,所以∠D=∠CBD=∠A=∠E.所以BE=BD=5,BC=CD=3,△CBD∽△BDE.所以CB BDBD DE=,即355DE=,解得DE=253.所以CE=DE﹣CD=253﹣3=163.专项二与圆有关的位置关系例1 +1例2 (1)证明:连接OD.因为AC是⊙O的直径,所以∠ADC=90°,所以∠BDC=90°.因为E是BC的中点,所以DE=CE=BE,所以∠EDC=∠ECD.又OD =OC ,所以∠ODC =∠OCD .因为∠OCD +∠DCE =∠ACB =90°,所以∠ODC+∠EDC =90°,即∠EDO =90°.所以DE ⊥OD . 又OD 为⊙O 的半径,所以DE 与⊙O 相切.(2)解:由(1),得∠BDC =90°,DE =CE =BE .因为DE =52,所以BC =5.所以BD ==4. 因为∠BCA =∠BDC =90°,∠B =∠B ,所以△BCA ∽△BDC . 所以AC BC CD BD =,即534AC =.解得AC =154.所以⊙O 的直径为154. 1.A 2.B 3.1804.(1)证明:连接OB .因为直线MN 与⊙O 相切于点D ,所以OD ⊥MN .因为BC ∥MN ,所以OD ⊥BC .所以BD CD =.所以∠BOD =∠COD .因为∠BAC =12∠BOC ,所以∠BAC =∠DOC . (2)解:因为E 是OD 的中点,所以OE =DE =2.在Rt △OCE 中,CE =由(1)知OE ⊥BC ,所以BE =CE =又O 是AC 的中点,所以OE 是△ABC 的中位线.所以AB =2OE =4.因为AC 是⊙O 的直径,所以∠ABC =90°.在Rt △ABE 中,AE ==5.(1)证明:因为AB 是⊙O 的直径,所以∠ACB =90°,即∠ACE +∠BCE =90°.因为AD =AC ,BE =BC ,所以∠ACE =∠D ,∠BCE =∠BEC .又∠BEC =∠AED ,所以∠AED +∠D =90°.所以∠DAE =90°,即AD ⊥AE .因为OA 是⊙O 的半径,所以AD 是⊙O 的切线.(2)解:由(1),得tan ∠ACE =tan D =13,设AE =a ,则AD =AC =3a . 因为OE =3,所以OA =a +3,AB =2a +6,BE =BC =a +3+3=a +6.在Rt △ABC 中,由勾股定理,得AB 2=BC 2+AC 2,即(2a +6)2=(a +6)2+(3a )2,解得a 1=0(舍去),a 2=2.所以BC =a +6=8.专项三 弧长与扇形面积的计算例1 120 例2 A 例3 C1.B 2.B 3.12π 216 4.54π 专项四 正多边形与圆例1 C例2 (1)连接OA 7,OA 11.由题意,得∠A 7OA 11=120°,所以711A A 的长为12064180ππ⨯=>12.所以劣弧711A A 的长度更长.(2)P A 1⊥A 7A 11.理由:连接A 7A 11,OA 1.因为A 1A 7是⊙O 的直径,所以∠A 7A 11A 1=90°.所以P A 1⊥A 7A 11.(3)因为P A 7是⊙O 的切线,所以P A 7⊥A 1A 7,所以∠P A 7A 1=90°.因为∠P A 1A 7=60°,A 1A 7=12,所以P A 7=A 1A 7•tan 60°=1.A 23.解:(1)AC 的长为50.(2)点Q 是线段OM 的黄金分割点,理由如下:设⊙O 的半径为r ,则OP =12r ,所以PQ =AP=. 所以OQ =QP ﹣OP﹣12rr ,MQ =OM ﹣OQ =r.所以2MQ OQ =Q 是线段OM 的黄金分割点. (3)如图,作PH ⊥AE 于点H .由题可知,AH =EH .因为正五边形的每个内角都为(5﹣2)×180°÷5=108°,所以∠PEH =180°﹣108°=72°,即cos ∠PEH =cos72°=EH PE. 因为点E 是线段PD 的黄金分割点,所以DE PE=12. 又DE =AE ,HE =AH =12AE ,所以cos72°=111222AE EH AE DE PE PE PE PE==⨯=⨯.第3题图专项五圆中的数学思想例1 294例2 60°或120°例3 C1.D 2.6.5cm或2.5cm 3.40。
人教版初中数学——圆的性质及与圆有关的位置关系知识点归纳及中考典型例题解析一、圆的有关概念1.与圆有关的概念和性质(1)圆:平面上到定点的距离等于定长的所有点组成的图形.(2)弦与直径:连接圆上任意两点的线段叫做弦,过圆心的弦叫做直径,直径是圆内最长的弦.(3)弧:圆上任意两点间的部分叫做弧,小于半圆的弧叫做劣弧,大于半圆的弧叫做优弧.(4)圆心角:顶点在圆心的角叫做圆心角.(5)圆周角:顶点在圆上,并且两边都与圆还有一个交点的角叫做圆周角.(6)弦心距:圆心到弦的距离.2.注意(1)经过圆心的直线是该圆的对称轴,故圆的对称轴有无数条;(2)3点确定一个圆,经过1点或2点的圆有无数个.(3)任意三角形的三个顶点确定一个圆,即该三角形的外接圆.二、垂径定理及其推论1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.关于垂径定理的计算常与勾股定理相结合,解题时往往需要添加辅助线,一般过圆心作弦的垂线,构造直角三角形.2.推论(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧.三、圆心角、弧、弦的关系1.定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等.圆心角、弧和弦之间的等量关系必须在同圆等式中才成立.2.推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.四、圆周角定理及其推论1.定理一条弧所对的圆周角等于它所对的圆心角的一半.2.推论(1)在同圆或等圆中,同弧或等弧所对的圆周角相等.(2)直径所对的圆周角是直角.圆内接四边形的对角互补.在圆中求角度时,通常需要通过一些圆的性质进行转化.比如圆心角与圆周角间的转化;同弧或等弧的圆周角间的转化;连直径,得到直角三角形,通过两锐角互余进行转化等.五、与圆有关的位置关系1.点与圆的位置关系设点到圆心的距离为d.(1)d<r⇔点在⊙O内;(2)d=r⇔点在⊙O上;(3)d>r⇔点在⊙O外.判断点与圆之间的位置关系,将该点的圆心距与半径作比较即可.2.直线和圆的位置关系位置关系相离相切相交图形公共点个数0个1个2个数量关系d>r d=r d<r由于圆是轴对称和中心对称图形,所以关于圆的位置或计算题中常常出现分类讨论多解的情况.六、切线的性质与判定1.切线的性质(1)切线与圆只有一个公共点.(2)切线到圆心的距离等于圆的半径.(3)切线垂直于经过切点的半径.利用切线的性质解决问题时,通常连过切点的半径,利用直角三角形的性质来解决问题.2.切线的判定(1)与圆只有一个公共点的直线是圆的切线(定义法).(2)到圆心的距离等于半径的直线是圆的切线.(3)经过半径外端点并且垂直于这条半径的直线是圆的切线.切线判定常用的证明方法:①知道直线和圆有公共点时,连半径,证垂直;②不知道直线与圆有没有公共点时,作垂直,证垂线段等于半径.七、三角形与圆1.三角形的外接圆相关概念经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.外心是三角形三条垂直平分线的交点,它到三角形的三个顶点的距离相等.2.三角形的内切圆与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.内心是三角形三条角平分线的交点,它到三角形的三条边的距离相等.考向一圆的基本认识1.在一个圆中可以画出无数条弦和直径.2.直径是弦,但弦不一定是直径.3.在同一个圆中,直径是最长的弦.4.半圆是弧,但弧不一定是半圆.弧有长度和度数,规定半圆的度数为180°,劣弧的度数小于180°,优弧的度数大于180°.5.在同圆或等圆中能够互相重合的弧是等弧,度数或长度相等的弧不一定是等弧.典例1下列命题中正确的有①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个【答案】A【解析】①弦是圆上任意两点之间所连线段,所以①错误;②半径不是弦,所以②错误;③直径是最长的弦,正确;④只有180°的弧才是半圆,所以④错误,故选A.1.把圆的半径缩小到原来的14,那么圆的面积缩小到原来的A.12B.14C.18D.1162.半径为5的圆的一条弦长不可能是A.3 B.5 C.10 D.12考向二垂径定理1.垂径定理中的“弦”为直径时,结论仍然成立.2.垂径定理是证明线段相等、弧相等的重要依据,同时也为圆的计算和作图问题提供了理论依据.典例2如图,已知⊙O的半径为6 cm,两弦AB与CD垂直相交于点E,若CE=3 cm,DE=9 cm,则AB=A3cm B.3cm C.3D.3【答案】D【解析】如图,连接OA,∵⊙O的半径为6 cm,CE+DE=12 cm,∴CD是⊙O的直径,∵CD⊥AB,∴AE=BE,OE=3,OA=6,∴AE=2233OA OE-=,∴AB=2AE=63,故选D.典例3如图,将半径为2 cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2 cm B.3cmC.23cm D.25cm【答案】C【解析】在图中构建直角三角形,先根据勾股定理得AD的长,再根据垂径定理得AB的长.作OD⊥AB于D,连接OA.根据题意得OD=12OA=1cm,再根据勾股定理得:AD3,根据垂径定理得AB3.故选C.3.如图,⊙O的直径为10,圆心O到弦AB的距离OM的长为4,则弦AB的长是A.3 B.6 C.4 D.84.如图,某菜农在蔬菜基地搭建了一个横截面为圆弧形的蔬菜大棚,大棚的跨度弦AB的长为8515米,大棚顶点C离地面的高度为2.3米.(1)求该圆弧形所在圆的半径;(2)若该菜农的身高为1.70米,则他在不弯腰的情况下,横向活动的范围有几米?考向三弧、弦、圆心角、圆周角1.圆心角的度数等于它所对弧的度数,把顶点在圆心的周角等分成360份,每一份的圆心角是1°的角,1°的圆心角对着1°的弧.2.圆周角要具备两个特征:①顶点在圆上;②角的两边都和圆相交,二者缺一不可.典例4如图,在⊙O中∠O=50°,则∠A的度数为A.50°B.20°C.30°D.25°【答案】D【解析】∠A=12BOC=12×50°=25°.故选D.典例5如图,AB是⊙O的直径,△ACD内接于⊙O,延长AB,CD相交于点E,若∠CAD=35°,∠CDA=40°,则∠E的度数是A.20°B.25°C.30°D.35°【答案】B【解析】如图,连接BD,∵AB是⊙O的直径,∴∠ADB=90°,由三角形内角和定理得,∠ACD=180°﹣∠CAD﹣∠CDA=105°,∴∠ABD=180°﹣∠ACD=75°,∴∠BAD=90°﹣∠ABD=15°,∴∠E=∠CDA﹣∠DAB=25°,故选B.5.如图,AB为⊙O的直径,点C在⊙O上,若∠OCA=50°,AB=4,则BC的长为A.103πB.109πC.59πD.518π6.如图,AB是⊙O的直径,=BC CD DE,∠COD=38°,则∠AEO的度数是A.52°B.57°C.66°D.78°考向四点、直线与圆的位置关系1.点和圆的位置关系:①在圆上;②在圆内;③在圆外.2.直线和圆的位置关系:相交、相切、相离.典例6已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合【答案】C【解析】∵O的半径是5,点A到圆心O的距离是7,即点A到圆心O的距离大于圆的半径,∴点A在⊙O外.故选C.【点睛】直接根据点与圆的位置关系的判定方法进行判断.典例7在△ABC中,AB=AC=2,∠A=150°,那么半径长为1的⊙B和直线AC的位置关系是A.相离B.相切C.相交D.无法确定【答案】B【解析】过B作BD⊥AC交CA的延长线于D,∵∠BAC=150,∴∠DAB=30°,∴BD=11222AB=⨯=1,即B到直线AC的距离等于⊙B的半径,∴半径长为1的⊙B和直线AC的位置关系是相切,故选B.【点睛】本题考查了直线与圆的位置关系的应用,过B作BD⊥AC交CA的延长线于D,求出BD和⊙B的半径比较即可,主要考查学生的推理能力.7.如图,⊙O的半径为5cm,直线l到点O的距离OM=3cm,点A在l上,AM=3.8cm,则点A与⊙O的位置关系是A.在⊙O内B.在⊙O上C.在⊙O外D.以上都有可能8.如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,则l沿OC 所在直线向下平移__________cm时与⊙O相切.考向五切线的性质与判定有圆的切线时,常常连接圆心和切点得切线垂直半径,这是圆中作辅助线的一种方法.典例8如图,⊙O以AB为直径,PB切⊙O于B,近接AP,交⊙O于C,若∠PBC=50°,∠ABC=A.30°B.40°C.50°D.60°【答案】B【解析】∵⊙O以AB为直径,PB切⊙O于B,∴∠PBA=90°,∵∠PBC=50°,∴∠ABC=40°.故选B.典例9如图,Rt△ABC中,∠C=90°,AB=5,AC=3,点E在中线AD上,以E为圆心的⊙E分别与AB、BC相切,则⊙E的半径为A.78B.67C.56D.1【答案】B【解析】作EH⊥AC于H,EF⊥BC于F,EG⊥AB于G,连接EB,EC,设⊙E的半径为r,如图,∵∠C=90°,AB=5,AC=3,∴BC22AB AC-,而AD为中线,∴DC=2,∵以E为圆心的⊙E分别与AB、BC相切,∴EG=EF=r,∴HC=r,AH=3–r,∵EH∥BC,∴△AEH∽△ADC,∴EH∶CD=AH∶AC,即EH=233r-(),∵S △ABE +S △BCE +S △ACE =S △ABC , ∴()1112154333422232r r r ⨯⨯+⨯⨯+⨯⨯-=⨯⨯,∴67r =.故选B .9.已知四边形ABCD 是梯形,且AD ∥BC ,AD <BC ,又⊙O 与AB 、AD 、CD 分别相切于点E 、F 、G ,圆心O 在BC 上,则AB +CD 与BC 的大小关系是 A .大于 B .等于C .小于D .不能确定10.如图,以等腰△ABC 的腰AB 为⊙O 的直径交底边BC 于D ,DE AC ⊥于E .求证:(1)DB DC =; (2)DE 为⊙O 的切线.1.下列关于圆的叙述正确的有①圆内接四边形的对角互补; ②相等的圆周角所对的弧相等;③正多边形内切圆的半径与正多边形的半径相等; ④同圆中的平行弦所夹的弧相等.A .1个B .2个C .3个D .4个2.如图,AB 是⊙O 的直径,C 是⊙O 上一点(A 、B 除外),∠AOD =136°,则∠C 的度数是A .44°B .22°C .46°D .36°3.如图,半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD ,已知DE =6,∠BAC +∠EAD =180°,则弦BC 的长等于A .41B .34C .8D .64.如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,则圆心坐标是A .点(1,0)B .点(2,1)C .点(2,0)D .点(2.5,1)5.如图,O 的直径8AB =,30CBD ∠=︒,则CD 的长为A .2B .3C .4D .36.如图,一圆内切四边形ABCD ,且BC =10,AD =7,则四边形的周长为A .32B .34C .36D .387.已知在⊙O 中,AB =BC ,且34AB AMC =∶∶,则∠AOC =__________.8.如图,A 、B 、C 、D 都在⊙O 上,∠B =130°,则∠AOC 的度数是__________.9.如图,PA 、PB 分别切⊙O 于A 、B ,并与圆O 的切线DC 分别相交于D 、C .已知△PCD 的周长等于14 cm ,则PA =__________cm .10.如图,在⊙O 的内接四边形ABCD 中,AB AD =,120C ∠=︒,点E 在弧AD 上.若AE 恰好为⊙O的内接正十边形的一边,DE 的度数为__________.11.如图,半圆O 的直径是AB ,弦AC 与弦BD 交于点E ,且OD ⊥AC ,若∠DEF =60°,则tan ∠ABD =__________.12.如图,AB为⊙O的直径,C、F为⊙O上两点,且点C为弧BF的中点,过点C作AF的垂线,交AF 的延长线于点E,交AB的延长线于点D.(1)求证:DE是⊙O的切线;(2)如果半径的长为3,tan D=34,求AE的长.13.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)若AC=6,BC=8,OA=2,求线段DE的长.14.如图1,⊙O是△ABC的外接圆,AB是直径,D是⊙O外一点且满足∠DCA=∠B,连接AD.(1)求证:CD是⊙O的切线;(2)若AD⊥CD,CD=2,AD=4,求直径AB的长;(3)如图2,当∠DAB=45°时,AD与⊙O交于E点,试写出AC、EC、BC之间的数量关系并证明.1.如图,在O 中,AB 所对的圆周角50ACB ∠=︒,若P 为AB 上一点,55AOP ∠=︒,则POB ∠的度数为A .30°B .45°C .55°D .60°2.如图,AD 是O 的直径,AB CD =,若40AOB ∠=︒,则圆周角BPC ∠的度数是A .40︒B .50︒C .60︒D .70︒3.如图,AB ,AC 分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A .25B .4C .213D .4.84.如图,PA 、PB 为圆O 的切线,切点分别为A 、B ,PO 交AB 于点C ,PO 的延长线交圆O 于点D ,下列结论不一定成立的是A .PA =PB B .∠BPD =∠APDC .AB ⊥PDD .AB 平分PD5.如图,PA 、PB 是⊙O 切线,A 、B 为切点,点C 在⊙O 上,且∠ACB =55°,则∠APB 等于A .55°B .70°C .110°D .125°6.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,A 为切点,若∠C =40°,则∠B 的度数为A .60°B .50°C .40°D .30°7.如图,AB 是⊙O 的直径,点C 、D 是圆上两点,且∠AOC =126°,则∠CDB =A .54°B .64°C .27°D .37°8.如图,AB 为O 的直径,BC 为O 的切线,弦AD ∥OC ,直线CD 交的BA 延长线于点E ,连接BD .下列结论:①CD 是O 的切线;②CO DB ⊥;③EDA EBD △∽△;④ED BC BO BE ⋅=⋅.其中正确结论的个数有A .4个B .3个C .2个D .1个9.如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD =__________.10.如图,△ABC 内接于⊙O ,∠CAB =30°,∠CBA =45°,CD ⊥AB 于点D ,若⊙O 的半径为2,则CD 的长为__________.11.如图,四边形ABCD内接于⊙O,AB=AC,AC⊥BD,垂足为E,点F在BD的延长线上,且DF=DC,连接AF、CF.(1)求证:∠BAC=2∠CAD;(2)若AF=10,BC=45,求tan∠BAD的值.12.如图,在△ABC中,BA=BC,∠ABC=90°,以AB为直径的半圆O交AC于点D,点E是BD上不与点B,D重合的任意一点,连接AE交BD于点F,连接BE并延长交AC于点G.(1)求证:△ADF≌△BDG;(2)填空:①若AB=4,且点E是BD的中点,则DF的长为__________;②取AE的中点H,当∠EAB的度数为__________时,四边形OBEH为菱形.1.【答案】D【解析】设原来的圆的半径为r ,则面积S 1=πr 2, ∴半径缩小到原来的14后所得新圆的面积22211π()π416S r r ==, ∴22211π116π16rS S r ==,故选D . 2.【答案】D【解析】∵圆的半径为5,∴圆的直径为10,又∵直径是圆中最长的弦,∴圆中任意一条弦的长度10l ≤,故选D . 3.【答案】B【解析】如图,连接OA ,∵O 的直径为10,5OA ∴=,∵圆心O 到弦AB 的距离OM 的长为4, 由垂径定理知,点M 是AB 的中点,12AM AB =, 由勾股定理可得,3AM =,所以6AB =.故选B .4.【解析】(1)如图所示:CO ⊥AB 于点D ,设圆弧形所在圆的半径为xm ,根据题意可得:DO 2+BD 2=BO 2, 则(x –2.3)2+851×12)2=x 2,解得x =3. 变式训练答:圆弧形所在圆的半径为3米;(2)如图所示:当MN =1.7米,则过点N 作NF ⊥CO 于点F ,可得:DF =1.7米,则FO =2.4米,NO =3米,故FN =223 2.4-=1.8(米), 故该菜农身高1.70米,则他在不弯腰的情况下,横向活动的范围有3.6米. 5.【答案】B【解析】根据题意可知:∠OAC =∠OCA =50°,则∠BOC =2∠OAC =100°,则弧BC 的长度为:100π210π1809⨯=,故选B .6.【答案】B【解析】∵=BC CD DE =,∴∠BOC =∠DOE =∠COD =38°, ∴∠BOE =∠BOC +∠DOE +∠COD =114°,∴∠AOE =180°–∠BOE =66°, ∵OA =OE ,∴∠AEO =(180°–∠AOE )÷2=57°,故选B . 7.【答案】A【解析】如图,连接OA ,则在直角△OMA 中,根据勾股定理得到OA =223 3.823.445+=<. ∴点A 与⊙O 的位置关系是:点A 在⊙O 内.故选A .8.【答案】2【解析】连接OA .∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2=4,OA =5,∴OH =3. ∴需要平移5–3=2(cm ).故答案为:2.【点睛】本题考查垂径定理及直线和圆的位置关系.注意:直线和圆相切,应满足d =R . 9.【答案】B【解析】如图,连接OF ,OA ,OE ,作AH ⊥BC 于H .∵AD 是切线,∴OF ⊥AD ,易证四边形AHOF 是矩形,∴AH =OF =OE , ∵S △AOB =12•OB •AH =12•AB •OE ,∴OB =AB ,同理可证:CD =CO , ∴AB +CD =BC ,故选B .【点睛】本题考查了切线的性质,切线垂直于过切点的半径,正确作出辅助线是关键. 10.【解析】(1)如图,连AD ,∵AB 是直径,∴90ADB ∠=︒,AD BC ⊥, 又AB AC =,∴D 为BC 中点,DB DC =; (2)连OD ,∵D 为BC 中点,OA OB =, ∴OD 为ABC △中位线,OD AC ∥, 又DE AC ⊥于,E ∴90ODE DEC ∠=∠=︒, ∴DE 为⊙O 的切线.1.【答案】B【解析】①圆内接四边形的对角互补;正确;②相等的圆周角所对的弧相等;错误;③正多边形内切圆的半径与正多边形的半径相等;错误;④同圆中的平行弦所夹的弧相等;正确; 正确的有2个,故选B . 2.【答案】B【解析】∵∠AOD =136°,∴∠BOD =44°,∴∠C =22°,故选B . 3.【答案】C【解析】如图,延长CA ,交⊙A 于点F ,考点冲关∵∠BAC+∠BAF=180°,∠BAC+∠EAD=180°,∴∠BAF=∠DAE,∴BF=DE=6,∵CF是直径,∴∠ABF=90°,CF=2×5=10,∴BC=228CF BF-=.故选C.4.【答案】C【解析】根据勾股定理可知A、B、C点到(2,0)的距离均为5,然后可知圆心为(2,0)或者通过AB、BC的垂直平分线求解也可以.故选C.5.【答案】C【解析】如图,作直径DE,连接CE,则∠DCE=90°,∵∠DBC=30°,∴∠DEC=∠DBC=30°,∵DE=AB=8,∴12DC DE==4,故选C.6.【答案】B【解析】由题意可得圆外切四边形的两组对边和相等,所以四边形的周长=2×(7+10)=34.故选B.7.【答案】144°【解析】根据AB=BC可得:弧AB的度数和弧BC的度数相等,则弧AMC的度数为:(360°÷10)×4=144°,则∠AOC =144°. 8.【答案】100°【解析】∵∠B =130°,∴∠D =180°-130°=50°,∴∠AOC =2∠D =100°.故答案为100°. 9.【答案】7【解析】如图,设DC 与⊙O 的切点为E ;∵PA 、PB 分别是⊙O 的切线,且切点为A 、B ,∴PA =PB ; 同理,可得:DE =DA ,CE =CB ;则△PCD 的周长=PD +DE +CE +PC =PD +DA +PC +CB =PA +PB =14(cm ); ∴PA =PB =7cm ,故答案是:7. 10.【答案】84︒【解析】如图,连接BD ,OA ,OE ,OD ,∵四边形ABCD 是圆的内接四边形,∴180BAD C ∠+∠=︒, ∵120C ∠=︒,∴60BAD ∠=︒,∵AB AD =,∴ABD △是正三角形,∴60ABD ∠=︒,2120AOD ABD ∠=∠=︒, ∵AE 恰好是⊙的内接正十边形的一边,∴3603610AOE ︒∠==︒, ∴1203684DOE ∠=︒-︒=︒,∴DE 的度数为84°.故答案为:84°.113【解析】∵OD ⊥AC ,∠DEF =60°, ∴∠D =30°,∵OD=OB,∴∠ABD=∠D=30°,∴tan∠ABD=33,故答案为:33.12.【解析】(1)连接OC,如图.∵点C为弧BF的中点,∴弧BC=弧CF,∴∠BAC=∠FAC.∵OA=OC,∴∠OCA=∠OAC,∴∠OCA=∠FAC,∴OC∥AE.∵AE⊥DE,∴OC⊥DE,∴DE是⊙O的切线;(2)在Rt△OCD中,∵tan D=34OCCD=,OC=3,∴CD=4,∴OD=22OC CD+=5,∴AD=OD+AO=8.在Rt△ADE中,∵sin D=35OC AEOD AD==,∴AE=245.13.【解析】(1)直线DE与⊙O相切,理由如下:如图,连接OD,∵OD=OA,∴∠A=∠ODA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠ODA+∠EDB=90°,∴∠ODE=180°–90°=90°,∴直线DE与⊙O相切;(2)连接OE,设DE=x,则EB=ED=x,CE=8–x,∵∠C=∠ODE=90°,∴OC2+CE2=OE2=OD2+DE2,∴42+(8–x)2=22+x2,解得:x=4.75,则DE=4.75.14.【解析】(1)如图1,连接OC.∵OB=OC,∴∠OCB=∠B,∵∠DCA=∠B,∴∠DCA=∠OCB,∵AB是直径,∴∠ACB=90°,∴∠DCA+∠ACO=∠OCB+∠ACO=90°,即∠DCO=90°,∴CD是⊙O的切线.(2)∵AD⊥CD,CD=2,AD=4.∴222425AC=+=由(1)可知∠DCA=∠B,∠D=∠ACB=90°,∴△ADC∽△ACB,∴AD ACAC AB=2525=,∴AB=5.(3)2AC BC EC=+,如图2,连接BE,在AC上截取AF=BC,连接EF.∵AB 是直径,∠DAB =45°, ∴∠AEB =90°,∴△AEB 是等腰直角三角形, ∴AE =BE ,又∵∠EAC =∠EBC ,∴△ECB ≌△EFA ,∴EF =EC , ∵∠ACE =∠ABE =45°, ∴△FEC 是等腰直角三角形, ∴2FC EC =,∴2AC AF FC BC EC =+=.1.【答案】B【解析】∵∠ACB =50°,∴∠AOB =2∠ACB =100°,∵∠AOP =55°,∴∠POB =45°,故选B . 2.【答案】B【解析】∵AB CD =,40AOB ∠=︒,∴40COD AOB ∠=∠=︒, ∵180AOB BOC COD ∠+∠+∠=︒,∴100BOC ∠=︒, ∴1502BPC BOC ∠=∠=︒,故选B . 3.【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴22221086BC AB AC =--=,∵OD AC ⊥,∴142CD AD AC ===, 直通中考在Rt CBD △中,2246213BD =+=.故选C .4.【答案】D【解析】∵PA ,PB 是⊙O 的切线,∴PA =PB ,所以A 成立;∠BPD =∠APD ,所以B 成立; ∴AB ⊥PD ,所以C 成立;∵PA ,PB 是⊙O 的切线,∴AB ⊥PD ,且AC =BC ,只有当AD ∥PB ,BD ∥PA 时,AB 平分PD ,所以D 不一定成立,故选D . 5.【答案】B【解析】如图,连接OA ,OB ,∵PA ,PB 是⊙O 的切线,∴PA ⊥OA ,PB ⊥OB ,∵∠ACB =55°,∴∠AOB =110°, ∴∠APB =360°-90°-90°-110°=70°.故选B .6.【答案】B【解析】∵AC 是⊙O 的切线,∴AB ⊥AC ,且∠C =40°,∴∠ABC =50°,故选B . 7.【答案】C【解析】∵∠AOC =126°,∴∠BOC =180°-∠AOC =54°,∵∠CDB =12∠BOC =27°.故选C . 8.【答案】A【解析】如图,连接DO .∵AB 为O 的直径,BC 为O 的切线,∴90CBO ∠=︒,∵AD OC ∥,∴DAO COB ∠=∠,ADO COD ∠=∠. 又∵OA OD =,∴DAO ADO ∠=∠,∴COD COB ∠=∠.在COD △和COB △中,CO CO COD COB OD OB =⎧⎪∠=∠⎨⎪=⎩,∴COD COB △≌△,∴90CDO CBO ∠=∠=︒.又∵点D 在O 上,∴CD 是O 的切线,故①正确,∵COD COB △≌△,∴CD CB =,∵OD OB =,∴CO 垂直平分DB ,即CO DB ⊥,故②正确; ∵AB 为O 的直径,DC 为O 的切线,∴90EDO ADB ∠=∠=︒,∴90EDA ADO BDO ADO ∠+∠=∠+∠=︒,∴ADE BDO ∠=∠, ∵OD OB =,∴ODB OBD ∠=∠,∴EDA DBE ∠=∠, ∵E E ∠=∠,∴EDA EBD △∽△,故③正确;∵90EDO EBC ∠=∠=︒,E E ∠=∠,∴EOD ECB △∽△, ∴ED ODBE BC=,∵OD OB =, ∴ED BC BO BE ⋅=⋅,故④正确,故选A . 9.【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1. 10.【答案】2【解析】如图,连接CO 并延长交⊙O 于E ,连接BE ,则∠E =∠A =30°,∠EBC =90°,∵⊙O 的半径为2,∴CE =4,∴BC =12CE =2, ∵CD ⊥AB ,∠CBA =45°,∴CD =22BC =2,故答案为:2. 11.【解析】(1)∵AB =AC ,∴AB AC =,∠ABC =∠ACB ,∴∠ABC =∠ADB ,∠ABC =(180°-∠BAC )=90°-∠BAC ,∵BD⊥AC,∴∠ADB=90°-∠CAD,∴12∠BAC=∠CAD,∴∠BAC=2∠CAD.(2)∵DF=DC,∴∠DFC=∠DCF,∴∠BDC=2∠DFC,∴∠BFC=12∠BDC=12∠BAC=∠FBC,∴CB=CF,又BD⊥AC,∴AC是线段BF的中垂线,AB=AF=10,AC=10.又BC=45,设AE=x,CE=10-x,由AB2-AE2=BC2-CE2,得100-x2=80-(10-x)2,解得x=6,∴AE=6,BE=8,CE=4,∴DE=648AE CEBE⋅⨯==3,∴BD=BE+DE=3+8=11,如图,作DH⊥AB,垂足为H,∵12AB·DH=12BD·AE,∴DH=11633105 BD AEAB⋅⨯==,∴BH2244 5BD DH-=,∴AH=AB-BH=10-446 55=,∴tan∠BAD=331162 DHAH==.12.【解析】(1)∵BA=BC,∠ABC=90°,∴∠BAC=45°,∵AB是⊙O的直径,∴∠ADB=∠AEB=90°,∴∠DAF+∠BGD=∠DBG+∠BGD=90°,∴∠DAF=∠DBG,∵∠ABD+∠BAC=90°,∴∠ABD=∠BAC=45°,∴AD=BD,∴△ADF≌△BDG.(2)①如图2,过F作FH⊥AB于H,∵点E是BD的中点,∴∠BAE=∠DAE,∵FD⊥AD,FH⊥AB,∴FH=FD,∵FHBF=sin∠ABD=sin45°2,∴22FDBF=BF2FD,∵AB=4,∴BD=4cos45°2,即BF+FD22+1)FD2,∴FD=2221=4-22,故答案为:4-22.②连接OH,EH,∵点H是AE的中点,∴OH⊥AE,∵∠AEB=90°,∴BE⊥AE,∴BE∥OH,∵四边形OBEH为菱形,∴BE=OH=OB=12 AB,∴sin∠EAB=BEAB=12,∴∠EAB=30°.故答案为:30°.31。
中考专题复习——圆一、垂径定理垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.转为几何语言:∵CD是直径,CD⊥AB,∴AM=BM,⌒AC=⌒BC,⌒AD=⌒BD如果把条件和结论看成是5个条件,相互间是否还有其它关系呢?如图,在下列五个条件中:①CD是直径,②CD⊥AB,③AM=BM,④⌒AC=⌒BC,⑤⌒AD=⌒BD只要具备其中两个条件,就可推出其余三个结论.你可以写出相应的命题吗?条件结论命题①②③④⑤垂直于弦的直径平分弦,并且平分弦所的两条弧.①③②④⑤平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.①④ ②③⑤ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.①⑤ ②③④ ②③ ①④⑤ 弦的垂直平分线经过圆心,并且平分这条弦所对的两条弧. ②④ ①③⑤ 垂直于弦并且平分弦所对的一条弧的直线经过圆心,并且平分弦和所对的另一条弧.②⑤ ①③④ ③④ ①②⑤ 平分弦并且平分弦所对的一条弧的直线经过圆心,垂直于弦,并且平分弦所对的另一条弧.③⑤ ①②④ ④⑤ ①②③ 平分弦所对的两条弧的直线经过圆心,并且垂直平分弦.垂径定理是《圆》这一章的重要内容,在实际生活中有着广泛的应用.在各地中考题中对垂径定理的考查频频出现,这类问题常常需要结合勾股定理来解决,现以中考题为例说明如下:类型一 求直径【例1】如图,O ⊙的直径AB 垂直弦CD 于点P ,且点P 是半径OB 的中点,6 cm CD =,则直径AB 的长是( ).A . 2 3 cmB . 3 2 cmC . 4 2 cmD . 4 3 cm【解析】解决本题的关键是构造直角三角形,根据勾股定理列出方程求解即可.连接OD ,由垂径定理可知PD =362121=⨯=CD (cm).设半径OD =x cm ,则OP=x OB 2121=(cm). 在Rt △OPD 中,因为222OP DP OD +=,所以222132x x ⎛⎫+= ⎪⎝⎭.解这个方程,得23x =.所以直径AB 的长为342=x (cm),故应选D . 类型二 求弦长【例2】如图,AB O 是⊙的直径,弦CD AB ⊥于点E ,60COB ∠=°,⊙O 的半径为 3 cm ,则弦CD 的长为( ).A .3cm 2B . 3 cmC . 2 3 cmD . 9 cm 【解析】因为60COB ∠=°,CD AB ⊥,所以∠CEO =90°,∠OCD =30°.又因为⊙O 3 cm ,所以OE =12OC 3.由勾股定理可得222233(3)22CE OC OE ⎛⎫=--= ⎪ ⎪⎝⎭. 所以CD =2CE =3(cm).故应选B . 类型三 求弦心距【例3】⊙O 的半径为10 cm ,弦AB =12 cm ,则圆心到弦AB 的距离为( ).A .2 cmB .6 cmC .8 cmD .10 cm【解析】画出示意图如图,作OC AB ⊥于点C ,连接OA , 由垂径定理,得AC =1112622AB =⨯=. 在Rt △AOC 中,由勾股定理,得OC =22221068OA AC -=-=(cm).故应选C .类型四 求拱高【例4】如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米,拱的半径为13米,则拱高为( ).A .5米B .8米C .7米D .53米 【解析】设石拱桥圆弧的圆心为O ,连接OA 、OD ,则OD ⊥AB .又因为OA =13,由垂径定理可得AD =11241222AB =⨯=. 所以在Rt △AOD 中,OD 222213125OA AD -=-=. 所以CD =OC -OD =13-5=8(米).故应选B .类型五 探究线段的最小值【例5】如图,⊙O 的半径 5 cm OA =,弦8 cm AB =,点P 为弦AB 上一动点,则点P 到圆心O 的最短距离是________cm .【解析】因为连接直线外一点与直线上各点的所有线段中,垂线段最短, 所以需作出弦AB 的弦心距.过点O 作OC ⊥AB , C 为垂足,由垂径定理,知AC=118422AB =⨯=(cm). 在Rt △AOC 中,由勾股定理可得OC 2222543OA AC -=-=. 故点P 到圆心O 的最短距离为3 cm .二、 圆周角定理及推论《圆周角》解题技巧在数学里,把一个对象转化为另一个对象,常常可以化繁为简,化未知为已知,从而达到解决问题的目的,这种思考问题的方法,就是“转化”.在研究与圆周角有关的问题时,常进行等角间的转化.【例1】如图,已知AB 为⊙O 的直径,CD 是弦,且AB ⊥CD 于点E .连接AC ,OC ,BC .(1)求证:∠ACO =∠BCD .(2)若EB =8 cm ,CD =24 cm ,求⊙O 的直径.【分析】(1)欲证∠ACO =∠BCD ,关键是进行等角间的转化:∠ACO =∠OAC ,∠BCD =∠OAC ,转化的依据是等腰三角形的性质定理和圆周角的“等弧所对的圆周角相等”;(2)借助勾股定理构建方程即可求得⊙O 的直径.解:(1)∵AB 为⊙O 的直径,CD 是弦,且AB CD 于点E ,∴CE =ED ,︵CB =︵DB . ∴∠BCD =∠BAC . ∵OA =OC , ∴∠OAC =∠OCA . ∴∠ACO =∠BCD .(2)设⊙O 的半径为R cm ,则OE =OB -EB =R -8.∴CE =21CD =21×24=12.在Rt△CEO中,由勾股定理可得OC2=OE2+CE2,即R2=(R-8)2+122.解得R=13.所以2R=2×13=26.【例2】如图,四边形ABCD内接于圆,对角线AC与BD相交于点E,F在AC 上,AB=AD,∠BFC=∠BAD=2∠DFC.求证:(1)CD⊥DF;(2)BC=2CD.【分析】(1)欲证CD⊥DF,可转化为证明∠FCD+∠CFD=90°.由圆周角的性质有∠FCD=∠ABD,再联系条件∠BAD=2∠CFD,不难向等腰△ABD的内角和定理进行联想,从而找到解题的切入点;(2)欲证BC=2CD,现在还有一个条件∠BFC=∠BAD没有用,注意到∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,从而有∠ABF=∠CAD,而∠CAD=∠CBD,故∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,从而∠FBC=∠FCB,于是得FB=FC.思考到这里,不妨再回头看看证题目标BC=2CD,可考虑取BC的中点G,于是问题转化为证明CG=CD,即证△FGC≌△FDC.证明:(1)∵AB=AD,∴∠ABD=∠ADB.在△ABD中,∠BAD+2∠ABD=180°.又∠BAD=2∠DFC,∠FCD=∠ABD,∴2∠DFC+2∠FCD=180°.∴∠DFC+∠FCD=90°.∴∠FDC=90°.∴CD⊥DF.(2)∵∠BFC=∠ABF+∠BAC,∠BAD=∠CAD+∠BAC,∴∠ABF=∠CAD.又∠CAD=∠CBD,∴∠ABF=∠CBD,即∠ABD=∠FBC,而∠ABD=∠ADB=∠FCB,∴∠FBC=∠FCB,∴FB=FC.取BC的中点G,连接FG.∴FG⊥BC.∴∠FGC=90°.∵AB=AD,∴︵AB=︵AD,∴∠ACB=∠ACD.∵∠FGC=∠FDC=90°,FC=FC,∴△FGC≌△FDC.∴CG=CD.∵BC=2CG,∴BC=2CD.三、切线及切线长定理怎样证明直线与圆相切?在直线与圆的各种位置关系中,相切是一种重要的位置关系.现介绍以下三种判别直线与圆相切的基本方法:(1)利用切线的定义——在已知条件中有“半径与一条直线交于该半径的外端”,于是只需直接证明这条直线垂直于这个半径即可.【例1】已知:△ABC内接于⊙O,⊙O的直径AE交BC于F点,点P在BC的延长线上,且∠CAP=∠ABC.求证:PA是⊙O的切线.【证明】连接EC.∵AE是⊙O的直径,∴∠ACE=90°.∴∠E+∠EAC=90°.∵∠E=∠B,∠B=∠CAP,∴∠E=∠CAP.∴∠EAC+∠CAP=∠EAC+∠E=90°.∴∠EAP=90°.∴PA⊥OA.又PA经过点A,∴PA是⊙O的切线.(2)利用切线的判定定理——在已知条件中,有“一条直线过圆上某一点(即为切点),但没有半径”,于是先连接圆心与这个点成为半径,然后再证明这条直线和这条半径垂直.【例2】以Rt△ABC的直角边BC为直径作⊙O交斜边AB于点P,点Q为AC的中点.求证:PQ为⊙O的切线.B【证明】连接OP,CP.∵BC为直径,∴∠BPC=90°,即∠APC=90°.又点Q为AC的中点,∴QP=QC.∴∠1=∠2.又OP=OC,∴∠3=∠4.又∠ACB=90°,∴∠2+∠4=∠1+∠3=∠ACB=90°.∴∠OPQ=90°.∵点P在⊙O上,且点P为半径OP的端点,∴QP为⊙O的切线.说明:要证PQ与半径垂直,即连接OP.这是判别相切中添加辅助线的常用方法.(3)证明“d=R”,在已知条件中“没有半径,也没有明确直线与圆的公共交点”,于是过圆心作直线的垂线,然后再证明这条垂线段的长(d)等于圆的半径(R)即可.【例3】已知,在△ABC中,AD⊥BC于点D,且AD=12BC,点E,F分别为AB,AC的中点,点O为EF的中点.求证:以EF为直径的圆与BC相切.【证明】作OH⊥BC于点H,设AD与EF交于点M.∵点E,F分别为AB,AC的中点,∴EF=12 BC.∴点M也是AD的中点,即MD=12 AD.又AD=12BC,∴EF=AD,MD=12EF.又AD⊥BC,∴OH∥MD.∴四边形OHDM是矩形.∴OH=MD=12EF.∴OH是⊙O的半径.∴以EF为直径的圆与BC相切.与《切线长定理》相关的中考压轴题1.已知:以Rt △ABC 的直角边AB 为直径作⊙O ,与斜边AC 交于点D ,过点D 作⊙O 的切线交BC 边于点E .(1)如图,求证:EB =EC =ED ;(2)试问在线段DC 上是否存在点F ,满足BC 2=4DF •DC ?若存在,作出点F ,并予以证明;若不存在,请说明理由.分析:(1)连接BD ,已知ED 、EB 都是⊙O 的切线,由切线长定理可证得OE 垂直平分BD ,而BD ⊥AC (圆周角定理),则OE ∥AC ;由于O 是AB 的中点,可证得OE 是△ABC 的中位线,即E 是BC 中点,那么Rt △BDC 中,DE 就是斜边BC 的中线,由此可证得所求的结论;(2)由(1)知:BC =2BE =2DE ,则所求的比例关系式可转化为22BC ⎛⎫ ⎪⎝⎭=DF •DC ,即DE 2=DF •DC ,那么只需作出与△DEC 相似的△DFE 即可,这两个三角形的公共角为∠CDE ,只需作出∠DEF =∠C 即可;①∠DEC >∠C ,即180°-2∠C >∠C ,0°<∠C <60°时,∠DEF 的EF 边与线段CD 相交,那么交点即为所求的F 点;②∠DEC =∠C ,即180°-2∠C =∠C ,∠C =60°时,F 与C 点重合,F 点仍在线段CD 上,此种情况也成立;③∠DEC<∠C,即180°-2∠C<∠C,60°<∠C<90°时,∠DEF的EF边与线段的延长线相交,与线段CD没有交点,所以在这种情况下不存在符合条件的F点.解:(1)证明:连接BD.由于ED、EB是⊙O的切线,由切线长定理,得ED=EB,∠DEO=∠BEO,∴OE垂直平分BD.又∵AB是⊙O的直径,∴AD⊥BD.∴AD∥OE.即OE∥AC.又O为AB的中点,∴OE为△ABC的中位线,∴BE=EC,∴EB=EC=ED.(2)解:在△DEC中,由于ED=EC,∴∠C=∠CDE,∴∠DEC=180°-2∠C.①当∠DEC>∠C时,有180°-2∠C>∠C,即0°<∠C<60°时,在线段DC上存在点F满足条件.在∠DEC内,以ED为一边,作∠DEF,使∠DEF=∠C,且EF交DC于点F,则点F即为所求.这是因为:在△DCE和△DEF中,∠CDE=∠EDF,∠C=∠DEF,∴△DEF∽△DCE.∴DE2=DF•DC.即212BC⎛⎫⎪⎝⎭=DF•DC.∴BC2=4DF•DC.②当∠DEC=∠C时,△DEC为等边三角形,即∠DEC=∠C=60°,此时,C点即为满足条件的F点,于是,DF=DC=DE,仍有BC2=4DE2=4DF•DC.③当∠DEC<∠C时,即180°﹣2∠C<∠C,60°<∠C<90°;所作的∠DEF >∠DEC,此时点F在DC的延长线上,故线段DC上不存在满足条件的点F.点评:此题主要考查了直角三角形的性质、切线长定理、三角形中位线定理及相似三角形的判定和性质;(2)题一定要注意“线段DC上是否存在点F”的条件,以免造成多解.2.如图所示,在梯形ABCD中,AD∥BC,AB⊥BC,以AB为直径的⊙O与DC相切于E.已知AB=8,边BC比AD大6.(1)求边AD、BC的长;(2)在直径AB上是否存在一动点P,使以A、D、P为顶点的三角形与△BCP相似?若存在,求出AP的长;若不存在,请说明理由.分析:过D作DF⊥BC于F,设AD=x,则DE=AD=x,EC=BC=x+6,根据勾股定理就得到一个关于x的方程,就可以解得AD的长;△ADP和△BCP相似,有△ADP∽△BCP和△ADP∽△BPC两种情况进行讨论,根据相似三角形的对应边的比相等,就可以求出AP的长.解:(1)方法1:过D作DF⊥BC于F,在Rt△DFC中,DF=AB=8,FC=BC-AD=6,∴DC2=62+82=100,即DC=10.设AD=x,则DE=AD=x,EC=BC=x+6,∴x+(x+6)=10.∴x=2.∴AD=2,BC=2+6=8.方法2:连OD、OE、OC,由切线长定理可知∠DOC=90°,AD=DE,CB=CE,设AD=x,则BC=x+6,由射影定理可得:OE2=DE•EC.即:x(x+6)=16,解得x1=2,x2=-8,(舍去)∴AD=2,BC=2+6=8.(2)存在符合条件的P点.设AP=y,则BP=8-y,△ADP与△BCP相似,有两种情况:①△ADP∽△BCP时,有AD APBC PB=,即288yy=-.∴y=85.②△ADP∽△BPC时,有AD APBP BC=,即288yy=-.∴y=4.故存在符合条件的点P,此时AP=85或4.点评:本题主要考查了相似三角形的判定性质,对应边的比相等的两三角形相似.3.如图,已知AB为⊙O的直径,PA,PC是⊙O的切线,A,C为切点,∠BAC=30°.(Ⅰ)求∠P的大小;(Ⅱ)若AB=2,求PA的长(结果保留根号).分析:(Ⅰ)根据切线的性质及切线长定理可证明△PAC为等边三角形,则∠P的大小可求;(Ⅱ)由(Ⅰ)知PA=PC,在Rt△ACB中,利用30°的特殊角度可求得AC 的长.解:(Ⅰ)∵PA是⊙O的切线,AB为⊙O的直径,∴PA⊥AB,∴∠BAP=90°;∵∠BAC=30°,∴∠CAP=90°-∠BAC=60°.又∵PA、PC切⊙O于点A、C,∴PA=PC,∴△PAC为等边三角形,∴∠P=60°.(Ⅱ)如图,连接BC,则∠ACB=90°.在Rt△ACB中,AB=2,∠BAC=30°,∵cos∠BAC=ACAB,∴AC=AB•cos∠BAC=2cos30°3∵△PAC为等边三角形,∴PA=AC,∴PA3.点评:本题考查的是切线长定理,切线长定理图提供了很多等线段,分析图形时关键是要仔细探索,找出图形的各对相等切线长.四、 正多边形与圆4.(1)已知如图①所示,△ABC 是⊙O 的内接正三角形,点P 为︵BC 上一动点,求证PA =PB +PC .下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP 上截取AE =CP ,连接BE . ∵△ABC 是正三角形, ∴AB =CB .∴∠1和∠2是同弧所对的圆周角. ∴∠1=∠2. ∴△ABE ≌△CBP .③OPFEDBA②ODCBA①21E POCB(2)如图②所示,四边形ABCD 是⊙O 的内接正方形,点P 为︵BC 上一动点,求证:PA =PC 2PB .(3)如图③所示,六边形ABCDEF 是⊙O 的内接正六边形,点P 为︵BC 上一动点,请探究PA 、PB 、PC 三者之间有何数量关系,直接写出结论.4.证明:⑥F⑤④(1)如图④所示,延长BP 至E ,使PE =PC ,连接CE . 易知∠CPE =∠CAB =60°,∴△PCE 是等边三角形. ∴CE =PC ,∠ECP =60°. ∴∠ECP +∠PCB =∠BCA +∠PCB , 即∠ECB =∠PCA .在△CAP 和△CBE 中,CA =CB ,CP =CE ,∠PCA =∠ECB , ∴△CAP ≌△CBE . ∴PA =BE =PB +PC .(2)如图⑤所示,过点B 作BE ⊥PB 交PA 于E . ∵∠1+∠2=∠2+∠3=90°, ∴∠1=∠3.又∵AB =BC,∠BAP =∠BCP , ∴△ABE ≌△CBP ,∴PC =AE .∵∠APB=45°,∴BP =BE ,∴PE PB. ∴PA =AE +PE =PC PB . (3)PA =PC .证明:如图⑥所示,在AP 上截取AQ =PC ,连接BQ . ∵∠BAP =∠BCP ,AB =BC ,AQ =CP , ∴△ABQ ≌△CBP ,∴BQ =BP . 又∵∠APB =30°,∴PQ =3PB . ∴PA =PQ +AQ =3PB +PC .五、 与圆有关的计算1.如图,将圆沿AB 折叠后,圆弧恰好经过圆心,则弧AMB 的度数是( ).A .60°B .90°C .120°D .150°2.如图,王虎使一长为4 cm 、宽为3 cm 的长方形木板,在桌面上做无滑动的翻滚(顺时针方向),木板上点A 位置变化为A →A 1→A 2,其中第二次翻滚被桌面上一小木板档住,使木板与桌面成30°角,则点A 翻滚到A 2位置时共走过的路径长为( ).A .10 cmB .4π cmC .72π cmD .52cm3.如图,有一圆锥形粮堆,其正视图是边长为6 cm 的正三角形ABC ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是________cm (结果不取近似值).4、如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=3,BC=1,将Rt△ABC绕点C 旋转90°后得Rt△A'B'C,再将Rt△A'B'C绕点B'旋转为Rt△A''B'C'使得点A,C,B',A''在同一条直线上,则点A运动到点A''所走的路径长为___________.。
《圆的证明与计算》专题研究圆的证明与计算是中考中的一类重要的问题,此题完成情况的好坏对解决后面问题的发挥有重要的影响,所以解决好此题比较关键。
一、考点分析:1.圆中的重要定理:(1)圆的定义:主要是用来证明四点共圆.(2)垂径定理:主要是用来证明——弧相等、线段相等、垂直关系等等.(3)三者之间的关系定理: 主要是用来证明——弧相等、线段相等、圆心角相等.(4)圆周角性质定理及其推轮: 主要是用来证明——直角、角相等、弧相等.(5)切线的性质定理:主要是用来证明——垂直关系.(6)切线的判定定理: 主要是用来证明直线是圆的切线.(7)切线长定理: 线段相等、垂直关系、角相等.2.圆中几个关键元素之间的相互转化:弧、弦、圆心角、圆周角等都可以通过相等来互相转化.这在圆中的证明和计算中经常用到.二、考题形式分析:主要以解答题的形式出现,第1问主要是判定切线;第2问主要是与圆有关的计算:①求线段长(或面积);②求线段比;③求角度的三角函数值(实质还是求线段比)。
三、解题秘笈:1、判定切线的方法:(1)若切点明确,则“连半径,证垂直”。
常见手法有:全等转化;平行转化;直径转化;中线转化等;有时可通过计算结合相似、勾股定理证垂直;(2)若切点不明确,则“作垂直,证半径”。
常见手法:角平分线定理;等腰三角形三线合一,隐藏角平分线;总而言之,要完成两个层次的证明:①直线所垂直的是圆的半径(过圆上一点);②直线与半径的关系是互相垂直。
在证明中的关键是要处理好弧、弦、角之间的相互转化,要善于进行由此及彼的联想、要总结常添加的辅助线.例:(1)如图,AB是⊙O的直径,BC⊥AB,AD∥OC交⊙O于D点,求证:CD为⊙O 的切线;(2)如图,以Rt △ABC 的直角边AB 为直径作⊙O ,交斜边AC 于D ,点E 为BC 的中点,连结DE ,求证:DE 是⊙O 的切线.(3)如图,以等腰△ABC 的一腰为直径作⊙O ,交底边BC 于D ,交另一腰于F ,若DE ⊥AC 于E (或E 为CF 中点),求证:DE 是⊙O 的切线.(4)如图,AB 是⊙O 的直径,AE 平分∠BAF ,交⊙O 于点E ,过点E 作直线ED ⊥AF ,交AF 的延长线于点D ,交AB 的延长线于点C ,求证:CD 是⊙O 的切线.2、与圆有关的计算:计算圆中的线段长或线段比,通常与勾股定理、垂径定理与三角形的全等、相似等知识的结合,形式复杂,无规律性。
分析时要重点注意观察已知线段间的关系,选择定理进行线段或者角度的转化。
特别是要借助圆的相关定理进行弧、弦、角之间的相互转化,找出所求线段与已知线段的关系,从而化未知为已知,解决问题。
其中重要而常见的数学思想方法有: (1)构造思想:如:①构建矩形转化线段;②构建“射影定理”基本图研究线段(已知任意两条线段可求其它所有线段长);③构造垂径定理模型:弦长一半、弦心距、半径;④构造勾股定理模型;⑤构造三角函数.(2)方程思想:设出未知数表示关键线段,通过线段之间的关系,特别是发现其中的相等关系建立方程,解决问题。
(3)建模思想:借助基本图形的结论发现问题中的线段关系,把问题分解为若干基本图形的问题,通过基本图形的解题模型快速发现图形中的基本结论,进而找出隐藏的线段之间的数量关系。
3、典型基本图型:图形1:如图1:AB 是⊙O 的直径,点E 、C 是⊙O 上的两点,基本结论有:(1)在“AC 平分∠BAE ”;“AD ⊥CD ”;“DC 是⊙O 的切线”三个论断中,知二推一。
(2)如图2、3,DE 等于弓形BCE 的高;DC =AE 的弦心距OF (或弓形BCE 的半弦EF )。
(3)如图(4):若CK ⊥AB 于K ,则:①CK=CD ;BK=DE ;CK=21BE=DC ;②⊿ADC ∽⊿ACB ⇒AC 2=AD•AB(4)在(1)于E 时(如图5),则:①DE=GB ;②DC=CG ;③AD+BG=AB ;④AD•BG=24DG =DC 2 图形2:如图:Rt ⊿ABC 中,∠ACB =90°。
点O 是AC 上一点,以OC 为半径作⊙O 交AC于点E ,基本结论有:(1)在“BO 平分∠CBA ”;“BO ∥DE ”;“AB 是⊙O 的切线”;“BD=BC ”。
四个论断中,知一推三。
(2)①G 是⊿BCD 的内心;② ;③⊿BCO ∽⊿CDE ⇒BO•DE=CO•CE=21CE 2; (3)在图(1)中的线段BC 、CE 、AE 、AD 中,知二求四。
(4)如图(3),若①BC=CE ,则:②AD AE =21=tan ∠ADE ;③BC :AC :AB =3:4:5 ;(在①、②、③中知一推二)④设BE 、CD 交于点H ,,则BH=2EH图形3:如图:Rt ⊿ABC 中,∠ABC =90°,以AB 为直径作⊙O 交AC 于D ,基本结论有:图1CG = G D如右图:(1)DE 切⊙O ⇔E 是BC 的中点; (2)若DE 切⊙O ,则:①DE=BE=CE ;②D 、O 、B 、E 四点共圆⇒∠CED =2∠A ③CD·CA=4BE 2, BABC BDCD RDE ==图形特殊化:在(1)的条件下如图1:DE ∥AB ⇔⊿ABC 、⊿CDE 是等腰直角三角形; 如图2:若DE 的延长线交AB 的延长线于点F ,若AB=BF ,则:①31=EF DE ;②21=R BE图形4:如图,⊿ABC 中,AB=AC ,以AB 为直径作⊙O ,交BC基本结论有:(1)DE ⊥AC ⇔DE 切⊙O ;(2)在DE ⊥AC 或DE 切⊙O 下,有:①⊿DFC 是等腰三角形;②EF=EC ;③D 是 的中点。
④与基本图形1的结论重合。
⑤连AD ,产生母子三角形。
图形5::以直角梯形ABCD 的直腰为直径的圆切斜腰于E, 基本结论有:(1)如图1:①AD+BC =CD ; ②∠COD =∠AEB =90°; ③OD 平分∠ADC (或OC 平BF图1图3分∠BCD );(注:在①、②、③及④“CD 是⊙O 的切线”四个论断中,知一推三)④AD·BC =AB 412=R 2; (2)如图2,连AE 、CO ,则有:CO ∥AE ,CO •AE =2R 2(与基本图形2重合) (3)如图3,若EF ⊥AB 于F ,交AC 于G ,则:EG =FG .图形6:如图:直线PR ⊥⊙O 的半径OB 于E ,PQ 切⊙O 于Q ,BQ 交直线PQ 于R 。
基本结论有:(1)PQ=PR (⊿PQR 是等腰三角形);(2)在“PR⊥OB ”、“PQ 切⊙O ”、“PQ=PR ”中,知二推一 (3)2PR·RE=BR·RQ=BE·2R=AB2图形7:如图,⊿ABC 内接于⊙O ,I 为△ABC 的内心。
基本结论有:(1)如图1,①BD=CD=ID;②DI 2=DE·DA ;③∠AIB =90°+21∠ACB ; (2)如图2,若∠BAC =60°,则:BD+CE=BC.图形8:已知,AB 是⊙O 的直径,C 是 中点,CD ⊥AB 于D。
BG 交CD 、AC于E 、F 。
基本结论有:(1)CD =21BG ;BE=EF=CE ;GF=2DE(反之,由CD =21BG 或BE=EF 可得:C 是 中点)(2)OE=21AF ,OE ∥AC ;⊿ODE ∽⊿AGF(3)BE·BG=BD·BA(4)若D 是OB 的中点,则:①⊿CEF 是等边三角形;②BC=CG=AGBG BG P图2四、范例讲解:例题1:△ABP 中,∠ABP =90°,以AB 为直径作⊙O 交AP 于C 点,弧⋂CF =⋂CB ,过C 作AF 的垂线,垂足为M ,MC 的延长线交BP 于D. (1)求证:CD 为⊙O 的切线;(2)连BF 交AP 于E ,若BE =6,EF =2,求AFEF 的值。
例题2:直角梯形ABCD 中,∠BCD =90°,AB=AD+BC ,AB 为直径的圆交BC 于E ,连OC 、BD 交于F .⑴求证:CD 为⊙O 的切线; ⑵若53=AB BE ,求DFBF的值。
例题3:如图,AB 为直径,PB 为切线,点C 在⊙O 上,AC ∥OP 。
(1)求证:PC 为⊙O 的切线。
(2)过D 点作DE ⊥AB ,E 为垂足,连AD 交BC 于G ,CG =3,DE =4,求DBDG的值。
例题4:如图,已知△ABC 中,以边BC 为直径的⊙O 与边AB 交于点D ,点E 为 的中点,AF 为△ABC 的角平分线,且AF ⊥EC 。
(1)求证:AC 与⊙O 相切;(2)若AC =6,BC =8,求EC 的长五、练习:1.如图,Rt △ABC ,以AB 为直径作⊙O 交AC 于点D , ,过D 作AE 的垂线,F 为垂足.(1)求证:DF 为⊙O 的切线;(2)若DF =3,⊙O 的半径为5,求tan BAC 的值.BDBD=DE2.如图,AB 为⊙O 的直径,C 、D 为⊙O 上的两点, ,过D 作直线BC 的垂线交直线AB 于点E ,F 为垂足.(1)求证:EF 为⊙O 的切线; (2)若AC =6,BD =5,求sin E 的值.3.如图,AB 为⊙O 的直径,半径OC ⊥AB ,D 为AB 延长线上一点,过D 作⊙O 的切线,E 为切点,连结CE 交AB 于点F .(1)求证:DE=DF ;(2)连结AE ,若OF =1,BF =3,求tan A 的值.AD=DC4.如图,Rt △ABC 中,∠C =90°,BD 平分∠ABC ,以AB 上一点O 为圆心过B 、D 两点作⊙O ,⊙O 交AB 于点一点E ,EF ⊥AC 于点F .(1)求证:⊙O 与AC 相切; (2)若EF =3,BC =4,求tan A ∠的值.5.如图,等腰△ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于点D ,DE ⊥AC 于E. (1)求证:DE 为⊙O 的切线;(2)若BC=,AE =1,求cos AEO ∠的值.B6.如图,BD 为⊙O 的直径,A 为 的中点,AD 交BC 于点E ,F 为BC 延长线上一点,且FD=FE.(1)求证:DF 为⊙O 的切线;(2)若AE =2,DE =4,△BDF的面积为tan EDF ∠7、如图,AB 是⊙O 的直径,M 是线段OA 上一点,过M 作AB 的垂线交AC于点N ,交BC 的延长线于点E ,直线CF 交EN 于点F ,且∠ECF =∠E .(1)求证:CF 是⊙O 的切线;(2)设⊙O 的半径为1,且AC =CE =AM 的长.BC8、如图,AB 是⊙O 的直径,BC ⊥AB ,过点C 作⊙O 的切线CE ,点D 是CE 延长线上一点,连结AD ,且AD+BC=CD .(1)求证:AD 是⊙O 的切线;(2)设OE 交AC 于F ,若OF =3,EF =2,求线段BC 的长.9、如图,△ABC 中,AB=BC ,以AB 为直径的⊙O 交AC 于点D ,且CD=BD . (1)求证:BC 是⊙O 的切线;(2)已知点M 、N 分别是AD 、CD 的中点,BM 延长线交⊙O 于E ,EF ∥AC ,分别交BD 、BN 的延长线于H 、F ,若DH =2,求EF 的长.10、如图,AB 是半⊙O 上的直径,E 是 ⌒BC 的中点,OE 交弦BC 于点D ,过点C 作交AD 的平行线交OE 的延长线于点F . ∠ADO =∠B.(1)求证:CF 为⊙O 的⊙O 切线; (2)求sin ∠BAD 的值.11、如图,⊿ABC 中,AB =AC ,以AC 为直径的⊙O 与AB 相交于点E ,点F 是BE 的中点.(1)求证:DF 是⊙O 的切线. (2)若AE =14,BC =12,求BF 的长。