平稳随机信号谱分析
- 格式:ppt
- 大小:1.19 MB
- 文档页数:3
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
实验二 随机信号平稳性分析一.【实验目的】通过对几个实用随机信号(语音信号,音乐信号)的平稳性分析,加深对随机信号平稳性的理解。
二.【实验环境】1.硬件实验平台:通用计算机,麦克风。
2.软件实验平台:MATLAB 2012A 版本。
三.【实验任务】1. 获取语音信号;2. 使用通过MATLAB 计算语音信号的相关特征,验证语音信号的短时平稳性;3. 撰写实验报告。
四.【实验原理】随机信号的平稳性可以分为严格平稳和广义平稳,分别定义如下:1. 严格平稳性:随机过程{}T t t X ∈),(,如果其任意n 维概率分布函数具有下述的移动不变性:任取n n n R x x x T t t t ∈∈,...,,,...,,2121与,对于满足T t t t n ∈+++τττ,...,,21的任意τ值,始终有),...,,;,...,,(),...,,;,...,,(21212121τττ+++=n n n n t t t x x x F t t t x x x F成立。
则称X (t ) 具有严格平稳性(或强平稳性),也称X (t )是严格平稳随机信号(或强平稳随机信号)。
2. 广义平稳性:随机过程{}T t t X ∈),(,如果其均值与相关函数存在,并且满足:均值为常数;相关函数与两时刻),(21t t 的绝对值无关,只与相对差21t t -=τ有关,即)(),(),()]([21ττηR t t R t t R t X E =+===常数则称X(t) 具有广义平稳性(或弱平稳性、宽平稳性),也称X(t)是广义平稳随机信号(或弱平稳随机信号、宽平稳随机信号)。
严格平稳性要求全部统计特性都具有移动不变性;而广义平稳性只要求一、二阶矩特性具有移动不变性。
应用与研究最多的平稳信号是广义平稳信号,而严格平稳性因要求太“苛刻”,更多地用于理论研究中。
严格平稳性与广义平稳性之间有关系:−−−−−−−−→⎛⎫⎛⎫ ⎪ ⎪←−−−−−−−−⎝⎭⎝⎭如果其均值与相关函数存在不一定是严格平稳广义平稳 过程 过程上述关系式指出,广义平稳信号通常不一定是严格平稳的。
随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experimentnumber = 49; %学号49I = 8; %幅值为8u = 1/number;Ex = I*0.5 + (-I)*0.5;N = 64;C0 = 1; %计数p(1) = exp(-u);for m = 2:Nk = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/2220(){()()}(2)!m k m k m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X X C m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。