经典控制理论——第四章(1)
- 格式:ppt
- 大小:4.48 MB
- 文档页数:39
第四章 线性系统的可控性和可观性§4-1 问题的提出经典控制理论中用传递函数描述系统的输入—输出特性,输出量即被控量,只要系统是因果系统并且是稳定的,输出量便可以受控,且输出量总是可以被测量的,因而不需要提出可控性和可观性的概念。
现代控制理论是建立在用状态空间法描述系统的基础上的。
状态方程描述输入)(t u 引起状态)(t x 的变化过程;输出方程描述由状态变化所引起的输出)(t y 的变化。
可控性和可观性正是定性地分别描述输入)(t u 对状态)(t x 的控制能力,输出)(t y 对状态)(t x 的反映能力。
它们分别回答:“输入能否控制状态的变化”——可控性 “状态的变化能否由输出反映出来”——可观性可控性和可观性是卡尔曼(Kalman )在1960年首先提出来的。
可控性和可观性的概念在现代控制理论中无论是理论上还是实践上都是非常重要的。
例如:在最优控制问题中,其任务是寻找输入)(t u ,使状态达到预期的轨线。
就定常系统而言,如果系统的状态不受控于输入)(t u ,当然就无法实现最优控制。
另外,为了改善系统的品质,在工程上常用状态变量作为反馈信息。
可是状态)(t x 的值通常是难以测取的,往往需要从测量到的)(t y 中估计出状态)(t x ;如果输出)(t y 不能完全反映系统的状态)(t x ,那么就无法实现对状态的估计。
状态空间表达式是对系统的一种完全的描述。
判别系统的可控性和可观性的主要依据就是状态空间表达式。
【例如】(1)u x x⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡=202001 []x y 01=分析:上述动态方程写成方程组形式:⎪⎩⎪⎨⎧=+==1221122xy u x x x x 从状态方程来看,输入u 不能控制状态变量1x ,所以状态变量1x 是不可控的;从输出方程看,输出y 不能反映状态变量2x ,所以状态变量2x 是不能观测的。
即状态变量1x 不可控、可观测;状态变量2x 可控、不可观测。
第4章(1)线性控制系统的能控性和能观性第四章线性控制系统的能控性和能观性在现代控制理论中,能控性(Controllability)和能观性(Observ- ability)是两个重要的概念,它是卡尔曼(Kalman)在1960年提出的,是最优控制和最优估计的设计基础。
能观(测)性针对的是系统状态空间模型中的状态的可观测性,它反映系统的内部状态x(t)(通常是不可以直接测量的)被系统的输出量y(t)(通常是可以直接测量的)所反映的能⼒。
能控性严格上说有两种,⼀种是系统控制输⼊u(t)对系统内部状态x(t)的控制能⼒,另⼀种是控制输⼊u(t)对系统输出y(t)的控制能⼒。
但是⼀般没有特别指明时,指的都是状态的可控性。
所以,系统的能控性和能观性研究⼀般都是基于系统的状态空间表达式的。
4-1 线性连续定常系统的能控性定义对于单输⼊n 阶线性定常连续系统bu Ax x+= 若存在⼀个分段连续的控制函数u(t),能在有限的时间段 []f t t ,0内把系统从0t 时刻的初始状态()0t x 转移到任意指定的终态()f t x ,那么就称系统在0t 时刻的状态()0t x 是能控的;如果系统每⼀个状态()0t x 都能控,那么就称系统是状态完全可控的。
反之,只要有⼀个状态不可控,我们就称系统不可控。
对于线性定常连续系统,为简便计,可以假设00=t ,()0=f t x ,即00=t 时刻的任意初始状态()0x ,在有限时间段转移到零状态()0=f t x (原点)。
4-2线性连续定常系统的能控性判别4-2-1具有约旦标准型系统的能控性判别 1.单输⼊系统具有约旦标准型系统bu x x+Λ==Λn λλλλ0000000000000321n λλλλ≠≠≠≠ 321即为n 个互异根或bu Jx x+==++n m m J λλλλλλ000000000000000100000000121111m 个重根1λn-m 个互异根n m m λλλ≠≠≠++ 21 例:分析下列系统的能控性(1)u b x x+??=221000λλ[]x c c y 21=解:?=111x xλ 1x 与u ⽆关,即不受u 控制 ?+=u b x x2222λ 2x 为能控状态该系统为状态不完全能控,因⽽为不能控系统。
Automatic Control Theory自动控制理论第四章 线性系统的根轨迹法根轨迹法是一种图解方法,它是经典控制理论中对系统进行分析和综合的基本方法之一。
由于根轨迹图直观地描述了系统特征方程的根(即系统的闭环极点)在s 平面上的分布,因此,用根轨迹法分析自动控制系统十分方便,特别是对于高阶系统和多回路系统,应用根轨迹法比用其他方法更为方便,因此在工程实践中获得了广泛应用。
1、根轨迹的基本概念闭环系统的稳定性取决于闭环系统的极点分布,其它性能取决于其零极点分布。
因此,可以用系统的零极点分布来间接研究控制系统的性能。
伊万思在1948年提出了一种在复平面上由开环零极点确定闭环零极点的图解方法——根轨迹法。
将开环系统的某一个参数(比如开环放大系数)的全部值与闭环特征根的关系表示在一张图上。
根轨迹定义开环系统传递函数的某一个参数从零变到无穷时,闭环系统特征方程的根在复平面上变化的轨迹。
研究根轨迹的目的:分析系统的各种性能(稳定性、动态和稳态性能) 相关术语:*01210121()()()()()()()()()()mim i nn jj s z b s z s z s z G s H s K a s p s p s p s p ==----==----∏∏❖ 开环零点:指系统开环传递函数中分子多项式方程的根 ❖ 开环极点:指系统开环传递函数中分母多项式方程的根 ❖ 根轨迹增益:K *为开环系统根轨迹增益❖ 闭环零点:指系统闭环传递函数中分子多项式方程的根 ❖闭环极点:指系统闭环传递函数中分母多项式方程的根1*11()()()()1()()()()nj j n mjij i G s s p G s s G s H s s p K s z ===-Φ==+-+-∏∏∏闭环零点由前向通道的零点和反馈通道的极点构成。
对于单位反馈系统,闭环零点就是开环零点。
闭环极点与开环零、极点以及根轨迹增益K*均有关。
典型信号(单位)阶跃函数(Step function ) 0,)(1≥t t室温调节系统和水位调节系统(单位)斜坡函数(Ramp function ) 速度 0,≥t t (单位)加速度函数(Acceleration function )抛物线0,212≥t t (单位)脉冲函数(Impulse function ) 0,)(=t t δ正弦函数(Simusoidal function )Asinut ,当输入作用具有周期性变化时。
============================================================================设线性定常系统由下述n 阶线性常微分方程描述:)()()()()()()()(1111011110t r b t r dt db t r dt d b t r dt d b tc a t c dt da t c dtd a t c dt d a m m m m m m n n n n n n ++⋅⋅⋅++=++⋅⋅⋅++------系统传递函数为:)()()()()(11101110s N s M a s a s a s a b s b s b s b s R s C s G n n n n m m m m =++⋅⋅⋅++++⋅⋅⋅++==----传递函数与微分方程之间有关系)()()(s R s C s G =如果将dtdS ⇔置换 微分方程传递函数⇔ ============================================================================传递函数的极点和零点对输出的影响)()()()()(11*jnj imi P S Z S K s N s M s G --==∏∏== i Z ),,2,1(m i ⋅⋅⋅= 为传递函数的零点j P ),,2,1(n j ⋅⋅⋅= 为传递函数的极点 极点是微分方程的特征跟,因此,决定了所描述系统自由运动的模态。
经典控制理论在20世纪30到40年代,奈奎斯特、伯德、维纳等人的著作为自动控制理论的初步形成奠定了基础;二次大战以后,又经过众多学者的努力,在总结了以往的实践和关于反馈理论、频率响应理论并加以发展的基础上,形成了较为完整的自动控制系统设计的频率法理论。
1948年又提出了根轨迹法。
至此,自动控制理论发展的第一阶段基本完成。
这种建立在频率法和根轨迹法基础上的理论,通常被称为经典控制理论。
经典控制理论以拉氏变换为数学工具,以单输入-单输出的线性定常系统为主要的研究对象。
将描述系统的微分方程或差分方程变换到复数域中,得到系统的传递函数,并以此作为基础在频率域中对系统进行分析和设计,确定控制器的结构和参数。
通常是采用反馈控制,构成所谓闭环控制系统。
经典控制理论具有明显的局限性,突出的是难以有效地应用于时变系统、多变量系统,也难以揭示系统更为深刻的特性。
当把这种理论推广到更为复杂的系统时,经典控制理论就显得无能为力了,这是因为它的以下几个特点所决定。
1.经典控制理论只限于研究线性定常系统,即使对最简单的非线性系统也是无法处理的;2.经典控制理论只限于分析和设计单变量系统,采用系统的输入-输出描述方式,这就从本质上忽略了系统结构的内在特性,也不能处理输入和输出皆大于1的系统。
实际上,大多数工程对象都是多输入-多输出系统,尽管人们做了很多尝试,但是,用经典控制理论设计这类系统都没有得到满意的结果;3.经典控制理论采用试探法设计系统。
即根据经验选用合适的、简单的、工程上易于实现的控制器,然后对系统进行分析,直至找到满意的结果为止。
虽然这种设计方法具有实用等很多优点,但是,在推理上却是不能令人满意的,效果也不是最佳的,人们自然提出这样一个问题,即对一个特定的应用课题,能否找到最佳的设计。
综上所述,经典控制理论的最主要的特点是:线性定常对象,单输入单输出,完成镇定任务。
即便对这些极简单的对象、对象描述及控制任务,理论上也尚不完整,从而促使现代控制理论的发展:对经典理的精确化、数学化及理论化。