果蔬产品采后病理学
- 格式:ppt
- 大小:800.00 KB
- 文档页数:27
果蔬采后病理及病害的控制研究现状及发展趋势摘要:本文主要对果蔬采后主要病原菌及侵染过程做了介绍,主要介绍了酵母类抗菌剂防病害的生物防治方法,并对微生物种类、拮抗机理及生物防治应用前景进行了介绍。
关键词:采后病理;酵母菌类抗菌剂;病害侵染;微生物防治;1.前言影响食品食用安全性的最主要因素是化学农药残留。
天然植物成分(精油和植物提取物)、生物药剂( 酵母和细菌类拮抗菌)和非选择性生物杀菌剂(碳酸钠、碳酸氢钠、活性氯、山梨酸)等防治果蔬采后病害的技术已越来越受到关注。
本文重点介绍微生物抗菌剂防治果蔬采后病害的一些研究进展。
迄今为止,已从苹果、柑橘、梨、桃、猕猴桃等10余种水果中筛选出几十种拮抗微生物,目前商品化应用的主要有:丁香假单胞杆菌、枯草芽胞杆菌、酵母菌中的季也蒙毕赤酵母菌、哈氏木霉、白粉寄生菌[1~2]。
果蔬采后病害造成的腐烂损失十分巨大。
据统计报道, 发达国家为l0%~30%, 发展中国家则高达40%~50%。
长期以来防治果蔬采后病害主要依靠化学杀菌剂, 然而, 连续使用化学杀菌剂易使病原真菌产生抗药性, 易造成环境污染, 且危害公众健康。
上世纪80 年代中期开始, 在农作物大田病害生物防治蓬勃发展的带动下, 生物防治果蔬采后病害成为研究热点[3~4]。
果实采后病原性腐败的生物防治技术是近年来国外发展起来的极具前途的绿色防腐技术,主要原理是利用微生物之间的拮抗作用,通过改变果实表面微生态环境,促进病原微生物拮抗菌的繁殖,达到抑制病原微生物生长,减少腐败的目的[1]该技术安全环保性能优越,越来越受到普遍欢迎可以预见,采用生物防治将是今后果蔬防腐保鲜技术的发展方向果蔬采后病害的生物防治因其无毒无害不污染环境,深受人们的重视与欢迎。
2. 果蔬采后主要病原菌及侵染过程2.1主要病原菌引起蔬菜采后腐烂的病原菌主要有真菌、细菌、病毒和原生动物,其中以真菌和细菌性病原菌为主[5~6]。
2.1.1 真菌真菌是最主要和最流行的病原微生物,侵染广,危害大,是造成果菜类在贮藏运输期间损失的重要原因。
•Contents:1. Basic characteristic of fresh plant products.2. Losses and quality deterioration in fresh plant products after harvest.3. Factors influence fresh plant products quality.Chapter 0 Introduction•Contents:4. Contents of post-harvest biology and post-harvest physiology.5. Importance of post-harvest Biology in maintaining quality and decreasing loss of post-harvest fresh plant products.Chapter 1 Respiratory Metabolism•Objects:•To know concept and significance of respiration•To familiar with the process of respiratory metabolism•To know factors affecting respiration and the methods of respiration controlChapter 1 Respiratory Metabolism•Contents:•1. Introduction•2. Factors Affecting Respiration• 2.1 Temperature• 2.2 Atmospheric Composition• 2.3 Physical Stress• 2.4 Stage of Development•2.5 Other Factors (Type of plant products, Humidity, Disease or Insect Attack, Plant Growth Regulators, etc.)Chapter 1 Respiratory MetabolismSignificance of Respiration ;Shelf-life and Respiration Rate;Loss of Substrate;Synthesis of New Compounds;Release of Heat Energy ;Meaning of the Respiratoy Quotient (RQ);Measuring the Rate of Respiration ; Biochemistry of Respiration1 IntroductionAll of the commodities covered in this handbook are alive and carry on processes characteristics of all living things. One of the most important of these is respiratory metabolism.The process of respiration involves combing oxygen in the air with organic molecules in the tissue (usually a sugar) to form various intermediate compounds and eventually CO2 and water.The energy produced by the series of reactions comprising respiration can be captured as high energy bonds in compounds used by the cell in subsequent reactions, or lost as heat.The energy and organic molecules produced during respiration are used by other metabolic processes to maintain the health of the commodity.Heat produced during respiration is called vital heat and contributes to the refrigeration load that must be considered in designing storage rooms.In general, the storage life of commodities varies inversely with the rate of respiration.This is because respiration supplies compounds that determine the rate of metabolic processes directly related to quality parameters, e.g., firmness, sugar content, aroma, flavor, etc.Commodities and cultivars with higher rates of respiration tend to have shorter storage-life than those with low rates of respiration.Storage life of broccoli, lettuce, peas, spinach, and sweet corn (all of which have high respiration rates) is short in comparison to that of apples, cranberries, limes, onions, and potatoes - all of which have low respiration rates (Table 1).Table 1. Respiration rates of a range of perishable commoditiesClass Range at (mg CO2 kg-1 h-1)CommoditiesV ery Low < 5 Nuts, datesLow 5 to 10 Apple, citrus, grape,kiwifruit, onion, potatoModerate 10 to 20 Apricot, banana, cherry, peach,nectarine, pear, plum, fig, carrot,cabbage, lettuce, pepper, tomatoHigh 20 to 40 Strawberry, blackberry, bean, lima,avocado, raspberry, cauliflowerV ery High 40 to 60 Artichoke, snap bean,Brussels sprouts, cut flowersExtremely High > 60 Asparagus, broccoli, mushroom,pea, spinach, sweet corn 2 Factors Affecting RespirationRespiration is affected by a wide range of environmental factors that include:light,;chemical stress (e.g., fumigants);radiation stress, water stress, growth regulators, pathogen attack.The most important post-harvest factors are temperature,atmospheric composition,and physical stress.2.1 TemperatureWithout a doubt, the most important factor affecting post-harvest life is temperature.This is because temperature has a profound affect on the rates of biological reactions, e.g., metabolism and respiration.Over the physiological range of most crops, i.e., 0 to 30 °C, increased temperatures cause anexponential rise in respiration.The V an't Hoff Rule states that the velocity of a biological reaction increases 2 to 3-fold for every 10 °C rise in temperature.The temperature quotient for a 10 °C interval is called the Q10.The Q10 can be calculated by dividing the reaction rate at a higher temperature by the rate at a 10 °C lower temperature, i.e., Q10 = R2/R1.The temperature quotient is useful because it allows us to calculate the respiration rates at one temperature from a known rate at another temperature.However, the respiration rate does not follow ideal behavior, and the Q10can vary considerably with temperature.At higher temperatures, the Q10 is usually smaller than at lower temperatures.Typical figures for Q10 are:T emperature Q100 to 10 °C 2.5 to 4.010 to 20 °C 2.0 to 2.520 to 30 °C 1.5 to 2.030 to 40 °C 1.0 to 1.5These typical Q10values allow us to construct a table showing the effect of different temperatures on the rates of respiration or deterioration and relative shelf life of a typical perishable commodity (Table 2).Table 2. Effect of temperature on rate of deteriorationT emperature Assumed Relative velocity Relative(°C) Q10of deterioration shelf-life0 - 1.0 10010 3.0 3.0 3320 2.5 7.5 1330 2.0 15.0 740 1.5 22.5 4This table shows that if a commodity has a mean shelf-life of 13 days at 20 °C it can be stored for as long as 100 days at 0 °C, but will last no more than 4 days at 40 °C.Chilling stressAlthough respiration is normally reduced at low, but non-freezing temperatures, certain commodities, chiefly those originating in the tropics and subtropics, exhibit abnormal respiration when their temperature falls below 10 to 12 °C.Typically the Q10 is much higher at these low temperatures for chilling sensitive crops than it would be for chilling tolerant ones.Chilling stressRespiration may increase dramatically at the chilling temperatures or when the commodity is returned to non-chilling temperatures.This enhanced respiration presumably reflects the cells' efforts to detoxify metabolic intermediates that accumulated during chilling, as well as to repair damage to membranes and other sub-cellular structures.Chilling stressEnhanced respiration is only one of many symptoms that signal the onset of chilling injury.An economically important low temperature phenomenon discussed in more detail in a subsequent chapter.Heat stressAs the temperature rises beyond the physiological range, the rate of increase in respiration falls.It becomes negative as the tissue nears its thermal death point, when metabolism is disorderly and enzyme proteins are denatured (变性).Heat stressMany tissues can tolerate high temperatures for short periods of time (e.g., minutes), and this property is used to advantage in killing surface fungi on some fruits.Continued exposure to high temperatures causes phyto-toxic symptoms, and then complete tissue collapse.Heat stressHowever, conditioning and heat shocks, i.e., short exposure to potentially injurious temperatures, can modify the tissue‟s responses to subsequent harmful stresses.2.2 Atmospheric CompositionAdequate O2 levels are required to maintain aerobic respiration (有氧呼吸).The exact level of O2that reduces respiration while still permitting aerobic respiration varies with commodity.In most crops, O2level around 2 to 3% produces a beneficial reduction in the rate of respiration and other metabolic reactions.Levels as low as 1% improve the storage life of some crops, e.g., apples, but only when the storage temperature is optimal.At higher storage temperatures, the demand for A TP may outstrip(超过) the supply and promote anaerobic respiration (无氧呼吸).The need for adequate O2 should be considered in selecting the various post-harvest handling procedures, such as waxing and other surface coatings, film wrapping, and packaging.Unintentional modification of the atmosphere, e.g., packaging, can result in production of undesirable fermentative products and development of foul odors (异味).Increasing the CO2level around some commodities reduces respiration, delays senescence and retards fungal growth.In low O2 environments, however, increased CO2 levels can promote fermentative metabolism.Some commodities tolerate brief (e.g., a few days at low temperatures) storage in a pure N2 atmosphere, or in very high concentrations of CO2.High CO2 treatmentThe biochemical basis of their ability to withstand these atmospheres is unknown.2.3Physical StressWound respiration (伤呼吸)mechanical injuryinsect attackpathogen infectionchilling injurygas injuryWound-induced ethylene (伤害乙烯)Even mild (轻微的) physical stress can perturb (扰乱) respiration, while physical abuse can cause a substantial rise in respiration that is often associated with increased ethylene evolution.The signal produced by physical stress migrates from the site of injury and induces a wide range of physiological changes in adjacent (临近的), non-wounded tissue.Some of the more important changes include enhanced respiration, ethylene production, phenolic metabolism and wound healing.Wound-induced respiration is often transitory(短暂的), lasting a few hours or days.However, in some tissues wounding stimulates developmental changes, e.g., promote ripening, that result in a prolonged increase in respiration.Ethylene stimulates respiration and stress-induced ethylene may have many physiological effects on commodities besides stimulating respiration.2.4 Stage of DevelopmentRespiration rates vary among and within commodities.Storage organs such as nuts and tubers (坚果和块茎)have low respiration rates.Tissues with vegetative or floral meristems (分生组织) such as asparagus and broccoli have very high respiration rates.As plant organs mature, their rate of respiration typically declines.This means that commodities harvested during active growth, such as many vegetables and immature fruits, have high respiration rates.Mature fruits, dormant buds (休眠芽) and storage organs have relatively low rates.After harvest, the respiration rate typically declines; slowly in non-climacteric fruits(非跃变型果实)and storage organs, rapidly in vegetative tissues (营养组织)and immature fruits.The rapid decline presumably reflects depletion(消耗) of respirable substrates (呼吸底物) that are typically low in such tissues.An important exception to the general decline in respiration following harvest is the rapid and sometimes dramatic rise in respiration during the ripening of climacteric fruit (Fig. 1). climacteric fruit(跃变型果实)non-climacteric fruits(非跃变型果实)Figure1.The climacteric pattern of respiration in ripening fruit2.4 Stage of Developmentclimacteric fruit (跃变型果实)This rise, which has been the subject of intense study for many years, normally consists of four distinct phases:1) pre-climacteric minimum,2) climacteric rise,3) climacteric peak, and4) post-climacteric decline.The division of fruits into climacteric and non-climacteric types has been very useful for post-harvest physiologists.However, some fruits, for example kiwifruit and cucumber, appear to blur the distinction between the groups.Respiratory rises also occur during stress and other developmental stages, but a true climacteric only occurs coincident with fruit ripening.Following is a general classification of fruits according to their respiratory behavior during ripening:Climacteric Fruits Non-Climacteric FruitsApple Papaya Blueberry CitrusApricot Passion fruit Cacao LycheeA vocado Peach Caju LonganBanana Pear Cherry LoquatBiriba Persimmon CucumberBreadfruit PlumGrape Cherimoya Sapote GrapefruitFeijoa Soursop LemonFig Tomato LimeGuava Watermelon OliveJackfruit OrangeKiwifruit PepperMango PineappleMuskmelon StrawberryNectarine TamarilloDifferences between climacteric fruits and non-climacteric fruits1、概念:C a r b o n d i o x i d e p r o d u c t i o n2、呼吸强度大小:3、乙烯产生量大小:4、乙烯合成系统:5、对外源乙烯的反应:(施用时期、乙烯浓度)6、呼吸高峰:7、耐贮性:8、后熟性:Different kinds of agricultural product can not store at the same storage room, especially climacteric fruits and non-climacteric fruits(1)不同的农产品其贮藏的条件。
一、名词说明:暗藏侵染:病原侵入寄主不即刻发病,而是暗藏至某一时期后才表现病症的现象。
孢囊孢子:是接合菌的无性孢子,以原生质割裂方式产生再孢子囊内,不具鞭毛有细胞壁。
拮抗菌:有的细菌是通过产生一种抗菌素来抑制病菌的生长。
呼吸跃变:指某些肉质果实从生长停止到开始进入衰老之间的时期,其呼吸速度的突然升高。
冷害和冻害:冷害是指0°C以上的不适低温损害。
冻害是指冰点温度以下的低温损害。
食物的辐射保藏:确实是利用电离辐射与物质彼此作用的物理效应,化学效应和生物效应,对食物原料进行加工处置的进程。
低氧损害:当贮藏环境中氧浓度低于2%时,园艺产品正常的呼吸作用就受到阻碍,致使产品无氧呼吸,产生和积存大量的挥发性代谢产物(如:乙醇,乙醛,甲醛等),迫害组织细胞,产生异味,使风味品质恶化。
果蔬的衰老:衰老是果实采后的生理转变进程,也是贮藏期间常见的一种生理失调症,如苹果采收太迟,或贮藏期太长要显现内部崩溃。
诱导抗病性:利用物理化学及生物方式预先处置植物,从而改变植物对病害反映,使原先感病部位产生局部或系统的抗性。
病程相关蛋白:病毒、细菌和真菌侵染能诱导寄主产生一类特殊的蛋白质。
鲜切食物:是对新鲜食物进行分级、清洗、整理、去皮(去核)切分、浸泡、包装等处置,是产品维持生鲜状态的制品。
(网)冷链:是指易腐食物从产地收购或捕捞以后,在产品加工、贮藏、运输、分销和零售、直到消费者手中,其各个环节始终处于产品所必需的低温环境下,以保证食物质量平安,减少损耗,避免污染的特殊供给链系统。
(网)热处置:果蔬贮藏前的热处置是指利在贮藏前将果蔬置于热水、热空气、热蒸汽等热的环境中,处必然的时刻,以延长果实的保鲜期。
绪论一果蔬采后生理学是研究果树和蔬菜可食用的根、茎、叶、花、果实及其变态器官采收后的生命活动规律,以及其调控原理的一门科学。
采后的新鲜果蔬产品在贮藏、运输及销售系统中仍然是有生命活动的有机体,同采前一样仍然进行新陈代谢活动,所以,果蔬组织中所发生的生理生化变化在很大程度上是这些有机体在生长时期所发生的代谢过程的继续。
但是,采后的果蔬在贮运期间所发生的代谢过程与生长发育期间又有许多不同的方面,采后果蔬不再从土壤中吸取水分和养分,基本上不再进行光合作用。
因此,果蔬采后的生命活动是在呼吸作用等基本代谢的基础上,表现出的成熟与衰老的生理生化过程。
“十五”以来,我国果蔬产业得到迅猛发展,蔬菜的面积和产量分别占到世界总量的41.7%和47.7%;果树面积占世界的20.2%,产量占14.5%。
随着农业产业结构调整和市场需求的增加,新农村建设战略实施,国家出台了一系列促进农业发展的优惠政策,我国果蔬产业异军突起。
其中,我国水果年产量已达1.5亿吨(含果用瓜),蔬菜产量5.5亿吨。
随着生产、市场、运输技术的改进,中国果蔬的贸易额尤其是出口额在国际市场上的份额一直在上升,2006年我国蔬果及其制品出口创汇近100亿美元。
果蔬产业已经成为我国农业农村经济的支柱产业和农民收入的重要来源,并已进入新的发展阶段,集经济、生态、文化功能于一身。
我国果蔬产业发展空间广阔,商机无限。
从世界范围来说,长期以来人类一直面临食品短缺的问题,但是作为人类生活所必需的果蔬食品,因其以鲜嫩品质为特征,含水量高,不易保存,采后腐烂变质损失一般高达25%,有些易腐果蔬产品采后损失超过30%以上,我国果蔬采后损失也极为普遍而且严重,1985年我国瓜果总产量为1651.8万吨(不包括蔬菜),损失达到370万吨,价值人民币18.5亿元。
据保守的估计,园艺作物的采后损失几乎可以满足两亿人的基本营养要求(ArLhur Kelmen,1984)。
由此可见,果蔬采后损失是一个全球性的问题(NAS,1978)。