磁性材料 第2章 磁性的起源
- 格式:ppt
- 大小:2.02 MB
- 文档页数:39
磁性的起源和常见磁性材料应用陈阳,王皓,徐航,信跃龙磁性,在很久以前就引起了人们的兴趣。
早在3000多年前,中国人就发现了自然界中存在一种磁石,它们可以相互吸引或吸引铁石。
人们以丰富地想象力将此现象比喻为母亲慈爱地对待幼儿,《吕氏春秋·季秋记》中就有“慈石召铁,或引之也”的记述。
现今汉语中的“磁”字就来源于当时的“慈”。
中国古代的四大发明之一的指南针就是中国古代人民很早就开始利用磁性的实例。
我们知道,所谓磁石其实也就是铁矿石(一般为磁铁矿Fe3O4)。
我们也知道,铁会被磁铁吸引而且会被磁铁磁化。
那么,它们为什么会有磁性或会被磁化?磁性到底是怎样产生的呢?为了解释物质的宏观磁性的性质,我们从原子着手来考察一下磁性的来源。
一、磁性的起源“结构决定性质”。
磁性当然也是由物质原子内部结构决定的。
原子结构与磁性的关系可以归纳为:(1) 原子的磁性来源于电子的自旋和轨道运动;(2) 原子内具有未被填满的电子是材料具有磁性的必要条件;(3) 电子的“交换作用”是原子具有磁性的根本原因。
1.电子磁矩的产生原子磁性是磁性材料的基础,而原子磁性来源于电子磁矩。
电子的运动是产生电子磁矩的根源,电子有绕原子核旋转的运动和自身旋转的运动,因此电子磁矩也是由电子的轨道磁矩和电子的自旋磁矩两部分组成的。
按照波尔的原子轨道理论,原子内的电子是围绕着原子核在一定轨道上运动的。
电子沿轨道的运动,相当于一个圆电流,相应得就会产生轨道磁矩。
原子中的电子轨道磁矩平面可以取不同方向,但是在定向的磁场中,电子轨道只能去一定的几个方向,也就是说轨道的方向是量子化的。
由电子电荷的自旋所产生的磁矩就称为电子自旋磁矩。
在外磁场作用下,自旋磁矩只可能与轨道磁矩平行或反平行。
很多磁性材料中,电子自旋磁矩要比电子轨道磁矩大。
这是因为在晶体中,电子的轨道磁矩要受晶格场的作用,它的方向是改变的,不能形成一个联合磁矩,对外没有磁矩。
这也即一般所谓的轨道动量矩和轨道磁矩的“猝灭”或“冻结”。
磁性材料相关知识概述磁性材料是一种特殊的材料,具有磁场或磁性,这使得它在很多领域得到了广泛应用。
从制造电气设备到医疗器械,磁性材料无处不在。
在本文中,我们会概述磁性材料的相关知识,包括磁性的起源、不同类型的磁性、磁性材料的应用和未来的发展趋势。
1. 磁性的起源磁性现象早在古代就已经被人们注意到了,但对于磁力的本质却认识不足。
直到16世纪,威廉·吉尔伯特通过一系列实验和研究,发现地球本身就是一个大磁体,而任何一个物质都有可能拥有磁性。
随着科学的发展,人们逐渐确定了电和磁之间的密切联系,发展出了电磁学,使得对磁性的研究更加深入。
现代的磁性研究主要集中在电子的微观结构和自旋运动等领域。
2. 不同类型的磁性目前,磁性材料主要分为三种类型:顺磁性、抗磁性和铁磁性。
顺磁性是指一些不具备自身磁矩但是受到磁场影响而表现出磁性的物质,例如铝、锌和铜等。
抗磁性是指那些在磁场中完全不表现出磁性的物质,例如黄金、银和铂等。
铁磁性是指那些自身就具有磁矩的物质,例如铁、镍和钴等。
铁磁性物质在外磁场的作用下呈现出不同程度的磁化,也会出现磁滞现象。
3. 磁性材料的应用磁性材料在很多领域中各有所长。
磁铁是最常见的应用磁性材料的例子,用于制造电机、发电机、电子设备、制冷设备等。
磁性材料也被用于医疗器械,例如磁共振成像MRI,利用人体组织对磁场的影响来生成影像。
磁性材料也广泛应用于信息存储,例如硬盘、U盘等存储设备。
在环保领域,磁性材料可以被用于污水处理和废弃物回收等方面。
4. 未来的发展趋势随着科技的不断进步,磁性材料的应用前景将更广阔。
例如,磁特性膜的发展,可以在电动汽车、太阳能电池和燃料电池等领域中代替传统的化石燃料;超导体技术的革新,可以提高能源的转化效率,缩短数据传输时间和降低能耗等等。
总结:磁性材料的研究和应用已经成为人们关注的焦点,其广泛应用和不断创新的技术可望解决现代社会的一系列问题。
在未来的发展中,磁性材料的应用前景将更加广泛和深入。
磁性真正的起源是什么?安培的“分⼦电流”假说认为材料内部是有⼀个个⼩分⼦组成,每个分⼦都有⼀圈环形电流,电流感应出了⼀个⼩的磁矩,如果这些分⼦的磁矩取向⼀致的话,就可以形成⼀个强⼤的磁矩,整体体现出很强的磁性。
这种⽤“分⼦电流”秩序构造出整体磁性似乎⾮常合理,也很容易被⼈接受,但实际上材料内部不⽌步于分⼦层次,⽽是更基本的原⼦,⽽原⼦的内部,是原⼦核和核外电⼦。
在这种情形下,“分⼦电流”是根本不存在的。
要想认识磁性的起源,我们必须先了解微观粒⼦的⾃旋。
⾃旋是量⼦⼒学中特有的概念,它指的是微观粒⼦与⽣俱来就带有⼀个量⼦化的⾓动量,属于粒⼦的内禀属性。
就像所有的粒⼦都具有⼀定量的电荷⼀样,所有的粒⼦都具有⾃旋的属性,⽽且⾃旋数并不⼀定是整数。
⾃旋为半奇数的粒⼦称为费⽶⼦,⾃旋为0或整数的粒⼦称为玻⾊⼦。
正负电⼦、质⼦和中⼦的⾃旋都为1/2;⽽光⼦的⾃旋为零,属于玻⾊⼦。
⾃旋可以等效地认为是⼀个具有N极和S极的最⼩磁单元。
⾃旋的存在,使得微观粒⼦在运动过程中不仅仅由于其轨道⾓动量会产⽣轨道磁矩,⽽它们的⾃旋⾓动量也同时会产⽣⾃旋磁矩,粒⼦的总磁矩是轨道和⾃旋两部分贡献的整体效应。
对于原⼦核来说,中⼦和质⼦的⾃旋以及轨道⾓动量将整体贡献出⼀个核磁矩,原⼦核磁矩的存在,是核磁共振现象的基础。
对于核外电⼦来说,诸多电⼦的轨道磁矩和⾃旋磁矩也将组合在⼀起体现整体的磁矩。
电⼦的磁矩⼀般要⽐核磁矩⼤得多,因此对于原⼦整体⽽⾔,将主要体现出电⼦造成的磁矩。
⽽这些带固定磁矩的原⼦的微观有序排列就将形成材料整体有⼀个较⼤的磁矩,即从宏观上来看,材料显现出了磁性。
⼀般来说,原⼦的核磁矩要远⼩于电⼦的整体磁矩,⽽电⼦的磁矩⼜主要是⾃旋磁矩的贡献,故原⼦的总磁矩主要来⾃于不同⾃旋⽅向的电⼦数差异形成的总⾃旋磁矩。
对于固体材料⽽⾔,⾥⾯的原⼦或离⼦是呈周期性排列的,它们的磁矩也会出现⼀定规律的排列⽅式。
不同磁矩⼤⼩和排列⽅式构成了固体中千变万化的磁性。
磁性材料和磁场材料的磁性和磁场的形成磁性材料和磁场材料在现代科学和工程领域中扮演着重要的角色。
它们不仅在电子设备、能源传输和医学领域中发挥着重要作用,还有助于我们理解和研究自然界中的磁性现象。
在本文中,我们将探讨磁性材料和磁场材料的磁性以及磁场的形成。
一、磁性材料的磁性磁性材料是指具有一定磁性的物质。
它们可以被磁化并吸引或排斥其他磁性物体。
磁性材料的磁性来源于其内部的微观结构和原子排列。
1. 磁性的原子结构磁性材料的磁性主要来自其原子结构中的磁矩。
磁矩是指原子或离子内部的微小磁性区域,在没有外界磁场作用时会相互抵消。
然而,当外界磁场施加在磁性材料上时,磁矩会与外界磁场相互作用,并具有磁化趋势。
2. 矫顽力和居里温度磁性材料的磁性还可以通过矫顽力和居里温度来描述。
矫顽力是指材料被磁化所需的磁场强度。
不同的磁性材料具有不同的矫顽力,这也反映了其磁性的强弱。
居里温度是指磁性材料在高温下失去磁性的临界温度。
超过居里温度后,磁性材料将失去磁性。
二、磁场材料的磁性和磁场形成磁场材料是指能够产生和控制磁场的物质。
它们在磁传感器、电磁设备和储存器件中得到广泛应用。
1. 电流与磁场根据奥姆定律和毕奥-萨伐尔定律,当电流通过导线时,会形成一个与电流方向垂直的磁场。
这种现象被称为电磁感应。
在工业和实验室中,我们通常使用磁性材料作为导线的包裹材料来增强磁场。
2. 磁体的磁场形成磁体是一种能够产生稳定磁场的装置。
常见的磁体包括永磁体和电磁体。
永磁体是指拥有固定磁化状态的磁性材料,如铁氧体和钕铁硼。
这些材料在制造过程中经过特殊处理,使其具有持久的磁性。
永磁体的磁场形成主要依赖于材料自身的磁矩排列。
电磁体是指通过电流激发而产生磁场的装置。
它通常由导线线圈组成,并通过外部电源提供稳定的电流。
根据安培定律,导线中的电流会在空间中形成环绕导线的磁场。
3. 磁场测量和应用磁场材料还可用于磁场测量和应用。
磁场的强弱可以通过磁传感器进行检测,如霍尔效应传感器和磁阻传感器。