第二章 原子的磁性及物质的顺磁性
- 格式:ppt
- 大小:606.50 KB
- 文档页数:38
磁性物理铁磁与顺磁磁性是物质的一种基本性质,是物质固有的特性之一。
在物质中,存在着许多具有磁性的元素和化合物。
根据磁性的不同表现,可以将物质分为铁磁性、顺磁性、抗磁性和铁磁性等几种类型。
其中,铁磁性和顺磁性是最常见和重要的两种磁性现象。
本文将重点介绍铁磁性和顺磁性的基本概念、特点和应用。
铁磁性是指物质在外加磁场作用下,会产生明显的磁化现象。
铁磁性物质的代表是铁、镍、钴等金属,以及铁氧体等化合物。
铁磁性物质在外加磁场下,会形成磁畴结构,即微观上呈现出一定方向的磁矩排列。
在无外磁场作用时,铁磁性物质中的磁矩方向是无规则的,总磁矩为零;而在外磁场作用下,磁矩会沿着外磁场方向排列,使整个物质呈现出磁化特性。
铁磁性物质在去除外磁场后,仍能保留一定的磁化强度,这种现象称为剩磁。
铁磁性物质的磁化强度随外磁场的增大而增大,但在一定磁场强度下会达到饱和状态,无法再增加磁化强度。
顺磁性是指物质在外加磁场下,磁化方向与外磁场方向一致,但磁化强度较弱,且不会保留剩磁。
顺磁性物质的代表是氧气、铜等。
顺磁性物质中的原子或离子本身并不具有磁矩,但在外磁场作用下,会产生磁矩并沿外磁场方向排列,使整个物质呈现出磁化特性。
顺磁性物质的磁化强度随外磁场的增大而增大,但不会出现饱和现象,且去除外磁场后磁化强度立即消失。
铁磁性和顺磁性在物质的磁性表现上有着明显的区别。
铁磁性物质在外磁场下会形成磁畴结构,具有剩磁和矫顽力等特点,适用于制造永磁体、电磁铁等设备;而顺磁性物质在外磁场下磁化强度较弱,不具有剩磁和矫顽力,适用于磁共振成像、磁性材料的研究等领域。
除了铁磁性和顺磁性外,还有抗磁性和铁磁性等其他磁性现象。
抗磁性是指物质在外磁场下磁化方向与外磁场方向相反,磁化强度较弱,且不具有剩磁和矫顽力;铁磁性是指物质在外磁场下磁化方向与外磁场方向相反,磁化强度较强,但不具有剩磁和矫顽力。
这些不同类型的磁性现象在物质的磁性研究和应用中发挥着重要作用。
顺磁性物质
1.顺磁性材料是什么意思
顺磁性物质是一种非铁磁性物质(如铂、铝、氧),把它们移近磁场时,可依磁场方向发生磁化,但很微弱。
要用精密仪器才能测出。
顺磁场材料即材料具有顺磁性,是按照磁体磁化时磁化率的大小和符号分类的一类。
一些物质在受到外磁场作用后,感生出与外磁场同向的磁化强度,其磁化率大于零,但数值很小,仅为10-6~10-3数量级,这种材料称为顺磁性材料。
顺磁性物质的磁化率与温度有密切关系。
顺磁性物质包括稀土金属和铁族元素的盐类等。
2.顺磁性材料有哪些
常见的顺磁物质有氧气、金属铂(白金)、一氧化氮、含掺杂原子的半导体{如掺磷(P)或砷(As)的硅(Si)}、由幅照产生位错和缺陷的物质等。
还有含导电电子的金属如锂(Li)、钠(Na)等,这些顺磁(性)金属的顺磁磁化率却与温度无关,这种金属的特殊顺磁性是可以用量子力学解释的。
顺磁性是一种弱磁性。
磁性矿粒在磁场中能显示出磁性,这种现象叫磁化。
其根本原因是矿物粒子内原子磁矩按磁场方向的排列。
下面介绍物质磁性的来源和磁化的本质。
我们知道,任何物质都是由分子组成的,分子是由原子组成的。
原子核外的电子不停地做轨道运动与自旋运动,以及原子核的自旋,这都形成微观电流。
每个微观电流相当于一个微小的载流线圈,因而具有一定的磁矩。
大多数物质原子核的磁矩比电子磁矩小得多,可以忽略不计,故物质的磁性是以电子的磁矩,尤其是它的自旋磁矩起主要作用。
物质的磁性本质常以原子或分子的等效磁矩(或叫做单元磁矩)和磁化强度来说明。
逆磁性物质、顺磁性物质与铁磁性物质的差别,是由于在外磁场的作用下,磁化状态各不相同。
逆磁性物质在没有外界磁场时,原子中的磁矩互相抵消,原子的等效磁矩等于零,物质对外不显磁性。
当有外磁场存在时,绕原子核旋转流也将有所改变,原子中原有磁矩的平衡状态就受到破坏,每个原子中就出现了一个不平衡的磁矩。
根据楞次定律,这个的电子受到磁力的作用,它的角动量发生改变,也就是它们旋转的角速度将有所改变,因而原子中的微观电不平衡的磁矩和外磁场方向相反,从而削弱外磁场。
一般这为负值。
逆磁性物质较为明显种反磁效应相当微弱性。
当有外加磁场时,固有磁矩都企图趋向外磁氧场方向,物质即显磁性,这时我们就称物质被磁化了。
一旦外磁场消失,物质也失去它的磁性。
顺磁性物质的磁化系数为正值。
铝、钡、钙、钨、钛、镁、铂、等都是顺磁物质。
可见,这类物质原子的固有磁矩是产生磁效应的根本原因。
铁磁性物质与逆磁性物质、顺磁性物质有显著区别。
铁、钴、镍和它们的某些合金以及锰和铬的某些合金等一类有结晶状态的物质,即使在较弱的外磁场作用下,也呈强烈的磁化,这类物质叫铁磁性物质。
铁磁性物质内部的原子磁矩在没有外磁场的作用下,已经以某种方式排列起来,,当外磁场出去后,逆磁效应也就消失,实际上逆磁效应普遍存在于所有物质之排列,这些自发磁化的小区域又称之为磁畴。
在没有外加磁场时,铁磁性物质内各个磁畴的自发磁化取向各不相同,对外磁效应互相抵消,因而不显示磁性。
顺磁性的概念顺磁性是一种物质在外加磁场作用下产生的磁响应现象。
顺磁性材料表现出随外加磁场的增强而磁化程度增加的特点。
顺磁性材料中的原子、离子或分子具有未成对的电子,这些电子的自旋自由度以及轨道自由度与外加磁场相互作用,导致了材料的磁性。
顺磁性现象的发现和解释对于深入理解物质的特性以及在磁学、材料科学和生物医学等领域的应用具有重要意义。
顺磁性材料的磁化程度与外加磁场强度呈正比,但相对于铁磁性材料,顺磁性材料的磁化程度较小。
这是因为顺磁性材料中未成对电子的相互作用较弱,磁场容易破坏电子自旋的排布。
顺磁性材料中的未成对电子在外加磁场作用下,其自旋与磁场方向的关系决定了磁化方向。
当磁场方向与自旋相符时,顺磁性材料的磁化程度增强;当磁场方向与自旋相反时,顺磁性材料的磁化程度减弱。
顺磁性材料的磁响应行为可以用磁化率来描述,在外加磁场作用下,顺磁性材料的磁化率与温度、材料的物理性质密切相关。
顺磁性材料的磁化率随温度升高而减小,这是因为在高温下,材料的热运动削弱了自旋与磁场的相互作用。
此外,顺磁性材料的磁化率还受到材料的组织结构、晶格畸变、晶界效应等因素的影响。
顺磁性材料在磁共振成像、磁性质量计和磁性记录等领域有广泛的应用。
在磁共振成像中,顺磁性材料通过外加磁场的作用来产生磁共振信号,可以被用于对人体组织的观测和诊断。
磁性质量计则利用了顺磁性材料在外加磁场下的磁化程度与其质量之间的关系,可以用于测量微小物体的质量。
此外,在磁性记录中,顺磁性材料的磁化状态可以通过外加磁场的控制来改变,用于信息的存储和读取。
总之,顺磁性是一种物质在外加磁场作用下产生的磁响应现象,顺磁性材料中的未成对电子在外加磁场作用下发生磁化,其磁化程度与磁场强度呈正比关系。
顺磁性现象的研究对于物质特性的深入理解和在各领域的应用具有重要意义。
对于顺磁性材料的更深入研究和应用将为科学研究和技术发展带来新的机遇和挑战。
顺磁性物质的名词解释引言:人类探索自然界的奥秘始于远古,而对物质的认知则伴随着科学的进步不断深化。
在这个科技高度发达的时代,我们对物质的了解也日趋精确,其中一个重要的领域就是顺磁性物质。
本文将对顺磁性物质进行一系列的解释和探讨,带领读者走进这个神秘而迷人的领域。
一、顺磁性物质的概念顺磁性物质是一种在外加磁场的作用下,原子或分子中未成对电子受到磁场的作用而表现出磁性的物质。
与顺磁性物质相对的是抗磁性物质,抗磁性物质在外加磁场下不表现出磁性特征。
顺磁性物质在自然界广泛存在,包括氧气、铁、镍等多种物质。
二、顺磁性物质的原子结构顺磁性物质的磁性主要源于其原子及分子中存在的未成对电子。
未成对电子具有自旋,而自旋是导致磁矩产生的关键因素。
在顺磁性物质中,处于基态的原子中存在未成对电子,这些未成对电子受到外加磁场时会发生自旋翻转,从而导致磁矩的改变。
三、顺磁性物质的磁化行为顺磁性物质在外加磁场下,未成对电子的自旋会调整其方向以尽量减少能量。
当磁场加大时,未成对电子自旋的方向与外磁场的方向逐渐一致,从而使顺磁性物质磁化。
磁化的程度取决于顺磁性物质的特性以及外磁场的强度。
四、顺磁性物质的应用顺磁性物质的磁性特性使其在许多领域得到广泛应用。
在医疗领域,顺磁性物质被用于磁共振成像(MRI)技术中作为对比剂,帮助医生观察人体组织和器官的病变情况。
此外,顺磁性物质还可以用于磁性存储器件中,提供磁记录和读取功能。
在材料科学领域,顺磁性物质的研究有助于开发新型材料和电子器件。
五、顺磁性物质的挑战和前景尽管顺磁性物质在各个领域都展现出了巨大的潜力,但是其应用仍然面临一些挑战。
首先,顺磁性物质的制备和纯化需要高度精确的技术和设备,不低于现代科技的要求。
其次,顺磁性物质在应用中可能会受到外界干扰和环境变化的影响,这需要进一步的研究和改进。
然而随着科学技术的不断进步,我们对顺磁性物质的理解和应用将会更加深入,为人类创造更多的可能性。
顺磁性和抗磁性的原因磁性是物质的一种基本属性。
物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。
铁磁性和亚铁磁性物质为强磁性物质,抗磁性和顺磁性物质为弱磁性物质(参考文献1 )。
从上面的介绍看出,任何物质都会显示磁性,并且物质从顺磁性到反磁性、磁性从强到弱是逐渐变化的,没有一个明显的界限。
物质的磁性到底是怎么产生的,本文就此观点提出我自己的看法。
一、现在的理论给人们带来的疑惑1、顺磁性:现在人们认为,电子磁矩由电子的轨道磁矩和自旋磁矩组成。
在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。
因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。
每个电子自旋磁矩的近似值等于一个波尔磁子。
是原子磁矩的单位。
因为原子核比电子重2000倍左右,其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。
(参考文献2 )我认为上面这段论述是不合理的,我们都知道,原子是由原子核和核外电子组成,原子核又是由质子和中子组成,原子核的体积约为原子体积的几千万亿分之一,(半径约为原子的十万分之一).打个比方,原子相当于足球场那么大,而原子核则只有一只蚂蚁那么大。
(参考文献3)。
电子的质量约为质子质量的1/1836(参考文献4 )。
中子能够通过β衰变过程变成质子、电子和反中微子,(参考文献5 )。
从这些论述可想而知,电子的体积会有多大,电子的体积不会超过质子和中子体积的千分子一。
即从电子的角度来看原子,原子就象是一个非常巨大的宇宙一样。
由于电子的体积很小很小,即使电子自旋产生的磁场较强,它影响的范围必然很小很小,不可能影响到原子以外,因此电子自旋产生的磁场在宏观上是显示不出来的,如果能显示出来,电子产生的磁场就强大的无法想象了。
上面还提到原子核的磁矩很小,可以忽略,这个观点我觉得也是错误的,人们现在只是从质量上去考虑对磁矩的影响,而把其它因素忽略了,比方说原子核的体积。