高思3年级·3枚举法(一)(计数问题第1讲)·问题详解
- 格式:doc
- 大小:5.64 MB
- 文档页数:10
第3讲 枚举法(一)(计数问题第1讲)【1】1~20共有多少个数相隔:20-1=19(个);个数:19+1=20(个)。
答:1~20共有20个数。
【2】20~40共有多少个数相隔:40-20=20(个);个数:20+1=21(个)。
答:20~40共有21个数。
【3】如图,桌上有一些围棋子,有多少枚黑子 正难则反一共:5×5=25(枚);白子:9枚;黑子:25-9=16(枚)。
答:有16枚黑子。
【4】小明决定去香山、颐和园、圆明园这3个景点旅游,要走遍这三个景点,他一共有多少种不同的游览顺序 (1)香山、颐和园、圆明园;(2)香山、圆明园、颐和园;(3)颐和园、香山、圆明园;(4)颐和园、圆明园、香山;(5)圆明园、香山、颐和园;(6)圆明园、颐和园、香山。
3×2=6(种)答:他一共有6种不同的游览顺序。
【5】小王准备从青岛、三亚、桂林、杭州这4个地方中选2个地方去旅游,小王有多少种不同的选择 握手原则⎩⎨⎧÷⨯-2每个人握手次数所有人握手次数:人数1每个人握手次数:人数(1)青岛、三亚;(2)青岛、桂林;(3)青岛、杭州;(4)三亚、桂林;(5)三亚、杭州;(6)桂林、杭州。
4×3÷2=6(种)答:小王有6种不同的选择。
【6】小王准备从青岛、三亚、桂林、杭州这4个地方中选3个地方去旅游,小王有多少种不同的选择 正难则反:在4个地方里面选3个,也就是每次去掉1个地方不选。
(1)青岛、三亚、桂林(不选杭州);(2)青岛、三亚、杭州(不选桂林);(3)青岛、桂林、杭州(不选三亚);(4)三亚、桂林、杭州(不选青岛)。
答:小王有4种不同的选择。
【7】墨莫在一张纸上画了一些图形,如图所示,每个图形都是由若干条线段连接组成的。
数一数,纸上一共有多少条线段(最外面的大长方形是纸的边框,不算在内) 三角形个数:2;四边形个数:2;五边形个数:2。
(3+4+5)×2=24(条) 答:纸上一共有24条线段。
第1讲四则运算(一)四则混合运算法则:先乘除,后加减;有括号先算括号;同级运算,从左到右。
【1】计算:28+72=100【2】计算:123+177=300【3】计算:220+780=100【4】计算:15+21+25+1915+25=21+19=4015+21+25+19=15+25+19+21=40+40=80【5】计算:70+63+81+37+30+19简便运算原则:凑整——凑成整十、整百、整千、整万的数。
凑整:两数相加凑整;两数相减凑整。
70+30=100,63+37=100,81+19=10070+63+81+37+30+19=70+30+63+37+81+19=100+100+100=300【6】计算:17+19+234+21+183+2617+183=200,19+21=40,234+26=260,40+260=30017+19+234+21+183+26=17+183+19+21+234+26=200+40+260=200+300=500【7】计算:(1+11+21+31)+(9+19+29+39)1+39=40,11+29=40,21+19=40,31+9=40(1+11+21+31)+(9+19+29+39)=1+11+21+31+9+19+29+39=1+39+11+29+21+19+31+9=40+40+40+40=160 【8】计算:35+121-35-2135-35=0,121-21=10035+121-35-21=35-35+121-21=0+100=100【9】计算:152-19-13+19+223-32152-32=120,19-19=0,223-13=210152-19-13+19+223-32=152-32+19-19+223-13=120+0+210=330【10】计算:20-(11-7)减去两个数的差,等于减去第一个数,再加上第二个数。
20-(11-7)=20-11+7=9+7=16【11】计算:20-(11+7)减去两个数的和,等于连续减去这两个数;减去几个数的和,等于连续减去这几个数。
枚举法(一)课前预习胖子的枚举法几个人又坐回到自己的座位上,都是唉声叹气,我让他人省点力气,其实这样盲目的试验,反而会导致思维的中断。
接着事情又回到我睡觉前,我们又开始毫无意义的讨论起来。
讨论中总是有人睡过去,但是好在一个人睡觉,其他几个人都能继续思考。
就这样,我们东一个想法,西一个想法,提出来,然后否决掉,一开始说法还很多,后来几个人话就越来越少,时间不知不觉就过去了六七个小时,我们的肚子又开始叫起来。
最后胖子点起一只烟,想了想,对我们说:“不行,咱们这么零散的想办法是很浪费时间的,我们把所有的可能性全部都写出来,然后归纳成几条,之后直接把这条验证,不就行了。
”我点点头,其实说到最后很多的问题我们都在重复的讨论,几个人都进入到一种混乱状态了胖子在金器铺满的地面上整理出一块石头面,然后写下来几个数字:1、2、3、4,然后说:“我们想想我们现在有几种假设,你们都回忆一下,不要具体的,要大概的方向就行了。
”潘子就道:“最有可能就是有机关。
”胖子在1那个地方写了机关。
然后顺子就说道:“你的想法,可能有东西在影响我们的感觉,比如说心理暗示或者催眠,让我们自己不知不觉的走回来。
”胖子对他道:“不用说这么详细。
”按着在2的后面写了错觉,然后看向我。
我道:“要说理论上,也有可能是空间折叠。
”“你这个不可能,太玄乎了。
”潘子道。
胖子道:“不管,有万分之一地可能性,我们就承认,我们只是列一个备忘录而已。
”说着也写了上去,在3后面写了空间折叠。
然后自己说:“也可能是有鬼。
”说着写了个4,有鬼。
“你这样写出来有什么意义?”潘子不理解的问。
胖子道:“你们念的书多,不懂,我读书少,凡事都必须用笔写下来,但是这样有个好处,比如说有几件事情,你可以一起做,你事先一理就能知道,可以节省不少时间。
咱们不是只有两天了吗?还是得省点,对了,还有5吗?谁还有5?”我看了看这四点,这确实己经是包括量子力学到玄学到心理学到工程学四大学科都齐了,第五点一时半会儿还真想不出来。
【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。
以下是为⼤家整理的《计数枚举法经典例题讲解【三篇】》供您查阅。
【第⼀篇】例4 印刷⼯⼈在排印⼀本书的页码时共⽤1890个数码,这本书有多少页?(适于四年级程度) 解:(1)数码⼀共有10个:0、1、2……8、9。
0不能⽤于表⽰页码,所以页码是⼀位数的页有9页,⽤数码9个。
(2)页码是两位数的从第10页到第99页。
因为99-9=90,所以,页码是两位数的页有90页,⽤数码: 2×90=180(个) (3)还剩下的数码: 1890-9-180=1701(个) (4)因为页码是三位数的页,每页⽤3个数码,100页到999页,999-99=900,⽽剩下的1701个数码除以3时,商不⾜600,即商⼩于900。
所以页码是3位数,不必考虑是4位数了。
往下要看1701个数码可以排多少页。
1701÷3=567(页) (5)这本书的页数: 9+90+567=666(页) 答略。
【第⼆篇】 例5 ⽤⼀根80厘⽶长的铁丝围成⼀个长⽅形,长和宽都要是5的倍数。
哪⼀种⽅法围成的长⽅形⾯积?(适于四年级程度)解:要知道哪种⽅法所围成的⾯积,应将符合条件的围法⼀⼀列举出来,然后加以⽐较。
因为长⽅形的周长是80厘⽶,所以长与宽的和是40厘⽶。
列表3-1:表3-1表3-1中,长、宽的数字都是5的倍数。
因为题⽬要求的是哪⼀种围法的长⽅形⾯积,第四种围法围出的是正⽅形,所以第四种围法应舍去。
前三种围法的长⽅形⾯积分别是:35×5=175(平⽅厘⽶)30×10=300(平⽅厘⽶)25×15=375(平⽅厘⽶)答:当长⽅形的长是25厘⽶,宽是15厘⽶时,长⽅形的⾯积。
【第三篇】例6 如图3-2,有三张卡⽚,每⼀张上写有⼀个数字1、2、3,从中抽出⼀张、两张、三张,按任意次序排列起来,可以得到不同的⼀位数、两位数、三位数。
第3讲 枚举法(一)(计数问题第1讲)【1】1~20共有多少个数相隔:20-1=19(个);个数:19+1=20(个)。
答:1~20共有20个数。
【2】20~40共有多少个数相隔:40-20=20(个);个数:20+1=21(个)。
答:20~40共有21个数。
【3】如图,桌上有一些围棋子,有多少枚黑子 正难则反一共:5×5=25(枚);白子:9枚;黑子:25-9=16(枚)。
答:有16枚黑子。
【4】小明决定去香山、颐和园、圆明园这3个景点旅游,要走遍这三个景点,他一共有多少种不同的游览顺序 (1)香山、颐和园、圆明园;(2)香山、圆明园、颐和园;(3)颐和园、香山、圆明园;(4)颐和园、圆明园、香山;(5)圆明园、香山、颐和园;(6)圆明园、颐和园、香山。
3×2=6(种)答:他一共有6种不同的游览顺序。
【5】小王准备从青岛、三亚、桂林、杭州这4个地方中选2个地方去旅游,小王有多少种不同的选择 握手原则⎩⎨⎧÷⨯-2每个人握手次数所有人握手次数:人数1每个人握手次数:人数(1)青岛、三亚;(2)青岛、桂林;(3)青岛、杭州;(4)三亚、桂林;(5)三亚、杭州;(6)桂林、杭州。
4×3÷2=6(种)答:小王有6种不同的选择。
【6】小王准备从青岛、三亚、桂林、杭州这4个地方中选3个地方去旅游,小王有多少种不同的选择 正难则反:在4个地方里面选3个,也就是每次去掉1个地方不选。
(1)青岛、三亚、桂林(不选杭州);(2)青岛、三亚、杭州(不选桂林);(3)青岛、桂林、杭州(不选三亚);(4)三亚、桂林、杭州(不选青岛)。
答:小王有4种不同的选择。
【7】墨莫在一张纸上画了一些图形,如图所示,每个图形都是由若干条线段连接组成的。
数一数,纸上一共有多少条线段(最外面的大长方形是纸的边框,不算在内) 三角形个数:2;四边形个数:2;五边形个数:2。
(3+4+5)×2=24(条) 答:纸上一共有24条线段。
高思3年级·1四则运算(一)-·答案培训讲学第1讲四则运算(一)四则混合运算法则:先乘除,后加减;有括号先算括号;同级运算,从左到右。
【1】计算:28+72=100【2】计算:123+177=300【3】计算:220+780=100【4】计算:15+21+25+1915+25=21+19=4015+21+25+19=15+25+19+21=40+40=80【5】计算:70+63+81+37+30+19简便运算原则:凑整——凑成整十、整百、整千、整万的数。
凑整:两数相加凑整;两数相减凑整。
70+30=100,63+37=100,81+19=10070+63+81+37+30+19=70+30+63+37+81+19=100+100+1 00=300【6】计算:17+19+234+21+183+2617+183=200,19+21=40,234+26=260,40+260=30017+19+234+21+183+26=17+183+19+21+234+26=200+4 0+260=200+300=500【7】计算:(1+11+21+31)+(9+19+29+39)1+39=40,11+29=40,21+19=40,31+9=40(1+11+21+31)+(9+19+29+39)=1+11+21+31+9+19+29+39=1+39+11+29+21+19+31+9=40 +40+40+40=160 【8】计算:35+121-35-2135-35=0,121-21=10035+121-35-21=35-35+121-21=0+100=100【9】计算:152-19-13+19+223-32152-32=120,19-19=0,223-13=210152-19-13+19+223-32=152-32+19-19+223-13=120+0+210=330【10】计算:20-(11-7)减去两个数的差,等于减去第一个数,再加上第二个数。
第七讲枚举法(一)学习内容:用枚举法一一列举可能的情况学习目标:1、做到不重补漏,把复杂的问题简单化2、按照一定的规律,特点去枚举3、从思想上认识到枚举的重要性课题引入枚举法是一种常见的分析问题、解决问题的方法。
一般地,根据问题要求,一一枚举问题的解答,或者为了解决问题的方便,把问题分为不重复、不遗漏的有限种情况,一一枚举各种情况,并加以解决,最终达到解决整个问题的目的。
这种分析问题、解决问题的方法,称之为枚举法。
枚举法是一种常见的数学方法,当然枚举法也存在一些问题,那就是容易遗漏掉一些情况,所以应用枚举法的时候选择什么样的标准尤其重要。
运用枚举法解题的关键是要正确分类,要注意一下两点:一是分类要全,不能造成遗漏;二是枚举要清,要将每一个符合条件的对象都列举出来.知识点拨在数学问题中,有些需要计算总数或种类的趣题,因其数量关系比较隐蔽,很难找到“正统”的方式解答,让人感到无从下手。
对此,我们可以先初步估计其数目的大小。
若数目不是太大,就按照一定的顺序,一一列举问题的可能情况;若数目过大,并且问题繁杂,我们就抓住对象的特征,选择恰当的标准,把问题分为不重复、不遗漏的有限种情形,通过一一列举或计数,最终达到解决目的。
这就是枚举法,也叫做列举法或穷举法。
例题精讲例1、用数字1、3、4可以组成多少个不同的三位数?例2、用0,2,5,9可以组成多少个能被5整除的三位数?例3、从1数到100,一共数了多少个3?例4、有8张卡片,上面分别写着自然数1至8。
从中取出3张,要使这3张卡片上的数字之和为9。
问有多少种不同的取法?例5、现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?1、用数字0,2,5可以组成多少个不同的三位数?2、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?3、从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?4、妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?1、现有一张1元、两张5元和一张10元的人民币,一共可以组成多少种不同的币值?2、用数字3,8,9可以组成多少个不同的三位数 ?3、从1~10中每次取两个不同的数相加,和大于10的共有多少种取法?4、用3张10元和2张50元一共可以组成多少面币值(组成的钱数)?家长签字:年月日。
三年级上学期第十讲,计数问题第01讲枚举法【内容概述】掌握枚举的一般方法,解决整数的分柝、数字的排列与选取、几何图形剪拚等相关计数问题.注意到有序并按规律进行,做到不重不漏.【典型问题】1.【11001】(郝挺,三上第10讲枚举法,计数问题第1讲★★)数一数,下图中有多少个三角形。
我们将图形的各部分编上号(见下图)单个的三角形有6个:1,2,3,5,6,8。
由两部分组成的三角形有4个:(1,2),(2,6),(4,6),(5,7)。
由三部分组成的三角形有1个:(5,7,8)。
由四部分组成的三角形有2个:(1,3,4,5),(2,6,7,8)。
由八部分组成的三角形有1个:(1,2,3,4,5,6,7,8)。
总共有6+4+1+2+1=14个。
2.【11002】(郝挺,三上第10讲枚举法,计数问题第1讲★★)某单位获得25张奥运门票,把这些票分给4位部门主管,要求每人得到的票数都不一样。
问得到票数最多的一人至少有多少张票?8张。
25÷4=6…1,所以得到票数最多的一人至少有7张。
但每人票数不同,且7+6+5+4=22 < 25,所以7张不对。
由于25=8+7+6+4,所以得票最多的一人至少有8张票。
3.【11003】(郝挺,三上第10讲枚举法,计数问题第1讲★★)某综艺节目把艺人分成甲、乙两个队比赛,比赛依次进行下列六项:对联,乒乓球,层层叠,吃寿司,知识问答,柔道。
有特殊规定:六局中谁先胜四局谁获胜,比赛立即结束;若各胜三局,则谁先胜三局谁获胜。
已知甲队在对联中胜出,但乙队最终获胜。
问:各项比赛的胜负情况有多少种可能?将六场比赛依次记为1,2,3,4,5,6。
乙队可以胜出2,3,4或2,3,5或2,4,5或3,4,5或2,3,4,5或2,3,4,6或2,3,5,6或2,4,5,6或3,4,5,6。
共有9种可能。
4.【11004】(郝挺,三上第10讲枚举法,计数问题第1讲★★)在算盘上,用两颗珠子可以表示多少个不同的四位数?上珠一个表示5,下珠一个表示1。
小学奥数知识点趣味学习——枚举法(1)例1:如下图所示,已知长方形的周长为20厘米,长和宽都是整厘米数,这个长方形有多少种可能形状?哪种形状的长方形面积最大?(边长为1厘米的正方形的面积叫做1平方厘米)。
解:由于长方形的周长是20厘米,可知它的长与宽之和为10厘米。
下面列举出符合这个条件的各种长方形。
(注意,正方形可以说成是长与宽相等的长方形)。
下面把5种长方形按实际尺寸大小一一画出来,见下面图(1)~(5)。
例2:如右图所示,ABCD是一个正方形,边长为2厘米,沿着图中线段从A到C的最短长度为4厘米。
问这样的最短路线共有多少条?请一一画出来。
解:将各种路线一一列出,可知共6条,见下图。
注意,如果题中不要求将路径一一画出,可采用如右图所示方法较为便捷。
图中交点处的数字表示到达该点的路线条数,如O点处的数字2,表示由A到O有2条不同的路径,见上图中的(1)和(2);又H点处的数字3的意义也如此,见上图中的(1)、(2)、(3)可知有3条路径可由A到H。
仔细观察,可发现各交点处的数字之间的关系,如O点的2等于F点和E点的数字相加之和,即1+1=2,又如,C点的6等于G点和H点的数字相加之和,即3+3=6。
例3:在10和31之间有多少个数是3的倍数?解:由尝试法可求出答案:3×4=12 3×5=15 3×6=18 3×7=213×8=24 3×9=27 3×10=30可知满足条件的数是 12、15、18、21、24、27和30共7个。
注意,倘若问10和1000之间有多少个数是3的倍数,则用上述一一列举的方法就显得太繁琐了,此时可采用下述方法:10÷3=3余1,可知10以内有3个数是3的倍数;1000÷3=333余1,可知1000以内有333个数是3的倍数;333-3=330,则知10~1000之内有330个数是3的倍数。
第一讲和差倍中的隐藏条件- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 之前我们已经学习了基础的和差倍问题,而很多时候,无法一眼看出问题中的数量关系,这时候就6需要把“隐藏”了的和差倍关系找出来,其中寻找不变量就是一个重要的手段.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 例题1小高和墨莫玩游戏,每玩一局,输的就要给赢的一枚棋子.一开始小高有18枚棋子,墨莫则有22枚.玩了若干局之后,小高反而比墨莫多了10枚棋子.请问:此时小高有多少枚棋子?分析:在游戏过程中,两人的棋子数始终在变化.那有没有什么量是不变的?练习1有大小两个水瓶,分别装有690毫升和210毫升水.现在从大瓶中倒了一些水到小瓶后(水没有溢出),大瓶里的水量变成了小瓶的2倍.请问:从大瓶中倒了多少毫升水到小瓶?小故事阿呆和阿瓜去包子铺买包子,一共买了250个包子,阿呆看阿瓜不够吃,分了10个包子给阿瓜,阿瓜不好意思,把自己的一半拿出来给了阿呆,阿呆不高兴了,把自己的包子分成10份,挑了其中的8份给阿瓜,阿瓜执拗不过阿呆,最后给了阿呆一个包子,这么折腾下来,现在两人一共有多少个包子?从上面的故事你能得到什么样的结论?总结:___________________________________________________________________________.7例题2小高家有两根绳子,长的那根有163米,短的只有97米.他把两根绳子剪去同样多的长度,结果长绳所剩长度比短绳所剩长度的7倍还多6米.那么两根绳子都剪去了几米?分析:两条绳子同时剪短,那它们的长度和就不是不变量了.这一次,不变量又会是谁呢?练习2两只老鼠“叽叽”和“喳喳”在吃面条,“叽叽”吃的面条比较长,有40厘米;“喳喳”吃的比较短,只有25厘米.它们吃面条的速度相同,过了一段时间后,长面条的长度是短面条的2倍.那么此时短面条还剩多少厘米?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 前面2道例题都是通过寻找不变量来进行解决的,不变量主要有两种情形:“和不变”与“差不变”,在寻找不变量时,有两句小口诀可以记下:给来给去和不变,同增同减差不变.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -小判断小山羊把10捆草分给大山羊,不变量:______.两根木头,每次锯掉的部分一样长,不变量:______.小糊涂和大糊涂去炒股,最后都赚了250元,不变量:______.儿子和爸爸比年龄,无论过了几年,不变量:______.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 当然,并不是所有的题目都能有不变的“和”或“差”,这时分析倍数所对应的和或差就非常重要,我们常用的方法是画出线段图.89- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -分析:寻找题目中的倍数关系,这时的倍数关系所对应的和或差,你知道哪个?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -下面,我们来看看如何找出隐藏的“差”条件.练1:阿呆和阿瓜一样多,阿呆又买了4块,阿瓜买了29块,谁的糖多?多多少块? 练2:阿呆比阿瓜多10个,阿呆又买了4块,阿瓜吃了2块,谁的糖多?多多少块?练习画图画图举例例子:阿呆比阿瓜多18块糖,阿瓜给阿呆2块后,谁的糖多?多多少块?阿瓜 阿呆18 后 后 2222阿呆糖多,多22块.练习3阿呆和阿瓜一起一共有100元钱.阿呆花了10元买零食,阿瓜花了40元买玩具,这时阿呆的钱是阿瓜的4倍.那么后来阿呆有多少钱? 阿呆和阿瓜一共有130元钱.每包瓜子5元钱,阿呆买了两包瓜子两人分着吃,吃完后阿瓜把自己的钱两人平分,这时阿呆的钱是阿瓜的5倍.那么后来阿呆有多少钱?例题3练3:阿瓜给阿呆2块后阿呆和阿瓜一样多,之前谁的糖多?多多少块?练4:阿瓜给阿呆8块后阿瓜比阿呆多27块,之前谁的糖多?多多少块?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题4有两根蜡烛,粗蜡烛比细蜡烛长15厘米.把它们同时点燃.1小时后细蜡烛缩短了20厘米,而粗蜡烛只缩短了15厘米.此时粗蜡烛长度正好是细蜡烛的3倍.请问:粗蜡烛还剩多长?分析:寻找3倍关系下粗蜡烛和细蜡烛的长度差?练习4莉娅和萱萱都在织围巾,现在两人已经织好的围巾长度相同,但萱萱织得比较快.在接下来的两个月里,萱萱可以织120厘米,而卡莉娅只能织45厘米,因此两个月后,萱萱围巾的长度将会是卡莉娅的2倍.那么现在卡莉娅的围巾有多长?例题5红、蓝两个盒子中各有一些球,红盒中的球比蓝盒多5个.如果从红盒中取出12个球,然后向蓝盒中放入19个球,那么蓝盒中的球就是红盒的3倍.求最后红盒和蓝盒中各有多少个球?分析:寻找3倍关系下蓝盒和红盒的球数差?试着画出线段图表示一下.10例题6有甲、乙两堆卡片,如果从甲堆中拿出16张放到乙堆中,则两堆卡片的张数相等;如果从乙堆卡片中拿出11张放入甲堆中,则甲堆的张数是乙堆的3倍多10.求甲、乙两堆卡片各有多少张?分析:开始时甲堆和乙堆中的卡片差几张?分析清楚倍数关系下甲乙两堆差多少张?课堂内外爱迪生与电灯爱迪生是美国人,生于1847年.他从小很喜欢问大人“为什么”,让大人无法回答.5岁时,他看见鹅在孵蛋,就把鹅赶走,自己蹲在那里,想帮母鹅孵蛋.爱迪生进小学读了3个月,老师说他是低能儿,只好回家靠妈妈的教导及自修努力学习.爱迪生13岁在火车上边卖报边做实验,一次意外实验的时候磷倒了出来,烧坏了车箱地板,他被管理员打伤右耳,从此成了半个聋子.23岁到纽约闯天下,发明了一部电报机,赚了40000美元,辞掉工作专心研究.爱迪生在1879年10月31日发明电灯.他每天工作超过18小时以上,不停的努力,不断发明有用的东西.他一生中发明1093件专利.有人认为他是天才,他认为天才是百分之一的灵感加上百分之九十九的努力,他有很大的勇气和坚强的毅力承受失败的打击,他也常常鼓励别人.他到80岁还在研究他完全不懂的植物.作业1.有大小两个水瓶,分别装有430毫升和250毫升水.现在从大瓶中倒了一些水到小瓶后(水没有溢出),大瓶里的水量和小瓶一样多.则从大瓶中倒了多少毫升水到小瓶?2.小高的积分比墨莫多30分.老师给他们每人发了100分后,小高的积分比墨莫的2倍少90分.那么墨莫后来有多少分?113.有两支粗细、材料都相同的蜡烛,长的能烧100分钟,短的能烧70分钟.同时点燃这两支蜡烛,过多少分钟后,长蜡烛长度是短蜡烛的3倍?4.小山羊和卡莉娅两人开始有一样多的饼干.小山羊比较贪吃,过了几天,小山羊已经吃了39块饼干,而卡莉娅只吃了17块.此时卡莉娅剩下的饼干数量是小山羊的3倍,那么卡莉娅原来有多少块饼干?5.红、蓝两个盒子中各有一些球,红盒中的球比蓝盒多7个.如果向红盒中放入28个球,并从蓝盒中取出5个球,此时红盒中的球是蓝盒的3倍.则后来红盒里有多少个球?1213第一讲 和差倍中的隐藏条件1.例题1 答案:25枚.详解:后来两人一共40枚棋子.小高(4010)225+÷=枚,墨莫15枚. 2.例题2 答案:87米.简答:开始两根绳子相差1639766-=米,减去同样长的两段后,还是相差66米.后来短绳子长度为()(666)7110-÷-=米.剪去了971087-=米. 3.例题3 答案:100元.简答:买完瓜子后,一共120元.后来阿瓜有()1205120÷+=元.阿呆有205100⨯=元. 4.例题4答案:30厘米.简答:点燃后,粗蜡烛比细蜡烛长15152020-+=厘米.后来细蜡烛有()203110÷-=厘米.粗蜡烛有10330⨯=厘米. 5.例题5答案:13个,39个.简答:后来红盒比蓝盒少1219526+-=个,这时红盒有()263113÷-=个.蓝盒有13339⨯=个. 6.例题6答案:65张,33张.简答:“如果从甲堆中拿出16张放到乙堆中,则两堆卡片的张数相等”说明甲比乙多32张.“从乙堆卡片中拿出11张放入甲堆中”,这时甲比乙多3211254+⨯=张,这时乙有()()54103122-÷-=张,甲有225476+=张.开始甲有761165-=张,乙有221133+=张. 7.练习1答案:90毫升.简答:后来两瓶水一共690210900+=毫升.小瓶有()90021300÷+=毫升,大瓶倒了30021090-=毫升给小瓶. 8.练习2答案:15厘米.简答:减去同样长的两段后,还是相差15厘米.后来短面条长度为()152115÷-=厘米. 9.练习3 答案:40元.简答:买完东西后,一共50元.后来阿瓜有()504110÷+=元.阿呆有10440⨯=元. 10. 练习4答案:75厘米.简答:两个月后,萱萱比卡莉娅长1204575-=厘米.这时卡莉娅有()752175÷-=厘米.1411. 作业1答案:90毫升.简答:倒完后各有()4302502340+÷=毫升,那么倒了43034090-=毫升. 12. 作业2答案:120分.简答:发完后小高还是比墨莫多30分.墨莫后来有()()309021120+÷-=分. 13. 作业3答案:55分钟.简答:能烧的时间差为30分钟,所以过()()70100703155--÷-=分钟. 14. 作业4答案:50块.简答:小山羊剩下的饼干有()()39173111-÷-=块,原来有50块. 15. 作业5答案:60个.简答:后来红盒比蓝盒多728540++=个.则后来蓝盒有()403120÷-=个,红盒有60个.。
6基础例题:这一讲介绍的是乘法巧算和除法巧算的一些基本方法.在计算乘法时,一个数与10、100、1000这样的数相乘,很容易算出结果,例如2310230⨯=,231002300⨯=,23100023000⨯=等.有三组乘法在巧算时也经常用到:2510⨯=,425100⨯=,81251000⨯=.第一讲乘除法巧算7加减法里有带符号搬家,乘法中也有.在计算多个数相乘时,我们可以通过带符号搬家改变运算顺序,简化计算.例题1计算:(1)2135⨯⨯; (2)41125⨯⨯.分析:仔细观察算式,如何改变一下运算顺序来变得简单些呢?练习1计算:(1)41725⨯⨯;(2)125108⨯⨯.有时题目中没有明确给出2与5、4与25、8与125相乘,我们可以通过拆数的方法凑出10、100、1000,例如:18592590⨯=⨯⨯=.例题2计算:(1)532125⨯⨯; (2)801625⨯⨯.分析:这两个小题中有25或者125,这两个数能够如何巧算呢?练习2 计算:(1)25532⨯⨯; (2)56125⨯.下面介绍的是乘除法巧算的一些基本方法,同加减法一样,通过“带符号搬家”来适当改变运算顺序,像漫画中那样配对进行简化计算.例题3 乘法中常见运算技巧➢ 乘法中的凑整:25⨯;425⨯;8125⨯.➢ 带符号搬家:在只有乘除运算的算式里,每个数前面的运算符号是这个数的符号.不论数移动到哪个位置,它前面的运算符号不变.带符号搬家依据的运算律是:(1) 乘法交换律:⨯=⨯a b b a .(2) 乘法结合律:()()⨯⨯=⨯⨯a b c a b c .小 总 结8 计算:(1)36119⨯÷; (2)4000125÷.分析:如何利用除号后面的数进行除法凑整呢?练习3计算:(1)28114⨯÷;(2)30025÷.在计算连续乘除法运算时,式子中经常会出现括号.在乘除法去括号时,同加减法去括号时类似,要注意变号的问题,具体来说,乘除法中去括号的法则是: 括号前面是乘号,去掉括号不变号;括号前面是除号,去掉括号变符号. 例题4计算:(1)()72072513÷⨯÷; (2)()()()81123123363÷⨯÷÷-.分析:在去括号的时候要注意些什么?去掉括号后算式变成了什么样?能够如何巧算? 练习4计算:(1)()13013315÷÷⨯;(2)()3631111÷⨯⨯.挑战极限:除了去括号之外,有时候还需要添括号来简化运算.例题5计算:(1)310008125÷÷; (2)333155÷⨯.分析:第一问中看到8和125,能不能让它俩相乘呢?第二问中15和5处能不能加个括号呢?加括号时要注意什么呢?例题6计算:()()()()262527172591739÷⨯÷⨯÷⨯÷.分析:在去括号的时候要注意些什么?去掉括号后算式变成了什么样?能够如何巧算?9运算符号的来历 同学们每天都与+、-、×、÷打交道,做起题来也已经习惯了有它们的帮助,但你们一定还不知道它们来到这个世界上的时间可比数字晚多了. 大约五百年前,德国科学家魏特曼在横线上加上一竖来表示增加的意思,在加号上去掉一竖来表示减少的意思,从此,数学这一学科就多了两个新成员,这就是“+”、“-”的来历. “×”是英国的数学家欧德艾在三百多年前提出来的,他认为乘法是一种特殊的加法,于是把“+”斜过来写,也就是我们今天的“×”,“÷”是瑞士数学家拉哈提出来的,他在两点中间放上一横,表示平均分的意思.同学们,现在我们不仅会使用这些数学运算符号,而且还了解了它们的来历,以后算题的时候就会辨别的更清楚,计算的更仔细了. 课堂内外 去括号和添括号原则在只有乘除运算的算式里,如果括号的前面是“÷”,那么不论是去掉括号或添上括号,括号里面运算符号都要改变,即“×”号变“÷”,“÷”变“×”;如果括号的前面是“×”,那么不论是去掉括号或添上括号,括号里面运算符号都不改变.例如:○1 ()a b c a b c ⨯÷=⨯÷○2 ()a b c a b c ⨯÷=⨯÷ ○3 ()a b c a b c ÷÷=÷⨯ ○4 ()a b c a b c ÷÷=÷⨯ 小 总 结10 作业1. 计算:(1)295⨯⨯; (2)25194⨯⨯.2. 计算:(1)2512⨯; (2)12532⨯.3. 计算:(1)20025÷; (2)3000125÷;(3)121437⨯÷÷; (4)12253⨯÷.4. 计算:()()()220887227÷⨯÷÷÷.5. 计算:420002425÷÷÷.11第一讲 乘除法巧算1. 例题1答案:(1)130;(2)1100详解:(1)213525*********⨯⨯=⨯⨯=⨯=;(2)4112542511100111100⨯⨯=⨯⨯=⨯=.2. 例题2答案:(1)20000;(2)32000详解:(1)53212554812554812554100020000⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=;(2)80162580442580442580410032000⨯⨯=⨯⨯⨯=⨯⨯⨯=⨯⨯=.3. 例题3答案:(1)44;(2)32详解:(1)361193691141144⨯÷=÷⨯=⨯=;(2)400012541000125410001254832÷=⨯÷=⨯÷=⨯=().4. 例题4答案:(1)26;(2)9详解:(1)72072513720725131051321326÷⨯÷=÷÷⨯=÷⨯=⨯=();(2)81123123363811231233381331231239÷⨯÷÷=÷⨯÷÷=÷÷⨯÷=()()(-).5. 例题5答案:(1)31;(2)111详解:(1)31000812531000100031÷⨯=÷=();(2)3331553331553333111÷⨯=÷÷=÷=().6. 例题6答案:2详解:2625271725917392627252591717392627252591717392627939262793132633132613332=÷⨯÷⨯÷⨯÷=⨯⨯÷÷⨯÷÷=⨯⨯÷÷⨯÷÷=⨯÷÷=⨯÷÷⨯=⨯÷÷=÷⨯÷=原式()()()()()(). 7. 练习1答案:(1)1700;(2)10000简答:(1)425171700=⨯⨯=原式;(2)12581010000=⨯⨯=原式.8. 练习2答案:(1)4000;(2)7000简答:(1)25548254584000=⨯⨯⨯=⨯⨯⨯=原式;(2)781257000=⨯⨯=原式.9. 练习3答案:(1)77;(2)12简答:(1)2841171177=÷⨯=⨯=原式;(2)3100253412=⨯÷=⨯=原式.10. 练习4答案:(1)2;(2)12简答:(1)13013315103152=÷⨯÷=⨯÷=原式;(2)3631111363111112=÷÷⨯=÷⨯÷=原式.11. 作业1答案:(1)90;(2)1700简答:(1)29525990⨯⨯=⨯⨯=;(2)25194254191900⨯⨯=⨯⨯=.12 12. 作业2答案:(1)300;(2)4000简答:(1)25122543300⨯=⨯⨯=;(2)12532125844000⨯=⨯⨯=.13. 作业3答案:(1)8;(2)24;(3)8;(4)100简答:(1)20025210025248÷=⨯÷=⨯=;(2)3000125310001253824÷=⨯÷=⨯=;(3)121437123147428⨯÷÷=÷⨯÷=⨯=;(4)1225312325425100⨯÷=÷⨯=⨯=.14. 作业4答案:10简答:2208872272202210=÷⨯÷÷⨯=÷=原式.15. 作业5答案: 210简答:()42000242542000242542000200210÷÷÷=÷⨯⨯=÷=.。
先判断是否有序第一天1、3个鸡蛋分给东东、西西和文文三个人,有人可能没有分到,共有几种可能?(写出具体情况分类)2、7个金币分给3个海盗,每个海盗至少分到1个,共有几种不同的分法?(写出具体情况分类)3、三个整数之和为5,一共有几组这样的三位数(可以为0)4、三个海盗分13枚金币,每个海盗至少分到3枚硬币,共有几种不同的分法?5、有11根萝卜吃3天,兔子每天至少吃2根,,一共有几种情况?6、妈妈买了4个鸡蛋,每天至少1个,至多2个,吃完为止,共有几种不同的吃法?7、有5道题,每天至少做2道,做完为止,如果天数不限,共有几种不同的做法。
第二天1、4个鸡蛋分给东东、西西和文文三个人,有人可能没有分到,共有几种可能?(写出具体情况分类)2、9个金币分给3个海盗,每个海盗至少分到2个,共有几种不同的分法?(写出具体情况分类)3、妈妈买了5个鸡蛋,每天至少1个,至多3个,吃完为止,共有几种不同的吃法?(注意天数没有规定哦)4、3个整数之和为5,一共有几组这样的三位数?(注意看看是分堆还是分人吧)5、三个海盗分18枚金币,每个海盗至少分到5枚硬币,共有几种不同的分法?6、有13道题,每天至少做5道,做完为止,如果天数不限,共有几种不同的做法。
(注意没有规定天数)第三天1、6个笔记本分给东东、西西和文文三个人,有人可能没有分到,共有几种可能?(写出具体情况分类)2、2个整数之和为6,一共有几组这样的数3、3个整数之和为5,一共有几组这样的三位数4、三个海盗分22枚金币,每个海盗至少分到6枚硬币,共有几种不同的分法?5、有23道题,每天至少做6道,做完为止,如果天数不限,共有几种不同的做法。
第四天1、6个鸡蛋分给东东、西西和文文三个人,有人可能没有分到,共有几种可能?2、有14根萝卜,兔子每天至少吃3根,吃完为止,一共可以吃几天?3、5个金币分给3个海盗,每个海盗至少分到1个,共有几种不同的分法?(写出具体情况分类4、三个海盗分13枚金币,每个海盗至少分到三枚硬币,共有几种不同的分法?5、有5根萝卜,兔子每天至少吃2根,吃完为止,一共有几种情况?(休息没有规定天数)6、妈妈买了4个鸡蛋,每天至少1个,至多2个,吃完为止,共有几种不同的吃法?第五天1、7个鸡蛋分给东东、西西和文文三个人,有人可能没有分到,共有几种可能?(写出具体情况分类)2、17个金币分给3个海盗,每个海盗至少分到4个,共有几种不同的分法?(写出具体情况分类)3、3个整数之和为8,一共有几组这样的三位数不同的分法?5、有21根萝卜,兔子每天至少吃2根,吃完为止,一共可以吃几天?(注意没有规定天数)第六天1、6个鸡蛋分给东东、西西和文文三个人,有人可能没有分到,共有几种可能?(写出具体情况分类)2、8个金币分给3个海盗,每个海盗至少分到2个,共有几种不同的分法?(写出具体情况分类)3、3个整数之和为6,一共有几组这样的数4、三个海盗分27枚金币,每个海盗至少分到8枚硬币,共有几种不同的分法?5、有19根萝卜,兔子每天至少吃7根,吃完为止,一共可以吃几天?第六天1、7个鸡蛋分给东东、西西和文文3个人,有人可能没有分到,共有几种可能?(写出具体情况分类)2、8个金币分给3个海盗,每个海盗至少分到3个,共有几种不同的分法?(写出具体情况分类)不同的分法?4、有17根萝卜,兔子每天至少吃6根,吃完为止,一共可以吃几天?5、妈妈买了12个橘子,每天至少3个,至多8个,吃完为止,共有几种不同的吃法?(注意先不看至多的条件,做好之后把多于8个的去了即可)第七天1、妈妈买了5个鸡蛋,每天至少1个,至多2个,吃完为止,共有几种不同的吃法?2、有26道题,每天至少做9道,做完为止,如果天数不限,共有几种不同的做法。
耐心,还需要重视检查与验算.计算问题历来是杯赛的必考内容,每次考试的题目数量一般不多,也比较基础.出题形式以考查考 生的计算技巧为主,也有对基本运算能力的考查.计数考点:1.统计:统计表、饼状图、柱状图.2.有趣的搭配:连线法;大炮发射法;从反面想.3.分类数图形:有序思考;先分类,再将每一类的数量数清楚,最后累加.4.整数分拆综合:分给相同对象和分给不同对象;分3 堆:不降原则.计算考点:1.等式加减法:左+左=右+右;左-左=右-右.2.数列规律:等差数列;等比数列;兔子数列;二阶数列;间隔数列.3.加减法巧算二:添、去括号;带符号搬家.例题1.小明统计二年级的体育用品,画了一张像蛋糕的统计图.请问:小明共统计()个球.答案:1202.小马虎调查了班上的小朋友最喜欢的玩具.请问:下图中汽车玩具共有()个.乒乓球()个篮球()个足球30个羽毛球20个答案:203.3个小矮人打电话,每两个人都要通一次电话.一共要通()次电话.答案:34.朵朵原定6首歌曲参加圣诞晚会,如果要从中选出 5 首歌曲参加晚会,朵朵一共有()种不同的选法.答案:65.根据下面的等式填空.答案:76.根据下面的等式填空.答案:67.找规律,求出:c =( ).3,1,4,5,9,(a ),(b ),37,60,(c ).答案:978.找规律,求出:a +d =( ).++ ++= 45+ ++ =35=()+ +++ ++++ += 27 + + + = 24= ()积木15个。
三年级简单枚举法解题一、简单枚举法题目及解析。
1. 题目:小明有3件不同的上衣,2条不同的裤子,他有多少种不同的穿法?- 解析:- 我们可以用枚举法来解决。
当选择第一件上衣时,可以搭配2条不同的裤子,这样就有2种穿法;当选择第二件上衣时,同样可以搭配2条不同的裤子,又有2种穿法;当选择第三件上衣时,还是可以搭配2条不同的裤子,再有2种穿法。
- 所以总的穿法有2 + 2+2=3×2 = 6种。
2. 题目:用1、2、3这三个数字能组成多少个不同的三位数?- 解析:- 百位上是1时,组成的数有123、132;百位上是2时,组成的数有213、231;百位上是3时,组成的数有312、321。
- 一共可以组成2 + 2+2 = 6个不同的三位数。
3. 题目:从甲地到乙地有2条路可走,从乙地到丙地有3条路可走,从甲地到丙地有多少种不同的走法?- 解析:- 从甲地到乙地的第一条路,到乙地后再去丙地有3种走法;从甲地到乙地的第二条路,到乙地后再去丙地又有3种走法。
- 所以从甲地到丙地不同的走法有3+3 = 2×3=6种。
4. 题目:有红、黄、蓝三种颜色的小旗各一面,从中选用1面或2面升上旗杆,分别用来表示一种信号。
一共可以表示多少种不同的信号?- 选1面小旗时,有红、黄、蓝3种信号;选2面小旗时,有红黄、红蓝、黄蓝3种信号。
- 总共可以表示3 + 3=6种不同的信号。
5. 题目:有3个小朋友,每两个人握一次手,一共握几次手?- 解析:- 设三个小朋友为A、B、C。
A和B握一次手,A和C握一次手,B和C握一次手。
- 一共握1+1 + 1=3次手。
6. 题目:用0、1、2这三个数字能组成多少个不同的两位数(数字不能重复)?- 解析:- 十位上是1时,组成的两位数有10、12;十位上是2时,组成的两位数有20、21。
- 一共能组成2+2 = 4个不同的两位数。
7. 题目:从1 - 9这9个数字中,每次取2个数字,这两个数字的和大于10,有多少种取法?- 解析:- 两个数为9和2、9和3、9和4、9和5、9和6、9和7、9和8;8和3、8和4、8和5、8和6、8和7;7和4、7和5、7和6;6和5。
第3讲 枚举法(一)(计数问题第1讲)【1】1~20共有多少个数?相隔:20-1=19(个);个数:19+1=20(个)。
答:1~20共有20个数。
【2】20~40共有多少个数?相隔:40-20=20(个);个数:20+1=21(个)。
答:20~40共有21个数。
【3】如图,桌上有一些围棋子,有多少枚黑子?正难则反一共:5×5=25(枚);白子:9枚;黑子:25-9=16(枚)。
答:有16枚黑子。
【4】小明决定去香山、颐和园、圆明园这3个景点旅游,要走遍这三个景点,他一共有多少种不同的游览顺序?(1)香山、颐和园、圆明园;(2)香山、圆明园、颐和园;(3)颐和园、香山、圆明园;(4)颐和园、圆明园、香山;(5)圆明园、香山、颐和园;(6)圆明园、颐和园、香山。
3×2=6(种)答:他一共有6种不同的游览顺序。
【5】小王准备从青岛、三亚、桂林、杭州这4个地方中选2个地方去旅游,小王有多少种不同的选择? 握手原则⎩⎨⎧÷⨯-2每个人握手次数所有人握手次数:人数1每个人握手次数:人数(1)青岛、三亚;(2)青岛、桂林;(3)青岛、杭州;(4)三亚、桂林;(5)三亚、杭州;(6)桂林、杭州。
4×3÷2=6(种)答:小王有6种不同的选择。
【6】小王准备从青岛、三亚、桂林、杭州这4个地方中选3个地方去旅游,小王有多少种不同的选择?正难则反:在4个地方里面选3个,也就是每次去掉1个地方不选。
(1)青岛、三亚、桂林(不选杭州);(2)青岛、三亚、杭州(不选桂林);(3)青岛、桂林、杭州(不选三亚);(4)三亚、桂林、杭州(不选青岛)。
答:小王有4种不同的选择。
【7】墨莫在一张纸上画了一些图形,如图所示,每个图形都是由若干条线段连接组成的。
数一数,纸上一共有多少条线段?(最外面的大长方形是纸的边框,不算在内)三角形个数:2;四边形个数:2;五边形个数:2。
华数思维训练导引计数问题第01讲枚举法三年级第09讲计数问题第01讲枚举法1. 如图9-10,有8张卡片,上面分别写着自然数1至8。
从中取出3张,要使这3张卡片上的数字之和为9。
问有多少种不同的取法?解答:三数之和是9,不考虑顺序。
1+2+6=9,1+3+5=9,2+3+4=9答:有3种不同的取法。
2. 从1至8这8个自然数中,每次取出两个不同的数相加,要使它们的和大于10,共有多少种不同的取法?解答:两数之和大于10,不考虑顺序。
8+7,8+6,8+5,8+4,8+3 7+6,7+5,7+4 6+5答:共有9种不同的取法。
3. 现在1分、2分和5分的硬币各4枚,用其中的一些硬币支付2角3分钱,一共有多少种不同的支付方法?解答:2角3分=23分5×4+2×1+1×1=23,5×4+1×3=23,5×3+2×4=23,5×3+2×3+1×2=23,5×3+2×2+1×4=23答:一共有5种不同的支付方法。
4. 妈妈买来7个鸡蛋,每天至少吃2个,吃完为止,有多少种不同的吃法?解答:需要考虑吃的顺序不同。
7,5+2,4+3,3+4,3+2+2,2+5,2+3+2,2+2+3答:有8种不同的吃法。
5.有3个工厂共订300份《吉林日报》,每个工厂最少订99份,最多101份。
问一共有多少种不同的订法?解答:3个工厂各不相同,3数之和是300份,要考虑顺序。
99+100+101,99+101+100,100+99+101,100+100+100,100+101+99,101+99+100,101+100+99答:一共有7种不同的订法。
6. 在所有的四位数中,各个数位上的数字之和等于34的数有多少个?解答:4个数字之和是34,只有9+9+9+7=34,9+9+8+8=34,不同的数字放在不同位是组成的四位数不同,考虑顺序。
第3讲 枚举法(一)(计数问题第1讲)【1】1~20共有多少个数?相隔:20-1=19(个);个数:19+1=20(个)。
答:1~20共有20个数。
【2】20~40共有多少个数?相隔:40-20=20(个);个数:20+1=21(个)。
答:20~40共有21个数。
【3】如图,桌上有一些围棋子,有多少枚黑子?正难则反一共:5×5=25(枚);白子:9枚;黑子:25-9=16(枚)。
答:有16枚黑子。
【4】小明决定去香山、颐和园、圆明园这3个景点旅游,要走遍这三个景点,他一共有多少种不同的游览顺序?(1)香山、颐和园、圆明园;(2)香山、圆明园、颐和园;(3)颐和园、香山、圆明园;(4)颐和园、圆明园、香山;(5)圆明园、香山、颐和园;(6)圆明园、颐和园、香山。
3×2=6(种)答:他一共有6种不同的游览顺序。
【5】小王准备从、、、这4个地方中选2个地方去旅游,小王有多少种不同的选择? 握手原则⎩⎨⎧÷⨯-2每个人握手次数所有人握手次数:人数1每个人握手次数:人数(1)、;(2)、;(3)、;(4)、;(5)、;(6)、。
4×3÷2=6(种)答:小王有6种不同的选择。
【6】小王准备从、、、这4个地方中选3个地方去旅游,小王有多少种不同的选择? 正难则反:在4个地方里面选3个,也就是每次去掉1个地方不选。
(1)、、(不选);(2)、、(不选);(3)、、(不选);(4)、、(不选)。
答:小王有4种不同的选择。
【7】墨莫在一纸上画了一些图形,如图所示,每个图形都是由若干条线段连接组成的。
数一数,纸上一共有多少条线段?(最外面的大长方形是纸的边框,不算在)三角形个数:2;四边形个数:2;五边形个数:2。
(3+4+5)×2=24(条)答:纸上一共有24条线段。
【8】小烧饼每个5角钱,大烧饼每个2元钱,墨莫一共有6元钱,把这些钱全部用来买烧饼,一共有多少种不同的买法?全部买大烧饼个数:6÷2=3(个)2元=20角,20÷5=4(个)大烧饼 3 2 1 0小烧饼0 4 8 12【9】在一次知识抢答比赛中,小高和墨莫两个人一共答对了10道题,并且每个人都有答对的题目。
每道题答对得1分,小高和墨莫分别可能得多少分?把所有的可能填写到下面的表格里。
小高的分数墨莫的分数小高的分数9 8 1 6 5 4 3 2 1墨莫的分数 1 2 3 4 5 6 7 8 9每个海盗最少分5枚,最多分20-5=15枚,一共有15-5+1=11种分法海盗A 5 6 7 8 9 10 11 12 13 14 15海盗B 15 14 13 12 11 10 9 8 7 6 5【11】两个海盗分20枚金币,每个海盗最多分到16枚金币,一共有多少种不同的分法?每个海盗最多分16枚,最少分20-16=4枚,一共有16-4+1=13种分法甲 4 5 6 7 8 9 10 11 12 13 14 15 16 乙16 15 14 13 12 11 10 9 8 7 6 5 4【12】有15个玻璃球,要把它们分成两堆,一共有几种不同的分法?这两堆球的个数可能相差几个?最少1个,最多14个,一共有14-1+1=14种不同的分法一 1 2 3 4 5 6 7 8 9 10 11 12 13 14 二14 13 12 11 10 9 8 7 6 5 4 3 2 1差13 11 9 7 5 3 1 1 3 5 7 9 11 13【13】奶奶去超市买了12盒光明牛奶,这些牛奶需要装在2个相同的袋子里,并且每个袋子最多只能装10盒。
奶奶一共有几种不同的装法?一个袋子最多装10盒,最少装12-10=2盒,一共有10-2+1=9种不同的装法一10 9 8 7 6 5 4 3 2二 2 3 4 5 6 7 8 9 10【14】小高、萱萱、卡莉娅3个人去看电影,他们买了3座位相邻的票。
他们3人的座位顺序一共有多少种不同的安排方法?(1)小高、萱萱、卡莉娅;(2)小高、卡莉娅、萱萱;(3)萱萱、小高、卡莉娅;(4)萱萱、卡莉娅、小高;(5)卡莉娅、小高、萱萱;(6)卡莉娅、萱萱、小高。
答:他们3人的座位顺序一共有6种不同的安排方法。
【15】如图,小高画了一个小房子,每一笔都不能拐弯,她最少画了几笔?:4条:4条:6条:11条4+11+6×2+4=31(条)答:她最少画了31笔。
【16】小高把8块绿豆糕摆成如图所示的图形,让墨莫挑2块挨在一起的绿豆糕。
墨莫一共有多少种不同的挑法?2块挨在一起的有:①1、2,②2、3,③3、6,④4、5,⑤5、6,⑥6、7,⑦7、8答:墨莫一共有7种不同的挑法。
【17】小摆摊卖货,小木偶每个卖1元,大木偶每个卖2元。
他今天一共卖出了5个木偶,小今天一共可能卖了多少钱?大木偶0 1 2 3 4 5小木偶 5 4 3 2 1 0×1=10(元)。
答:小今天一共可能卖了5元、6元、7元、8元、9元、10元。
【18】老师给小高14个相同的作业本,小高把这些本子全部分给墨莫和卡莉娅,有多少种不同的分法?(可以只给一个人)墨莫0 1 2 3 4 5 6 7 8 9 10 11 12 13 14卡莉娅14 13 12 11 10 9 8 7 6 5 4 3 2 1 0答:有15种不同的分法。
【19】老师给小高14个相同的作业本,小高只需要把这些本子分成2堆,有多少种不同的分法?第一堆 1 2 3 4 5 6 7 8 9 10 11 12 13 第二堆13 12 11 10 9 8 7 6 5 4 3 2 1答:有14种不同的分法。
【20】要沿着如图所示的道路从A点走到B点,并且每段路最多只能经过1次,一共有多少种不同的走法?(1)A →C →D →B ;(2)A →C →F →B ;(3)A →E →F →C →D →B ;(4)A →E →F →B 。
答:一共有4种不同的走法。
【21】盘子里一共有20颗花生,小高和墨莫一起吃。
每人一口吃2颗,两个人一起把花生吃完(每人至少吃一口)。
列举出他们吃花生数量的所有情况。
20÷2=10(口) 小高 1 2 3 4 5 6 7 8 9 墨莫987654321外书?写出他们全部可能的情况。
小高:1本⎪⎪⎪⎩⎪⎪⎪⎨⎧1本墨莫:5本;卡莉娅:2本墨莫:4本;卡莉娅:3本墨莫:3本;卡莉娅:4本墨莫:2本;卡莉娅:5本墨莫:1本;卡莉娅:5-1+1=5(种)小高:2本⎪⎪⎩⎪⎪⎨⎧1本墨莫:4本;卡莉娅:2本墨莫:3本;卡莉娅:3本墨莫:2本;卡莉娅:4本墨莫:1本;卡莉娅:4-1+1=4(种)小高:3本⎪⎩⎪⎨⎧1本墨莫:3本;卡莉娅:2本墨莫:2本;卡莉娅:3本墨莫:1本;卡莉娅:3-1+1=3(种) 小高:4本⎩⎨⎧1本墨莫:2本;卡莉娅:2本墨莫:1本;卡莉娅:2-1+1=2(种)小高:5本;墨莫:1本;卡莉娅:1本1-1+1=1(种)一共:5+4+3+2+1=15(种)答:一共有15种可能的情况。
【23】小王有5个相同的飞机模型,他要把它们放在一个3层的货架上,每层至少要放1个。
小王一共有多少种不同的放法?一层 1 1 1 2 2 3二层 1 2 3 1 2 1三层 3 2 1 2 1 1【24】小王有18个相同的飞机模型,他要把它们放在一个3层的货架上,每层至少要放5个。
小王一共有多少种不同的放法?一层 5 5 5 5 6 6 6 7 7 8二层 5 6 7 8 5 6 7 5 6 5三层8 7 6 5 7 6 5 6 5 5答:小王一共有10种不同的放法。
【25】如图,有7个按键,上面分别写着1~7这7个数字。
从中选出2个按键,使它们上面数字的差等于2,一共有多少种选法?4-2=2;5-3=2;6-4=2;7-5=2。
答:一共有4种选法。
【26】如图,有7个按键,上面分别写着1~7这7个数字。
从中选出2个按键,使它们上面数字的和大于9,一共有多少种选法?3+7=10;4+6=10;4+7=11;5+6=11;5+7=12;6+7=13。
答:一共有6种选法。
【27】小明买回来一袋糖豆,他数了一下,一共有10个。
现在他要把这些糖豆分成3堆,一共有多少种不同的分法?一堆 1 1 1 1 2 2 2 3 二堆 1 2 3 4 2 3 4 3 三堆8 7 6 5 6 5 4 4【28】小明有2袋糖豆,每袋10个,要把这些糖豆分成3堆,每堆至少要有5个,一共有多少种不同的分法?10×2=20(颗)【29】A、B、C、D、E这5个人一起回答一道题目,结果只有2人回答对了。
所有可能的回答情况一共有多少种?5个同学选2个,适用握手原则。
4×5÷2=10(种)答:所有可能的回答情况一共有10种。
【30】有2个相同的白球和1个红球,把这3个小球排成一排,有多少种不同排法?○○●○●○●○○答:有3种不同排法。
【31】有2个相同的白球和3个相同的红球,把这5个小球排成一排,有多少种不同的排法?●●●○○●●○○●●○○●●○○●●●●●○●○●○●●○○●●●○●○●○●○●●○●○●○●●答:有10种不同的排法。
【32】班主任要从甲、乙、丙、丁、戊这5个小朋友里面选出4个人参加乒乓球比赛,有多少种不同的选法?正难则反原则:选出4个,也就是排除1个。
依次排除甲、乙、丙、丁、戊,一共有5种不同的选法。
答:有5种不同的选法。
【33】班主任要把甲、乙、丙、丁这4个小朋友分成2组,进行乒乓球双打比赛,有多少种不同的分法?握手原则:4个同学选择2个,有3×4÷2=6种分法,再分成2组,有6÷2=3种分法。
【34】小明参加了一次小测验,每个小题2分,每个大题5分,两种题目各有3道,小明的得分一共有多少种不同的可能?【35】几个小朋友在屋子里玩石头剪子布,墨莫在门外问他们一共有几个人,其中一个小朋友说:“不能直接告诉你人数,不过我们现在一共伸出了22根手指,并且有3个人出石头。
”屋子里可能有几个人在玩游戏?(出石头的不伸手指,出剪子的伸2根,出布的伸5根)出手指:3×0+2×1+5×4=22(根);人数:3+1+4=8(人)出手指:3×0+2×6+5×2=22(根);人数:3+6+2=11(人)出手指:3×0+2×11+5×0=22(根);人数:3+11+0=14(人)答:屋子里可能有8人、11人、14人在玩游戏。
【36】一次测验一共4道题,最初每位同学都有4分的基础分,然后每答对一道题加3分,答错一道题扣1分,不答不扣分。