认识多面体和旋转体
- 格式:doc
- 大小:258.22 KB
- 文档页数:3
多面体、旋转体一、基本知识体系:1.棱柱2.棱锥3.圆柱4.圆锥5.球6.侧面积7.体积8. 球面距离二、典例剖析:【例题1】如图所示,已知△ABC,以AB为轴,将△ABC旋转360°.试指出这个旋转体是由怎样的简单几何体构成的?画出这个旋转体的直观图.【例题2】一个三棱锥的各棱长均相等,其内部有一个内切球,即球与三棱锥的各面均相切(球在三棱锥的内部,且球与三棱锥的各面只有一个交点),过一条侧棱和对边的中点作三棱锥的截面,所得截面是下列______图形.(填序号)【例题3】如图,在底面半径为1,高为2的圆柱上A点处有一只蚂蚁,它要围绕圆柱由A点爬到B 点,问蚂蚁爬行的最短距离是多少?【例题4】有一塔形几何体由3个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点.已知最底层正方体的棱长为2,求该塔形的表面积(含最底层正方体的底面面积).【例题5】有一个倒圆锥形容器,它的轴截面是一个正三角形,在容器内放一个半径为r的铁球,并注入水,使水面与球正好相切,然后将球取出,求这时容器中水的深度.【例题6】已知棱长都相等的正三棱锥内接于一个球,某学生画出了四个过球心的平面截球与三棱锥所得的图形,如图所示,则()A.以上四个图形都是正确的B.只有(2)(4)是正确的C.只有(4)是错误的D.只有(1)(2)是正确的【例题7】有三个球,第一个球内切于正方体,第二个球与这个正方体各条棱相切,第三个球过这个正方体的各个顶点,求这三个球的表面积之比.【例题8】已知A,B两地都位于北纬,又分别位于东经和,设地球半径为,求A,B的球面距离.三、巩固练习:【练习题1】下列命题中正确的是________(填序号).①有两个面平行,其余各面都是四边形的几何体叫棱柱;②有两个面平行,其余各面都是平行四边形的几何体叫棱柱;③有两个面平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行的几何体叫棱柱;【练习题2】以任意方式截一个几何体,各个截面都是圆,则这个几何体一定是________.【练习题3】右图所示的几何体是由下列哪个平面图形通过旋转得到的________(填序号).【练习题4】已知直角三角形的两直角边长为a、b,分别以这两条直角边所在直线为轴,旋转所形成的几何体的体积之比为__________【练习题5】若三个球的表面积之比为1∶2∶3,则它们的体积之比为________________【练习题6】长方体的一个顶点上的三条棱长分别为3,4,5,且它的8个顶点都在同一个球面上,则这个球的表面积_____________【练习题7】一个圆锥与一个球的体积相等,圆锥的底面半径是球半径的3倍,圆锥的高与球半径之比为____________【练习题8】已知球O的表面积为4π,A、B、C三点都在球面上,且每两点的球面距离均为π/2,则四面体OABC的体积是________________【练习题9】已知ABC三点在球心为P,半径为1的球面上,且三棱锥P-ABC为正四面体,那么AB 两点间的球面距离为__________________。
第八讲多面体与旋转体(一)知识要求本章内容包括多面体和旋转体中常见的柱、锥、台、球的概念、性质、直观图、展开图的画法以及有关侧面积、体积的计算等.它是考查空间想象能力和逻辑思维能力及其运算能力的重要载体.高考试题中,立体几何试题的分值一般占20%左右,题量一般是五个,选择题、填空题、解答题的比例是3︰1︰1.立体几何试题大多以多面体和旋转体为载体,融线面关系于几何体中,融推理论证于几何量的计算中,融逻辑思维能力、空间想象能力于运算中.从近年高考立体几何试题中,可以发现以多面体和旋转体为载体设计的题目一般占25分左右,是立体几何试题分值的75%以上.涉及多面体或旋转体中有关元素的位置判定,数量的计算或最值的计算常常是以选择题或填空题的形式出现,涉及柱、锥、台体中的线面关系、面面关系的判定及运用于面积或体积的计算大多以中等难度的解答题的形式出现,而在面积或体积的计算中又侧重于体积.近年高考涉及多面体与旋转体的命题改革有所创新与突破,其主要特点是:①注意考查学生的想象、判断、推理与计算的综合能力素质,融推理与运算于一体;②注意对非常规空间几何图形的数量关系和位置关系的考查;③改变了选择题和填空题形式单一的弊端,拓宽了填空题的考查功能,采用多选、多填及开放性等形式,富有挑战性和探索性,体现高考“稳中有变”的思想.对柱、锥、台,会从复杂的空间图形中找出反映几何体特征的平面图形如:直角三角形、直角梯形,寻找有关的几何元素的位置关系,数量关系,并注意几种特殊四棱柱的联系与区别,重视平行于底面的截面的有关性质,树立“还台为锥”的思想,空间问题平面化的思想如:截面、展开图、平移、旋转、射影,应用整体思想、方程思想的策略.对多面体与旋转体的体积问题,应以公式法为基础并注意利用化归与转化思想,即①转移法(利用祖暅原理,把所求几何体的体积转化为与它等底、等高的几何体的体积),②分割求和法,③补形求差法,④换底等积法,沟通有关元素之间的联系,从而完成计算或证明.对多面体与旋转体的表面积除直接利用公式外,还可采用“化整为零”各个击破的策略,并熟悉直截面,轴截面的特性,通过展开图,将空间面积转化为平面面积来处理.解决折叠问题时,要将折叠前后的两个图形对照考察,弄清所涉及的元素在折叠前后的数量关系或位置关系.要计算柱、锥、台表面上两点的最短距离,可采用侧面展开图或全面展开图,化曲折为直.对简单多面体、旋转体的“切”“接”问题,一般是通过选择能够包含各元素间的关系的一个截面(多为轴截面),转化为平面图形或采用“等积法”来解决.应特别注意截面图形与直观图的联系,并注意两者构成元素的异同.对面积、体积的最值问题,一般转化为函数的最值问题加以解决,比较常用的方法是利用均值不等式.综合应用,关键在于沟通几何、代数、三角知识的联系,达到对知识的进一步理解、深化、升华.典型例题 例1.(2001福建)设长方体的三条棱长分别为a 、b 、c ,若长方体所有棱的长度之和为24,一条对角线长度为5,体积为2,则a 1+b 1+c1等于……………………………………( ) A .114 B .411 C .211 D .112 【分析】根据题意可得三个方程,从而求出a ,b ,c ,但计算量太大.若对a 1+b 1+c1变形可得a 1+b 1+c 1=abc ca bc ab ++,故只需求出ab +bc +ca ,从而利用整体思想求解. 【解】由题设,知⎪⎪⎩⎪⎪⎨⎧==++=++.2524)(4222abc c b a c b a∵ (a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca ),∴ 2)212(=25+2(ab +bc +ca ), ∴ ab +bc +ac =211. 从而a 1+b 1+c 1=abc ca bc ab ++=411, 故选B .【点评】本题考查长方体的对角线公式,体积公式.在解题过程中,常对a 、b 、c 设而不求,利用恒等式,整体思想避开繁琐的计算过程,而直接得出结论.若长方体的对角线与交于同一点的三条棱分别成角α、β、γ,则cos 2 α+cos 2 β+cos 2 γ=1,若长方体的对角线与交于同一点的三个面分别成角α、β、γ,则cos 2 α+cos 2 β+cos 2 γ=2,在解题中的应用也应给予重视.例2.已知正三棱柱ABC—A1B1C1,过一面对角线AB1且与另一面对角线BC1平行的平面交上底面A1B1C1的一边A1C1于点D.①确定D点的位置,并证明你的结论;②证明平面AB1D⊥平面AA1D;③若AB=6,AA1=4,求直线BC1与平面AB1D的距离;④若AB︰A1A=k,问是否存在k,使平面AB1D与平面AB1A1所成角的大小为45°?若存在请求出k,若不存在请说明理由.【分析】①要证线面平行,须证线线平行,故可通过补形进行平移.②要证面面垂直,须证线面垂直.③要求线面距离可通过线面平行转化为点面距离.④对探索性性问题,不妨假设存在,然后求解或推理论证.【解】①将正三棱柱ABC—A1B1C1补成直平行六面体ABCE—A1B1C1E1,从而有AE1∥BC1,∴BC1∥面AB1E1.∴面AB1E1为所求平面,此时面AB1E1与A1C1交于D.又A1B1C1E1为平行四边形,∴D为A1C1中点.(或先猜D为A1C1中点,然后予以证明).②连结AD,由直平行六面体定义知AA1⊥面A1B1C1E1,∴AA1⊥B1D,又A1B1C1E1为菱形,∴B1D⊥A1C1,∴ B 1D ⊥面AA 1D ,又 B 1D ⊂面AB 1D ,∴ 面AB 1D ⊥面AA 1D .③∵ BC 1∥平面AB 1D ,∴ 只要求C 1 到平面AB 1D 的距离.又 A 1D =DC 1 故只要求A 1 到面AB 1D 的距离即可.由②,知面AB 1D ⊥面AA 1D ,所以过A 1 作AM ⊥AD ,则A 1M ⊥平面AB 1D .∴ A 1M 为所求.由A 1D ·AA 1=A 1M ·AD ,得:A 1M =512. (或由D AB C V 11-=D C B A V 11-,D C B S 11∆=293,1ADB S ∆=2153,得C 1 到平面AB 1D 的距离为512). ④过D 作DG ⊥A 1B 1 于G ,则DG ⊥面A 1B 1BA ;过G 作GH ⊥AB 1 于H ,连DH ,则DH ⊥AB 1,∴ ∠DHG 为A 1—AB 1—D 的平面角,若∠DHG =45°,设AA 1=a ,则AB =ka ,DG =43ka . ∵ AA 1︰AB 1=GH ︰GB 1, ∴ GH =1432+k ka . ∵ DG =GH ,∴ k =2.∴ 存在k =2,使平面AB 1D 与平面AB 1A 1 所成角的大小为45°.【点评】本题以正三棱柱为载体,考查了线线、线面、面面的位置关系以及距离、角、体积等问题.补形法、等积法是常用技巧,开放性问题是近年高考热点,应予重视.一般地利用三棱锥等积法寻找底面上的高,常将一个底面的顶点选在多面体的同一表面上.例3.各棱长都等于2的斜三棱柱ABC—A1B1C1中,侧面ABB1A1垂直于底面.①问侧棱与底面所成角为多少时,能使B1C⊥AC1;②在①的条件下求此三棱柱的侧面积.【分析】①取AB中点D,设BC1 B1C=O,则DO∥AC1要证B1C⊥AC1只需证DO ⊥B1C又O为B1C中点,∴只需证B1D=DC=3,在△B1BD中由余弦定理可得:∠B1BD=60°,又面B1BAA1⊥底面,∴∠B1BA为侧棱与底面所成角.故可猜测当侧棱与底面成角为60°时,B1C⊥AC1.②棱柱侧面积有两种解法,一是判断各侧面的形状,各个击破,再求各侧面的面积之和,二是求其直截面周长与侧棱长的乘积.【解】①当侧棱与底面成角为60°时,能使B1C⊥AC1.事实上,作B1D⊥AB于D.∵面ABB1A1⊥底面ABC,∴B1D⊥平面ABC.∴∠B1BD为侧棱与底面所成角.∴∠B1BD=60°.又BD=B1E cos 60°=1,∴D为AB中点.∴CD=3.又B1D=3,∴CD=B1D.又O为B1C中点,∴DO⊥B1C而AC1∥DO.∴AC1⊥B1C(或证B1C⊥面ABC1).② 在侧面ABB 1A 1 中11A ABB S 平行四边形=2·2·si n 60°=4×23=23, 在△B 1CD 中,CD =3=B 1D ,∴ B 1C =6.又 BCC 1B 1 为菱形,∴ BC 1=2 BO =222)26(2-=10, 又 AB ⊥面B 1CD ,∴ AB ⊥DO ,又 DO ∥AC 1,∴ AC 1⊥AB .在Rt △ABC 1中,AC 1=222)10(-=6.∴ 11B BCC S 平行四边形=C C AA S 11平行四边形=2110·6=15. ∴ S 侧=11A ABB S 平行四边形+211B BCC S 平行四边形=2(3+15).【点评】① 条件探索型命题,解题时要善于从所给的题断出发,逆向追索,逐步探寻出应具备的条件,然后予以证明.S 棱柱侧=C 直截面×l ,V 棱柱=S 直截面×l ,其中l 为侧棱长.例4.三棱锥P —ABC 中,侧棱P A ⊥底面ABC ,H 是A 在平面PBC 上的射影.① 若H 是△PBC 的重心,则在此三棱锥的棱所在直线中与AC 垂直的直线有几条?② 若H 是△PBC 的重心,且△ABC 是边长为2的正三角形,求二面角P —BC —A 的大小.【分析】① 充分利用线线垂直与线面垂直的相互关系进行挖掘与探求.② 二面角问题关键是“作”“证”“算”,本题关键要利用重心性质及方程思想进行求解.【解】① P A ⊥平面ABC ,AC ⊂平面ABC ,∴ P A ⊥AC ,AH ⊥平面PBC ,CH ⊥PB .∴ AC ⊥PB .∴ AC ⊥平面ABC .又 AB 平面P AB ,∴ AC ⊥AB .故与AC 垂直的直线有P A 、PB 、AB 三条.② 若H 是重心,连结PH 交BC 于D ,可设PH =2 x ,HD =x ,由AB =2,可知AD =3,于是有(3)2=x ·(2 x +x ),则x =1,∴ PD =3.又 D 是BC 的中点,∴ AD ⊥BC .∴ PD ⊥BC .∴ ∠PDA 是二面角P —BC —A 的平面角.由cos ∠PDA =PD AD =33得∠PDA =arc cos 33即为所求. 【点评】① 结论探索型命题,解题时要充分利用已知条件或图形的特征进行全面、透彻分析,从而推理、发现、获取结论.② 要正确区分三棱锥的顶点在底面上的射影何时是底面三角形的外心、内心、重心、中心.例5.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱,侧面积和体积时,相应的截面面积依次为S 1、S 2、S 3,则…………………………………………………………( ) A .S 1<S 2<S 3 B .S 3<S 2<S 1 C .S 2<S 1<S 3 D .S 1<S 3<S 2【分析】棱锥被平行于底面的平面所截,若顶点到截面的距离与顶点到底面的距离之比为k ,则它们对应棱长的比等于k ,底面积(侧面积、全面积)的比等于k 2,体积比等于k 3.【解】设棱锥的底面积为S ,高为h ,以截面为底面的棱锥的高分别为h 1、h 2、h 3,则21S S =21h h ,S S 2=h h 2,SS 3=h h 3 由题意,得 h h 1=21,21)(h h =21,23)(hh =21∴ 21S S =21,S S 2=21,SS 3=321. ∵ 21<21<321, ∴ S 1<S 2<S 3.故选A .【点评】① 对于台体平行于底面的截面,可补台为锥,再利用有关比例性质便可解决.② 棱台中平行于底面的截面及上、下底面面积分别为S 0、S 1、S 2 截面与上下底面的距离之比为m ︰n 时,则0S =nm S n S m ++12,特别地当m =n 时,为中截面公式. ③ 圆台的上下底面半径分别为r 、R ,作平行于底面的截面分别平分圆台的侧棱、侧面积,体积时,若截面分母线(自上到下)的比为m ︰n ,中截面半径为x ,则可利用性质“mrx -=n x R -”,得到相应的截面半径分别为2r R +,222r R +,3332r R +. 例6.一个正三棱台的上、下底面边长分别为3 cm 和6 cm ,高是23cm .求三棱台的① 侧棱长;② 斜高;③ 侧棱与底面所成的角的正切值;④ 侧面与底面所成的角;⑤ 侧面积.【分析】利用图中的直角三角形与直角梯形进行求解.【解】如图,设O 1,O 分别是上、下底面中心,则O 1O =23cm , 连结A 1O 1 并延长交B 1C 1 于D 1,连结AO 并延长交BC 于D ,过A 1 作A 1F ⊥AD 于F ,作D 1E ⊥AD 于E .① 在Rt △A 1AF 中,A 1F =23cm ,AF =AO -A 1O 1=33(6-3)=3(cm ), 所以AA 1=212F A AF +=221(cm ). ② 在Rt △D 1DE 中, D 1E =23,DE =DO -D 1O =63(6-3)=23(cm ), 所以斜边上的高 D 1D =221DE E D +=22)23()23(+=3(cm ). ③ 因为A 1F ⊥底面ABC ,所以∠A 1AF 为侧棱与底面所成的角,所以tan ∠A 1AF =AF F A 1=323=23. ④ 因为D 1D ⊥BC ,AD ⊥BC ,所以∠D 1DA 为侧面与底面所成二面角的平面角,tan ∠D 1DA =DE E D 1=2323=3 所以∠D 1DA =60°.(或还台为锥,设棱锥的高为h ,利用OA =2 OD ,得tan ∠D 1DE =OD h =OAh 2=2 tan ∠A 1AF =3). ⑤ S 侧=21(3×3+3×6)×3=2273(cm 2) (或利用S 侧=︒-60cos 上下S S =2(S 下-S 上)=243(62-32 )=2273). 【点评】对正棱锥、正棱台的问题可转化为直角三角形问题,使高、斜高、斜高在底面上的射影,侧棱、侧棱在底面上的射影,底面边长之半,边心距,外接圆半径及侧棱和底面所成角,侧面和底面所成的二面角等元素转化为直角三角形的边和角,还台为锥有利于整体上把握本章内容和公式.对正棱锥、正棱台,若侧面与底面所成角为α,则可利用公式:S 正棱锥侧=αcos 底S ,S 正棱台侧=αcos 上下S S -(适合选择、填空). 基础练习一、选择题1.设M ={正四棱柱},N ={长方体},P ={直四棱柱},Q ={正方体}则这四个集合的关系是……………………………………………………………………( ) A .P ⊂N ⊂M ⊂Q B .Q ⊂M ⊂N ⊂PC .P ⊂M ⊂N ⊂QD .Q ⊂N ⊂M ⊂P2.如果三棱锥S —ABC 的底面是不等边三角形,侧面与底面所成二面角都相等,且顶点S 在底面的射影O 在△ABC 内,那么O 是三角形的……………………( ) A .垂心 B .重心 C .外心 D .内心3.台体中一个平行于底面的截面把台体分成上、下两部分,若台体的上底面积,截面面积,下底面积之比为1︰4︰9,那么截面把台成分成上、下两部分的体积比为( ) A .278 B .197 C .135 D .53 4.一个圆锥的轴截面的顶角为120°,过顶点的截面的最大值是4,那么此圆锥的侧面积是………………………………………………………………………………( ) A .23π B .43π C .63π D .83π5.夹在两平行平面间的圆锥、球、圆柱在平面内的射影是等圆,那么它们的体积之比是…………………………………………………………………………………( ) A .1︰2︰3 B .2︰3︰6 C .4︰6︰9 D .1︰2︰46.圆台的侧面积是它的内切球表面积的34倍,则圆台母线和底面所成角的大小是( ) A .30° B .45° C .60° D .75°7.设地球半径为R ,在北纬45°圈上A 、B 两地的经度分别为东经165°和西经105°,则A 、B 两地间的球面距离是…………………………………………………( ) A .R B .42π R C .2πR D .3πR 8.在轴截面是直角三角形的圆锥内,有一个体积最大的内接圆柱,则内接圆柱的体积与圆锥的体积的比值为…………………………………………………………( )A .83B .94C .73D .21 9.将边长为a 的正方形ABCD 沿对角线AC 折起,使得BD =a ,则三棱锥D —ABC的体积为…………………………………………………………………………( )A .b a 3B .123aC .123a 3D .122a 3 10.平行四边形两邻边的长为a 和b ,当它分别绕边a 、b 旋转一周后,所形成的几何体的体积之比为………………………………………………………………( ) A .a b B .b a C .3)(a b D .3)(ba 11.如图三棱台ABC —A 1B 1C 1 中,已知S △ABC =S 1,111C B A S =S 2,高为h ,则四面体ACB 1C 1 的体积为………………………………………………………………( )A .3h 21S S B .31S 1h C .31S 2h D .3h (S 1+S 2+21S S ) 12.有三个球一个球内切于正方体的各个面,一球内切正方体各条棱,另一球过正方体的各顶点,则这三球面积比是…………………………………………………( ) A .1︰2︰3 B .1︰2︰3 C .1︰22︰33 D .1︰4︰9二、填空题13.斜三棱柱ABC —A 1B 1C 1 的一个侧面的面积为S ,这个侧面与它对棱的距离为a ,则这个棱柱的体积是______________.14.若正棱台上下底面及侧面的面积比为4︰9︰10,则侧面与底面所成的角大小为________.15.圆锥母线长为3,底面半径为1 cm ,底面圆周上有一点A ,由A 点出发绕圆锥一周回到A 点的最短路线长等于_________________.16.一个正六棱锥,底面边长为2,高为1,则过两条侧棱所作的截面中,最大的截面积等于______________.17.如图是一个正方体的展开图,在原正方体中有以下命题:① AB 与EF 所在直线平行;② AB 与CD 所在直线异面;③ MN 与BF 所在直线成60°角;④ MN 与CD 所在直线互相垂直.其中正确命题的序号是____________(注:把你认为正确的命题都填上)18.若四面体各棱的长是1或2,且该四面体不是正四面体,则其体积的值是_____________(只需写出一个可能的值).三、解答题19.正三棱台ABC —A ′B ′C ′上、下底面的边长分别为1 cm 和3 cm ,高是36cm . ① 证明AA ′⊥平面BCC ′B ′;② 求正三棱台ABC —A ′B ′C ′的侧面积.20.把半径为R 的圆面剪去一个扇形,设剩下的扇形圆心角为α,将其作为一个圆锥的侧面围成一个圆锥.问α 为多大时,圆锥的体积最大?最大值为多少?21.如图所示四面体ABCD 中,已知AB =m ,CD =n ,还需要知道哪些条件(条件个数应最少)就可以求出四面体ABCD 的体积,并说明理由.参考答案基础练习一、选择题 1.B 2.D 3.B 4.B 5.A 6.C7.D 8.B 9.D 10.A 11.A 12.A二、填空题13.21aS 14.60° 15.33 16.6 17.②④ 18.611或1214或1211三、解答题19.① 提示:还台为锥;② 6.20.α=326π;V =2763π R 3.21.提示:以BD 、DC 为邻边作□BDCE ,利用三棱锥换底等积法得须两个条件得:AB 与CD 的距离h 及所成角θ.。
认识多面体与旋转体教学流程好的呀,那咱们就开始聊聊这个多面体和旋转体的教学流程吧。
一、导入部分。
咱得先想个特别有趣的方式把这个话题引出来。
比如说,我可以拿着一些实物,像魔方(这可是典型的多面体哦),还有像圆柱形状的水杯(这就是旋转体啦)。
然后走进教室就问同学们,“宝子们,看看我手上拿的这些东西,有没有觉得很熟悉呀?”接着就开始引导他们观察这些物体的形状特点,“你们看这个魔方,它每个面都是方方正正的,再看这个水杯,它的上下底面都是圆的,侧面还是弯弯的呢。
”这时候就可以把多面体和旋转体的概念简单提一提,让同学们有个初步的印象。
二、知识讲解。
1. 多面体。
- 先给同学们讲啥是多面体。
“宝子们,多面体呢,就是由好多平面图形围成的立体图形。
就像刚刚的魔方,它有六个面,每个面都是正方形。
那多面体还有很多种类呢。
比如说三棱锥,它就像一个金字塔一样,底面是个三角形,然后还有三个三角形的侧面,一共四个面。
再看三棱柱,它有两个底面是三角形,三个侧面是长方形。
咱们在生活中也能看到很多多面体的例子哦,像房子的形状很多时候就是长方体(这也是多面体),还有咱们上课用的粉笔盒。
”- 然后再讲讲多面体的一些重要元素,像顶点、棱和面。
“宝子们,顶点呢,就是多面体上这些棱和棱相交的地方,棱就是两个面相交的线段,面就不用我多说啦,就是那些平平的部分。
比如说三棱锥有4个顶点,6条棱,4个面。
咱可以一起数一下,这样就会记得更清楚哦。
”2. 旋转体。
- 接下来讲旋转体啦。
“宝子们,旋转体就像是一个平面图形绕着一条直线旋转一周得到的立体图形。
就拿圆柱来说,咱们可以想象一个长方形绕着它的一条边旋转一周,就变成了圆柱。
那圆柱有两个底面是完全一样的圆,侧面是一个曲面。
还有圆锥,它是一个直角三角形绕着一条直角边旋转一周得到的。
圆锥就只有一个底面是圆,然后侧面也是曲面,还有一个尖尖的顶点呢。
球体也属于旋转体哦,它可以看成是一个半圆绕着直径旋转一周得到的,球体可是到处都圆圆的,没有棱没有角的。
空间几何体知识点总结高三空间几何体是高中数学中的重要组成部分,特别是在高三阶段,对于空间几何体的理解和运用能力是解决高考数学题目的关键。
本文将对空间几何体的主要知识点进行总结,帮助学生巩固基础,提高解题能力。
一、空间几何体的基本概念空间几何体是指在三维空间中所占有一定体积的图形。
根据构成方式和形状的不同,空间几何体可以分为多面体、旋转体和曲面等几大类。
多面体是由若干个平面多边形所围成的几何体,如正方体、长方体、棱锥、棱柱等。
旋转体则是由一个平面图形绕着某一条直线旋转所形成的几何体,如圆柱、圆锥和球体等。
曲面则是由参数方程或隐函数方程所定义的几何体,如圆环面、抛物面等。
二、空间几何体的性质1. 体积与表面积对于任何一个空间几何体,其体积和表面积是基本的几何量度。
对于规则的几何体,如正方体和球体,其体积和表面积都有固定的计算公式。
而对于不规则的几何体,则需要通过积分或其他方法来求解。
2. 空间关系空间几何体之间的相互位置关系,如平行、相交、包含等,是解决空间几何问题的基础。
在解析几何中,通过坐标系可以精确地描述这些关系。
3. 几何体的对称性许多空间几何体具有一定的对称性,如正方体具有六个面的对称性,球体则具有全方位的对称性。
对称性在解决几何体的计算和证明问题时具有重要作用。
三、空间几何体的计算1. 多面体的体积与表面积对于规则的多面体,其体积和表面积可以通过公式直接计算。
例如,正方体的体积V=a³,表面积S=6a²,其中a为正方体的边长。
对于不规则的多面体,则需要利用向量、平面几何等知识,通过分割和组合的方法来求解。
2. 旋转体的体积与表面积旋转体的体积和表面积计算通常涉及到积分。
例如,圆柱体的体积V=πr²h,表面积S=2πrh+2πr²,其中r为底面半径,h为高。
对于更复杂的旋转体,如圆锥和球体,也需要通过积分来计算其体积和表面积。
3. 组合体的计算在实际问题中,经常会遇到由多个简单几何体组合而成的复杂几何体。
7.1.1认识多面体与旋转体(教案)-【中职专用】高一数学同步精品课堂(人教版2021·基础模块下册)一、教学目标1. 能够理解多面体和旋转体的概念,能够从图形中识别多面体和旋转体;2. 能够辨别多面体和旋转体的共性和区别;3. 能够分析多面体和旋转体的特点和性质,能够对多面体和旋转体进行分类;4. 能够应用多面体和旋转体的知识进行推理,能够解决相关的问题。
二、教学重点1. 多面体和旋转体的概念及其特点;2. 多面体和旋转体的分类;3. 判断图形是否为多面体和旋转体。
三、教学难点1. 分析多面体和旋转体的特点和性质;2. 能够应用多面体和旋转体的知识进行推理,解决相关的问题。
四、教学内容和方法1. 教学内容1.1 什么是多面体?1.2 多面体有哪些性质和特点?1.3 多面体的分类方式及实例。
2.1 什么是旋转体?2.2 旋转体有哪些性质和特点?2.3 旋转体的分类方式及实例。
2. 教学方法2.1 案例教学法,引导学生从图形中判断是否为多面体和旋转体;2.2 讲解法,介绍多面体和旋转体的定义、性质、分类等内容;2.3 实验法,通过给定的图形,让学生自己绘制多面体和旋转体。
五、教学过程1. 导入环节1.1 提问:大家知道什么是多面体和旋转体吗?有哪些例子?1.2 引导学生通过图例,来对多面体和旋转体进行初步了解。
2. 感知活动2.1 给学生呈现不同形状的图形,让学生自己分辨出哪些是多面体和旋转体。
2.2 学生根据自己的感性认识,对多面体和旋转体进行分类,并记录下来。
3. 讲解与练习3.1 讲解多面体和旋转体的定义、性质和分类方式,并引导学生通过实例进行训练。
3.2 给学生练习题,以巩固所学内容。
4. 拓展4.1 对已掌握的知识进行拓展,例如如何计算多面体和旋转体的表面积和体积等内容。
4.2 给学生进行讨论和思考,让学生能够应用多面体和旋转体的知识来解决问题和实际场景。
5. 归纳总结5.1 整理多面体和旋转体的性质和特点;5.2 梳理多面体和旋转体的分类方式及其实例;5.3 给学生进行考试,检测学生的掌握情况。
第二章多面体和旋转体一多面体§2.1 棱柱一、素质教育目标(一)知识教学点1、棱柱的概念及性质。
2、平等六面体,长方体的概念及长方体的性质。
3、直棱柱直观图的画法4、棱柱侧面积的计算(二)能力训练点1、在学习棱住概念和性质过程中,努力提高学生的观察、抽象和概括能力。
2、通过直棱柱直观图的画法的教学,进一步提高学生的作图和识图能力。
3、通过直棱柱侧面积公式的教学,进一步增强学生把空间形转化为平面图形的意识,使学生进一步掌握化归的数学思想和方法,以提高学生分析问题、解决问题的能力。
(三)德育渗透点1、棱柱概念的形成,是从特殊到一般、具体到抽象的过程;通过教学使学生初步认识辩证唯物主义认识论的观点。
2、通过四面体、平行六面体、直平行六面体、长方体、正方体之间相互关系的教学,使学生树立普遍联系的唯物主义观点。
3、通过运用侧面积公式计算生产实践中具体零件的面积,使学生懂得数学对工、农业生产的意义,激励学生努力学好数学,将来为祖国的“四化”建设做出更大的贡献。
二、教学重点、难点、疑点及解决办法1、教学重点:理解棱柱的概念,掌握棱柱的性质及直棱柱侧面积公式,能利用性质及侧面积公式解决有关问题。
2、教学难点:直棱柱直观图的画法3、教学疑点:直棱柱的判断,注意引导学生严格按定义三、课时安排本课题建议安排3课时四、教与学过程设计第一课时节棱柱的概念及性质(一)引入将画有图2-1、图2-2、图2-3的小黑板挂出师:今天这一节课我们学习棱柱的概念和性质(给出课题),以上三个图形所表示的模型均为棱柱,下面我们一起来研究它们的共同特点。
(二)棱柱及有关概念的定义师:大家注意到图2-1到图2-3所表示的几何本均由一些面围成,而面与面之间有交线,因此可以从“面”和“线”两个角度去找它们的特点,先观察图2-1。
(1)首先看面:从面和面的关系及面的开头引导学生讨论,得出结论;有两个面互相平行,其余各面为四边形。
(2)再看线:从线与线之间的引导学生得出结论:每相邻两个四边形的公共边都互相平行。
第六章 空间几何体
28
课题: 6.1.1 认识多面体和旋转
【教学目标】
了解多面体和旋转体的基本概念,认识多面体的面、棱、顶点、对角线及旋转体的轴和母线;通过学习认识空间几何体的结构特征,提高学生的归纳总结能力,培养学生由具体到抽象,由一般到特殊的思想方法。
【教学重点】
多面体和旋转体的有关概念
【教学难点】
多面体和旋转体的基本概念,初步形成空间想象力 【教学方法】
观察 演示 探究 【教学过程】 教学环节
教学内容
师生活动
二次修改
导 入
PPT 展示:在现实生活中,我们周围存在着很多形状各异的几何体,让学生观察它们的结构特点 圆形的方形的,多面的,旋转的都有
教师展示图形,并分析这些图形的结构特点,学生认真观察,并回答老师提出的问题: 这些图形各有什么特点?
估计学生认识到:方的,圆的,有尖的等
多面体
教师分析所展示图形并 板书多面体
数学基础模块上册
29
第六章空间几何体
30。