丰富多彩的图形世界复习
- 格式:ppt
- 大小:301.50 KB
- 文档页数:14
第一章丰富的图形世界复习课一、生活中的立体图形1.常见几何体有:圆柱、圆锥、正方体、长方体、棱柱、棱锥和球2.棱:在棱柱中,任何相邻两个面的交线3.侧棱:在棱柱中,相邻两个侧面的交线4.棱柱的特征:⑴棱柱的上、下底面是相同的多边形,侧面都是平行四边形⑵棱柱的所有侧棱都相等⑶侧面的个数与底面多边形的边数相等5.棱柱的分类:按底面边数分为三棱柱、四棱柱、…6.常见几何体的分类(按柱、锥、球分;按侧面平曲分)7.点动成线(直线和曲线)、线动成面(平面和曲面)、面动成体;面与面相交成线,线与线相交成点8.圆柱和棱让、圆锥和棱锥的异同点注意:1.分类可以有不同标准,但必须符合“不重不漏”的原则2.儿何体与实物不能等同,如“足球”是实物,“球”是儿何体3.长方体和正方体都是特殊的四棱柱4.n棱柱有n个侧面,(n+2)个面,2n个顶点,3n条棱例题1.说出与下列物体类似的几何体1粉笔盒2茶杯3篮球4魔方5削好的铅笔笔尖2.一个六棱柱共有—个顶点,—个底面,—个侧面,共有—条棱,其中侧棱有条,它们都—(相等或不相等),底面是—形,侧面是—.3.下列说法不正确的是()A.圆柱和圆锥的底部都是圆B.n棱柱有n个顶点C.棱柱的上、下底面是形状、大小相同的平面图形D.面最少的几何体是只有一个曲面的球5.请将图(2)中的6个几何体进行分类,并说明它们是有那些面围成的?(3) (4) (5)图⑵二、展开与折叠棱柱的侧面展开图、圆柱和圆锥的侧面展开图例题1.下列说法中,正确的个数是().①柱体的两个底面一样大;②圆柱、圆锥的底面都是圆;③棱柱的底面是四边形;④长方体一定是柱体;⑤棱柱的侧面一定是长方形.的名称填在横线上..一正方体木块, 的数字情况。
(A ) (B )它的六个面分别标上数字1——6,这是这个正方体木块从不同面所观察到则数字1和5对面的数字各是 o(A ) 2个(B ) 3个(C ) 4个(D ) 5个3、试判断下面平面图形(1) — (5)中能否折叠成一个儿何体?若能,将折叠成的儿何体 三、 截一个几何体1. 截面形状多为圆和多边形,也可能是不规则图形,一般与下面两点有关:(1)几何体的形状;(2)切截的方向和角度.2. 几种常见几何体的截面正方体的截面:三角形,等腰三角形,等边三角形,正方形,长方形,梯形,五边形,六 边形园柱的截面:圆,长方形,不规则图形圆锥的截面:圆,等腰三角形,不规则图形例题1 .用一个平面去截几何体,若截面是三角形,这个几何体可能是四、 从不同方向看1. 三视图:主视图,左视图,俯视图2. 正方体、圆柱、圆锥、球的三视图注意:看的见的棱画成实线,看不见的棱画成虚线.例题1.我们从不同的方向观察同一物体时,可以看到不同的平面图形,从图的左面看这个儿何 体的左视图是()2. 画出下列立方体的三视图,。
丰富多彩的图形世界复习拔高教案第一章:平面图形的认识与分类一、教学目标:1. 让学生掌握平面图形的特征及分类。
2. 能够识别和命名各种平面图形。
3. 培养学生的观察、思考和动手能力。
二、教学内容:1. 平面图形的定义和特征。
2. 常见平面图形的分类及名称。
3. 平面图形的性质和判定。
三、教学重点与难点:1. 重点:平面图形的特征及分类,常见平面图形的性质和判定。
2. 难点:平面图形的命名和性质的应用。
四、教学方法:1. 采用讲授法、示范法、练习法、讨论法等。
2. 利用多媒体课件辅助教学。
五、教学步骤:1. 引入新课:通过展示各种平面图形,引导学生观察和思考。
2. 讲解平面图形的定义和特征。
3. 讲解常见平面图形的分类及名称。
4. 讲解平面图形的性质和判定。
5. 课堂练习:学生独立完成练习题,教师巡回指导。
第二章:图形的运动一、教学目标:1. 让学生掌握图形的运动规律。
2. 能够运用图形运动的知识解决实际问题。
3. 培养学生的空间想象能力和动手能力。
二、教学内容:1. 图形的运动类型及特点。
2. 图形运动的规律。
3. 图形运动在实际问题中的应用。
三、教学重点与难点:1. 重点:图形运动的类型及特点,图形运动的规律。
2. 难点:图形运动的运用和实际问题的解决。
四、教学方法:1. 采用讲授法、示范法、练习法、讨论法等。
2. 利用多媒体课件辅助教学。
五、教学步骤:1. 引入新课:通过展示图形运动的实例,引导学生观察和思考。
2. 讲解图形运动的类型及特点。
3. 讲解图形运动的规律。
4. 课堂练习:学生独立完成练习题,教师巡回指导。
第三章:图形的对称性一、教学目标:1. 让学生掌握图形的对称性及分类。
2. 能够识别和判断图形的对称性。
3. 培养学生的观察能力、思考能力和动手能力。
二、教学内容:1. 图形的对称性的定义和分类。
2. 常见图形的对称性及判定。
3. 图形的对称性在实际问题中的应用。
三、教学重点与难点:1. 重点:图形的对称性的定义和分类,常见图形的对称性及判定。
丰富的图形世界复习教案一、教学目标1. 知识与技能:(1)能够识别和理解常见的平面图形(三角形、矩形、圆形等)及其特征;(2)能够运用图形语言表达简单的几何关系;(3)能够运用基本的几何变换方法(平移、旋转等)进行图形的变换。
2. 过程与方法:(1)通过观察、操作、思考等活动,培养学生的空间想象能力和逻辑思维能力;(2)培养学生运用几何知识解决实际问题的能力。
3. 情感态度与价值观:(1)激发学生对几何学科的兴趣,培养学生的审美情趣;二、教学内容1. 平面图形的识别与特征:三角形、矩形、圆形等;2. 几何语言的表达:点、线、面的表示方法;3. 几何变换:平移、旋转等。
三、教学重点与难点1. 重点:平面图形的识别与特征,几何语言的表达,几何变换的方法。
2. 难点:几何变换在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生主动探究;2. 利用多媒体辅助教学,直观展示图形变换过程;3. 组织学生进行小组讨论,培养合作交流能力;4. 结合生活实例,让学生感受几何知识在实际生活中的应用。
五、教学过程1. 导入新课:通过展示丰富的图形世界图片,引导学生回顾已学的平面图形及其特征。
3. 课堂练习:设计一些有关平面图形识别、几何语言表达和几何变换的练习题,让学生在实践中巩固知识。
4. 课堂讨论:组织学生进行小组讨论,分享各自在练习中的心得体会,互相交流学习。
5. 几何变换演示:利用多媒体展示几何变换(平移、旋转等)的过程,引导学生理解变换方法。
6. 生活实例:结合生活实际,让学生运用所学几何知识解决问题,如设计图案、计算面积等。
8. 课后作业:布置一些有关平面图形识别、几何语言表达和几何变换的练习题,巩固所学知识。
9. 课堂反馈:及时了解学生对课堂内容的掌握情况,为下一步教学提供参考。
六、教学评价1. 形成性评价:通过课堂练习、讨论等活动,及时了解学生对知识的掌握情况,给予及时的反馈和指导。
2. 终结性评价:通过课后作业、单元测试等方式,评估学生对平面图形识别、几何语言表达和几何变换的掌握程度。
丰富的图形世界复习教案第一章:复习平面图形的性质1.1 复习三角形的性质三角形的定义和特点三角形的分类三角形的内角和定理三角形的边长关系1.2 复习矩形的性质矩形的定义和特点矩形的性质定理矩形的对角线性质矩形的面积计算公式第二章:复习空间几何图形2.1 复习立方体的性质立方体的定义和特点立方体的面、棱和顶点的关系立方体的对角线长度立方体的表面积和体积计算2.2 复习圆柱的性质圆柱的定义和特点圆柱的底面和顶面的关系圆柱的侧面积和体积计算公式圆柱的展开图第三章:复习图形的变换3.1 复习平移的性质平移的定义和特点平移的规律和性质平移在坐标系中的应用平移对图形形状和大小的影响3.2 复习旋转的性质旋转的定义和特点旋转的规律和性质旋转在坐标系中的应用旋转对图形形状和大小的影响第四章:复习图形的坐标计算4.1 复习直线的斜率和截距直线的斜率和截距的定义直线的斜率和截距的计算方法直线的斜率和截距的应用斜率和截距与直线方程的关系4.2 复习圆的方程圆的标准方程和一般方程圆的半径和圆心的计算方法圆与直线的位置关系第五章:复习图形的对称性5.1 复习轴对称的性质轴对称的定义和特点轴对称的规律和性质轴对称在实际问题中的应用轴对称与图形变换的关系5.2 复习中心对称的性质中心对称的定义和特点中心对称的规律和性质中心对称在实际问题中的应用中心对称与图形变换的关系第六章:复习图形的相似性6.1 复习相似图形的定义和性质相似图形的定义和判定条件相似图形的对应边和对应角的关系相似图形面积和体积的比值关系相似图形在实际问题中的应用6.2 复习相似多边形的性质相似多边形的定义和判定条件相似多边形的对应边和对应角的关系相似多边形的面积和周长的比值关系第七章:复习图形的镶嵌和展开7.1 复习平面图形的镶嵌平面图形的镶嵌定义和条件常见几何图形的镶嵌方法镶嵌在实际问题中的应用镶嵌与平面图形的性质关系7.2 复习立体图形的展开立体图形的展开定义和意义常见几何图形的展开方法展开图在实际问题中的应用展开与立体图形的性质关系第八章:复习图形的综合应用8.1 复习平面几何问题的解决方法利用图形性质解决平面几何问题利用几何变换解决平面几何问题利用坐标方法解决平面几何问题平面几何问题在实际中的应用8.2 复习立体几何问题的解决方法利用图形性质解决立体几何问题利用几何变换解决立体几何问题利用坐标方法解决立体几何问题第九章:复习图形的测量和计算9.1 复习角度的测量和计算角度的度量单位和测量工具角度的计算方法和注意事项角的和不定方程的求解方法角度测量在实际问题中的应用9.2 复习距离和线段的长度计算距离和线段的定义及计算方法勾股定理和相似三角形在距离计算中的应用坐标系中两点距离的计算方法距离和线段长度在实际问题中的应用第十章:复习图形的对称和变换10.1 复习图形的轴对称变换轴对称变换的定义和特点轴对称变换的性质和规律轴对称变换在实际问题中的应用轴对称变换与图形美观性的关系10.2 复习图形的平移和旋转变换平移和旋转变换的定义和特点平移和旋转变换的性质和规律平移和旋转变换在实际问题中的应用平移和旋转变换与图形设计的关系重点和难点解析重点关注章节:第一章至第五章1. 第一章复习平面图形的性质,重点关注三角形的性质和矩形的性质。
《丰富的图形世界》知识梳理与复习(第一章丰富的图形世界)知识要点一:生活中的立体图形1、下列实物中外形类似于棱柱的有()①水桶②一堆谷物③螺母④鹅卵石⑤砖头⑥电视机包装箱⑦水管A、2个 B 、3个C、4个D、5个2、下列图形中有14条棱的是()3、在下面的几何体中:①长方体;②圆柱;③球;④五棱柱;⑤圆锥;⑥正方体;可以看成有两个底面的几何体是()A、①②④⑥B、②③④C、②④⑤⑥D、①②③⑥4、写出下列各立体图形的名称5、观察下图中的棱柱和圆柱;回答下列问题(1)该棱柱和圆柱各是由几个面围成的?它们都是平的吗?(2)该棱柱有几个顶点?经过每个顶点有几条棱?6、将长和宽分别为3cm 和2cm 的长方形分别绕长、宽所在的直线旋转一周得到两个几何体,哪个几何体的体积大?(2V r h π=)知识要点二:展开与折叠7、下列说法中错误的是( )A 、棱柱的侧面数与侧棱数相同B 、棱柱的顶点数一定是偶数C 、棱柱的面数一定是奇数D 、棱柱的棱数一定是3的倍数8、下图中不可能围成正方体的有( )A 、1个B 、2个C 、3个D 、4个9、小红制作了一个对面图案均相同的正方体礼品盒(如图所示),则这个正方体礼品盒的平面展开图应该为( )10、一个正方体的展开图如图所示,如果这个正方体相对的面上标注的数值相等,那么x = ,y = 。
11、如图所示,是两个立体图形的展开图,请写出这两个立体图形的名称(1):(2):12、如图是一个多面体的展开图,每个面内都标注了字母,请根据要求回答问题:(1)如果面A在多面体的底部,哪一个面会在上面?(2)如果面F在前面,从左面看是面B,那么哪一面会在上面?(3)如果面D在后面,从右面看是面C,那么哪一面会在上面?知识要点三:截一个几何体13、用平面去截一个圆柱,截面的形状不可能是()A、三角形B、正方形C、长方形D、圆14、有下列几何体:①正方体;②长方体;③圆柱;④圆锥;⑤棱柱;⑥球这些几何体中截面可能是圆的有()A、2种B、3种C、4种D、5种15、正方体被一个平面所截,所得边数最多的多边形是A、四边形B、五边形C、六边形D、七边形16、写出下图中截面的形状17、如图所示,有一个正方体,棱长为5cm,如果在它的左上方截去一个长、宽、高分别为5cm,3cm,2cm的长方体,求它的表面积减少了百分之几?知识要点四:从三个方向看物体的形状18、下面四个几何体中,从左面看是四边形的几何体共有()A、1个B、2个C、3个D、4个19、如图所示是从三个方向看到的物体的形状图,对应的直观图是下列选项中的()20、如图所示,是一个几何体从三个方向看到的形状图,根据图中标注的数据可求得这个几何体的体积为()A、24πB、32πC、36πD、48π21、如图所示,把立方体的六个面分别涂上六种不同的颜色(红、黄、紫、蓝,白、绿),现将上述大小相同颜色分布完全一样的四个立方体拼成一个水平放置的长方体,那么立方体绿色面的对面颜色是()A、红色B、紫色C、白色D、蓝色21、如图是由几个立方块所搭成的几何体从上面看到的形状,则该几何体从正面看有列,从左面看有行。
丰富的图形世界专题复习【课标要点】1.通过观察现实生活中的物体,认识基本几何体及点、线、面.2.通过展开与折叠活动,认识棱柱的基本性质,能根据展开图想象和制作立体模型.3.通过展开与折叠、切与截、从不同方向看等数学实践活动,积累数学活动经验.4.能识别简单物体的三视图,会画立方体及其简单组合的三视图.5.通过平面图形与空间几何体相互转换的活动过程中,建立空间观念.6.认识常见几何体的基本特性,能对这些几何体进行正确的识别和简单的分类. 【知识网络】图1-1-2图1-1-3第1讲 几何体的三视图及常见几何体的侧面展开图【知识要点】1、了解直棱柱.圆柱.圆锥的侧面展开图,能根据展开图判断和制作立体模型.2、会画基本几何体的三视图,会判断简单物体的三视图,能根据三视图描述几何体或实物原型.3、重点:体会从不同方向看同一物体可能看到不同的结果,根据主视图、左视图、俯视图相象出实物图形.4、难点: 能画立方体及其简单组合的三视图.根据主视图、左视图、俯视图相象出实物图形.【典型例题】例1 棱长是1cm 的小立方体组成如图1-1-1所示的几何体,那么这个几何体的表面积是( )A. 36cm 2B . 33cm 2C. 30cm 2D. 27cm 2分析:考查学生观察想象能力,从6个方向观察都是6个边长为1cm 的正方形,所以表面积共计6×6 cm 2=36 cm2解: A例2 如图1-1-2是由相同的小正方体构成的几何体的三视图,这些相同的小正方体的个数是( )A .4个B .5个C .6个D .7个分析:在画三视图时,主俯列相等,从左向右看,画图取大数;左俯行相等,从上向下看,画图取大数.解:B图1-1-1图1-1-4图1-1-5图1-1-6例3 如图1-1-3平面图形中,是正方体的平面展开图形的是( ) 分析:主要考查学生的想象能力和动手操作能力. 解:C例4 如图1-1-4所示,直三棱柱的底面是等边三角形,在它的上底面上有一个半球形凹坑请你画出这个几何体的主视图.左视图和俯视图.分析:本题主要考查学生画简单组合体的三视图的能力,解答的思路是审题并观察几何体,明确这种较复杂的几何体是由哪些几何体组合而成的.它们是怎样组合的,联系三种视图的绘制要求画图.可以先画出主视图,再画其他两种视图.解:如图1-1-5:【知识运用】一、选择题1.下列图形中,不是正方体的展开图的是( ).2.如图1-1-6是正方体的一个表面展开图,展开前,2号面对面上的数字为( ) A.3 B.4 C.5 D.63.小明从正面观察图1-1-7所示的两个物体,看到的是( )主视左视俯视4.图1-1-8中几何体的主视图是图1-1-9中的()二、填空题5.根据下图1-1-10物体的三视图,填出几何体的名称并画出示意图是:.6.水平放置的正方体的六个面分别用“前面、后面、上面、下面、左面、右面”表示.如1-1-11图所示,是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面, “程”表示下面,则“祝”. “你”. “前”分别表示正方体的______________________.三、解答题7.如图1-1-12中图(1)和图(2)分别是两个正方体的展开图,这两个正方体中,对面数字之和为2的数各有几对?有哪几对?8.如图1-1-13,一钢球置于圆柱的上底面,它们之间的接触点恰好是圆柱上底面的中心,请你画出图中所示几何体的主视图.左视图和俯视图.图1-2-1 图1-2-29.若要使得图1-1-14中平面展开图折叠成正方体后,相对面上的两个数之和为5,求x+y+z 的值第2讲 用平面截某几何体及生活中的平面图形【知识要点】1.截面:用一个平面去截一个几何体,截出的面叫做截面.2.多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形叫做多边形.3.从n(n>3整数)边形一个顶点出发,能够引(n -3)条对角线,这些对角线把n 边形分成了(n -2)个三角形,n 边形对角线总条数为(3)2n n 条. 重点:用一个平面去切、截一个正方体,所得截面的形状的特征以及圆柱.圆锥的截面形状特征,认识生活中各类物体所含有的平面图形并将基本图形抽象出来. 难点:用平面切、截几何体,很多情况是靠想象的,归纳.猜想一些规律性的结论.【典型例题】例1 (2004.武汉)如图1―2―1,五棱柱的正确截面是图如图1―2―2中的( ) 解:B例2 用一个平面去截一个正方体,截面形状不能为图如图1―2―3中的( ) 分析:截面可以是三角形.四边形.五边形.解:D例3 如图1-2-4 在正方体1111ABCD A B C D -中,连结AB l .AC.B 1C ,则△AB 1C 的形状是 三角形.分析:本题考查学生判断对立体图形的截面图形形状的能力;应先想到三角形的分类,确定从哪个方面解答,再去分析它的边长或角的大小,确定答案.解:三角形按边分,有等边三角形.等腰三角形和不等边三角形等三类.这里,AB 1.AC.B 1C 分别是全等的正方形的对角线,所以本题应填“等边”.例4 用一个平面去截几何体,若截面是三角形,这个几何体可能是________. 点拨:若截面是三角形,则需要几何体至少有三个平面且有共同的顶点,或几何体有一个平面,其他的若是曲面,必须能截出直线.符合上述条件的是棱柱、圆锥、棱锥、棱台.解:正方体、长方体、棱柱、棱锥、棱台、圆锥.【知识运用】 一、选择题1.用一个平面去截一个正方体,截面图形不可能是( )A.长方形B.梯形C.三角形D.圆2.用一个平面去截一个几何体,如果截面的形状是圆,则这个几何体不可能是( )A.圆柱B.圆锥C.正方体D.球3.正方体的截面不可能是( )A. 四边形B. 五边形C. 六边形D. 七边形 4.n 边形所有对角线的条数是( )(1)n(n-2)n(n-3)n(n-4)ABCD.2222n n -、、、二、填空题5.从多边形的一个顶点共引了6条对角线,那么这个 多边形的边数是_______________6.图1-2-5几何体的截面(图中阴影部分)依次是 . . . .三、解答7.观察下列1-2-6由棱长为1的小立方体摆成的图形,寻找规律:图 1-2-6如图①中:共有1个小立体,其中1个看得见,0个看不见;如图②中:共有8个小立方体,其中7个看得见,1个看不见;如图③中:共有27个小立方体,其中19个看得见,8个看不见;……,则第⑥个图中,看不见的小立方体有个。
丰富多彩的图形世界复习拔高教案一、教学目标1. 复习巩固已学过的平面图形和立体图形的知识。
2. 提高学生对图形的认识和理解能力,培养空间想象力。
3. 学会用图形语言和符号表示图形,提高逻辑思维能力。
4. 培养学生的创新意识和实践能力。
二、教学内容1. 平面图形的性质和分类。
2. 立体图形的性质和分类。
3. 图形的对称性。
4. 图形的变换。
5. 实际问题与图形的联系。
三、教学重点与难点1. 重点:平面图形和立体图形的性质,图形的对称性和变换。
2. 难点:立体图形的分类和空间想象能力的培养。
四、教学方法1. 采用问题驱动法,引导学生主动探究。
2. 利用多媒体辅助教学,直观展示图形,提高学生的空间想象力。
3. 采用小组合作学习,培养学生的团队精神和沟通能力。
4. 实践操作,让学生动手做一做,加深对图形的认识。
五、教学准备1. 多媒体教学设备。
2. 平面图形和立体图形的教具和学具。
3. 练习题和测试题。
4. 教学课件和教案。
教案内容:一、导入新课1. 复习已学过的平面图形和立体图形的知识。
2. 引入图形的对称性和变换。
二、自主学习1. 学生自主探究平面图形的性质和分类。
2. 学生自主探究立体图形的性质和分类。
三、课堂讲解1. 讲解图形的对称性,包括轴对称和中心对称。
2. 讲解图形的变换,包括平移、旋转和翻转。
四、实践操作1. 学生分组进行实践操作,探究图形的对称性和变换。
2. 学生展示实践操作结果,互相评价。
五、巩固练习1. 学生完成练习题,巩固所学知识。
2. 教师点评练习题,解答学生疑问。
(后续章节待补充)六、复习与探究1. 复习平面图形的周长、面积及应用。
2. 复习立体图形的表面积、体积及应用。
3. 学生自主探究图形在实际问题中的应用。
七、图形的对称性与轴对称1. 讲解轴对称图形的概念及性质。
2. 学生实例分析,找出生活中的轴对称图形。
3. 练习:判断给定的图形是否为轴对称图形,并说明理由。
八、图形的变换1. 复习平移、旋转和翻转的定义及性质。