受力图 汇交力系例题
- 格式:ppt
- 大小:756.00 KB
- 文档页数:28
平面力系-平面汇交力系的简化与平衡方程(常用版)(可以直接使用,可编辑完整版资料,欢迎下载)第2章平面力系192.1 平面汇交力系的简化与平衡方程 (19)2.2 力对点之矩合力矩定理 (24)2.3 力偶及其性质 (27)2.4 平面力偶系的合成与平衡方程 (30)2.5 平面一般力系的简化与平衡方程 (32)2.6 物体系统的平衡 (40)*附录Ⅱ:机械应用实例 (49)第2章平面力系本章主要介绍平面力系的简化与平衡问题,平面状态下物系平衡问题的解法。
按照力系中各力的作用线是否在同一平面内,可将力系分为平面力系和空间力系。
若各力作用线都在同一平面内并汇交于一点,则此力系称为平面汇交力系。
按照由特殊到一般的认识规律,我们先研究平面汇交力系的简化与平衡规律。
2.1 平面汇交力系的简化与平衡方程2.1.1 概述设刚体上作用有一个平面汇交力系F1、F2、…、F n,各力汇交于A点(图2-1a)。
根据力的可传性,可将这些力沿其作用线移到A点,从而得到一个平面共点力系(图2-1b)。
故平面汇交力系可简化为平面共点力系。
a )b )图2-1连续应用力的平行四边形法则,可将平面共点力系合成为一个力。
在图2-1b 中,先合成力F 1与F 2(图中未画出力平行四边形),可得力F R1,即 F R1=F 1+ F 2;再将F R1与F 3合成为力F R2,即F R2=F R1+ F 3;依此类推,最后可得F R =F 1+ F 2+…+ F n =∑F i (2-1)式中 F R 即是该力系的合力。
故平面汇交力系的合成结果是一个合力,合力的作用线通过汇交点,其大小和方向由力系中各力的矢量和确定。
因合力与力系等效,故平面汇交力系的平衡条件是该力系的合力为零。
2.1.2力在坐标轴上的投影过F 两端向坐标轴引垂线(图2-2)得垂足a 、b 、a'、b'。
线段ab 和a'b'分别为F 在x 轴和y轴上投影的大小,投影的正负号规定为:从a 到b (或从a'到b')的指向与坐标轴正向相同为正,相反为负。
第二章习题解答2—1如图所示,固定在墙壁上的圆环首三条绳索的拉力作用,力F1沿水平方向,力F3沿铅直方向,力F2与水平线成40度角。
三力的大小分别为F1=2000N,F2=2500N,F3=1500N.求三力的合力。
解:图解法解题时,首先要确定比例尺,即每单位长度代表多大的力,这里我们用单位代表500N,三力在圆环的圆心处相交。
如图(b),力系的力多边形如图(c)。
在图上量出OC的长度和L和与水平之间的夹角有。
Fr=L×500=5000Nφ=38°26'由(c)图的几何关系可见OB=BC,∠BOC=∠BCO=(40°-36°52')=1°34'故合力F r的大小约为Fr=2F2cos1°34'=2×2500×0.99963=4998N与水平方向之间的夹角为φ=38°26'例:用解析法求圆环受三个力的合力。
解:如图建立坐标,则NF F F F NF F F F y R y x xR 310764279.025********cos 391576604.025********cos 2321=⨯+=︒+===⨯+=︒+==∑∑ 合力的大小NF F F yR xR r 5000310739152222=+=+=合力与X 轴之间的夹角为 '283850003915cos arccos1︒===-R Rx F F α2—2 物体重P=20 kN ,用绳子挂在子架的滑轮B 上,绳子的另一端杰在绞车D 上,如图所示。
转动绞车,物体便能升起。
,A 、B 、C 处均为光滑铰链连接。
钢丝绳、杆和滑轮的自重不计,并忽略摩擦和滑轮的大小。
试求平衡时杆AB 和BC 所受得力。
解:该题与例题基本相同1、确定研究对象。
系统中AB,BC 为二力杆,设AB 受拉力,BC 受压力,以各力汇交的滑轮为研究对象。
2、画滑轮的受力图如图(C )建立坐标,列平衡方程(坐标轴要尽量和未知的约束力的方向一致或垂直)030cos 60cos 0030cos 60cos ,0=+︒+︒-==︒-︒+=∑∑P P F F F P F F BC y BC AB x4、解方程,得kN F kNF BC BA 64.747.54==1、 答2—3 火箭沿与水平面成θ=25°角的方向作匀速直线运动,如图所示。