智能控制06-模糊控制设计总结优缺点与改进
- 格式:ppt
- 大小:458.50 KB
- 文档页数:33
模糊控制心得模糊控制的心得体会一、模糊控制的定义所谓模糊控制,就是对难以用已有规律描述的复杂系统,采用自然语言(如大、中、小)加以叙述,借助定性的、不精确的及模糊的条件语句来表达,模糊控制是一种基于语言的智能控制。
模糊控制是近代控制理论中建立在模糊集合理论基础上的一种基于语言规则与模糊推理的控制理论,是智能控制的一个重要分支。
二、模糊控制的发展史模糊理论(Fuzzy Logic)是在美国加州大学教授L.A.Zadeh于1965年创立的模糊集合理论的数学基础上发展起来的,主要包括模糊集合理论、模糊逻辑、模糊推理和模糊控制等方面的内容。
美国加州大学的L.A.Zadeh教授在1965年发表了著名论文,文中首次提到了表达事物模糊性的重要概念:隶属函数。
从而突破了19世纪末笛卡尔的经典集合理论,奠定了模糊理论的基础。
1966年P.N.Marinos发表模糊逻辑的研究报告。
1974年L.A.Zadeh发表模糊推理的研究报告。
从此,模糊理论成了一个热门的课题。
1974年,英国的E.H.Mamdani首次用模糊逻辑和模糊推理实现了世界上第一个实验性的蒸汽机控制,并取得了比传统的直接数字控制算法更好的效果,从而宣告模糊控制的诞生。
1980年丹麦的L.P.Holmblad和Ostergard在水泥窑炉采用模糊控制并取得了成功,这是第一个商业化的有实际意义的模糊控制器。
三、模糊控制理论的特点模糊控制在动力系统控制、船舶自动驾驶、智能机器人和锅炉控制等方面已得到广泛应用。
目前,在工业上投入运行的模糊控制器,大多由一组模糊控制规则组成,通过一定的模糊推理机制确定控制作用。
模糊控制(fuzzy control, FC)是以模糊集合论、模糊语言变量及其模糊逻辑推理为1基础的计算机智能控制。
与常规控制方法相比具有以下几个优点。
(1)模糊逻辑比常规逻辑更接近人直观的思维方式,控制系统的设计不要求掌握受控对象精确的数学模型,只需要提供现场操作人员的经验知识及操作数据;经常选用的隶属函数都比较简单,而所需要的控制规则不会过多,从这些简单的建造模块出发,系统却可以完成非常复杂的任务。
华北电力大学科技学院智能控制论文模糊控制的概述及模糊控制的应用姓名:班级:学号:日期:模糊控制的概述及模糊控制在污水处理中的应用摘要:模糊控制技术对工业自动化的进程有着极大地推动作用,本文简要讲述了模糊控制的定义、特点、原理和应用,简介模糊控制在污水处理中的应用。
并讲诉了模糊控制的发展。
关键词:模糊控制;污水处理。
An overview of the fuzzy control and fuzzy control in application ofwastewater treatmentAbstract:Fuzzy control of industrial process automation has greatly promoted the role, the paper briefly describes the definition of fuzzy control, characteristics, principles and applications, Introduction to fuzzy control in wastewater treatment applications. And complaints about the development of fuzzy control.Keywords: fuzzy control; sewage treatment.1 引言传统的自动控制控制器的综合设计都要建立在被控对象准确的数学模型(即传递函数模型或状态空间模型)的基础上,但是在实际中,很多系统的影响因素很多,油气混合过程、缸内燃烧过程等) ,很难找出精确的数学模型。
这种情况下,模糊控制的诞生就显得意义重大。
因为模糊控制不用建立数学模型不需要预先知道过程精确的数学模型。
2 概述刘金琨在《智能控制》教材里提到模糊控制的定义和特点:2.1定义:从广义上,可将模糊控制定义为:“以模糊集合理论、模糊语言变量及模糊推理为基础的一类控制方法”,或定义为:“采用模糊集合理论和模糊逻辑,并同传统的控制理论相结合,模拟人的思维方式,对难以建立数学模型的对象实施所谓一种控制方法”。
智能控制的学习与总结智能控制的学习与思考一、我对智能控制的理解从开始上学学习知识以来,所学到的知识用我自己的理解与感觉就是:所学的知识越来越复杂,其模型越来越接近实际,感觉最深的是在数学课与物理课上,其模型不在只是考虑理想状态下,或者只在线性关系下,其中要考虑到很多的问题,不再只是一个简单的式子就可以表达、求解。
而这学期所学的智能控制感觉是相对于之前学的经典控制理论与现代控制理论,其研究对象是更为实际与现实的问题,但是与之前不同之处在于,现在的智能控制不只是研究对象更加实际、现实,而且是提出了新的方法途径,相比较与经典的控制理论,智能控制的研究对象有其自己的特点:1. 不确定性的模型智能控制的研究对象通常存在严重的不确定性。
这里所说的模型不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可能在很大范围内变化。
2. 高度的非线性对于具有高度非线性的控制对象,采用智能控制的方法往往可以较好地解决非线性系统的控制问题。
3. 复杂的任务要求对于智能控制系统,任务的要求往往比较复杂。
二、智能控制与传统控制的关系智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。
常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。
1. 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决。
2. 传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息。
智能控制的学习与总结智能控制的学习与思考一、我对智能控制的理解从开始上学学习知识以来,所学到的知识用我自己的理解与感觉就是:所学的知识越来越复杂,其模型越来越接近实际,感觉最深的是在数学课与物理课上,其模型不在只是考虑理想状态下,或者只在线性关系下,其中要考虑到很多的问题,不再只是一个简单的式子就可以表达、求解。
而这学期所学的智能控制感觉是相对于之前学的经典控制理论与现代控制理论,其研究对象是更为实际与现实的问题,但是与之前不同之处在于,现在的智能控制不只是研究对象更加实际、现实,而且是提出了新的方法途径,相比较与经典的控制理论,智能控制的研究对象有其自己的特点:1. 不确定性的模型智能控制的研究对象通常存在严重的不确定性。
这里所说的模型不确定性包含两层意思:一是模型未知或知之甚少;二是模型的结构和参数可能在很大范围内变化。
2. 高度的非线性对于具有高度非线性的控制对象,采用智能控制的方法往往可以较好地解决非线性系统的控制问题。
3. 复杂的任务要求对于智能控制系统,任务的要求往往比较复杂。
二、智能控制与传统控制的关系智能控制与传统的或常规的控制有密切的关系,不是相互排斥的。
常规控制往往包含在智能控制之中,智能控制也利用常规控制的方法来解决“低级”的控制问题,力图扩充常规控制方法并建立一系列新的理论与方法来解决更具有挑战性的复杂控制问题。
1. 传统的自动控制是建立在确定的模型基础上的,而智能控制的研究对象则存在模型严重的不确定性,即模型未知或知之甚少者模型的结构和参数在很大的范围内变动,比如工业过程的病态结构问题、某些干扰的无法预测,致使无法建立其模型,这些问题对基于模型的传统自动控制来说很难解决。
2. 传统的自动控制系统的输入或输出设备与人及外界环境的信息交换很不方便,希望制造出能接受印刷体、图形甚至手写体和口头命令等形式的信息输入装置,能够更加深入而灵活地和系统进行信息交流,同时还要扩大输出装置的能力,能够用文字、图纸、立体形象、语言等形式输出信息。
智能控制实训课程学习总结理解自动化与控制系统设计在智能控制实训课程中,我对自动化与控制系统设计有了更深入的了解。
通过这门课程的学习和实践,我对智能控制的原理和方法有了更全面的了解,并且掌握了一定的实践操作技能。
以下是我对这门课程的学习总结和对自动化与控制系统设计的理解。
1. 课程学习经历在课程学习中,我首先了解了自动化控制系统的基本概念和原理。
我们学习了控制系统的组成部分,包括传感器、执行器、控制器等,并学习了控制系统的开闭环原理和PID控制算法。
在学习的过程中,我们参与了多个实践项目,例如温度控制、液位控制和小车路径规划等。
通过这些实践项目,我们能够将理论知识应用到实践中,从而更好地理解自动化与控制系统设计的原理和方法。
此外,课程还介绍了智能控制系统的基本概念和相关技术,包括人工智能、模糊控制、神经网络控制等。
通过学习这些内容,我们了解到智能控制系统在现代工业自动化中的重要性和应用场景。
2. 自动化与控制系统设计的理解自动化与控制系统设计是一门综合性较强的学科,需要掌握多个领域的知识。
在这门课程中,我了解到自动化与控制系统设计的核心在于通过合理的控制策略,使系统实现期望的运行状态和性能指标。
自动化与控制系统设计的关键环节是系统建模和控制算法设计。
在系统建模阶段,我们需要深入了解系统的物理特性和行为规律,以便将其转化为数学模型。
常见的建模方法包括传递函数模型、状态空间模型等。
在控制算法设计方面,我们学习了PID控制算法以及其他高级控制方法。
PID控制算法是一种常用且简单有效的控制算法,它通过比较实际输出与期望输出的差异,调整控制器的参数来实现控制目标。
而其他高级控制方法,如模糊控制和神经网络控制,则能够更好地应对非线性和复杂系统。
在实践项目中,我们需要根据系统的需求和特点选择合适的控制策略和算法,并进行系统参数的调整和优化。
这需要我们对不同控制方法的原理和应用进行深入理解,以便在实践中能够灵活使用和调整。
模糊控制技术发展现状及研究热点一、引言模糊控制技术是一种基于模糊逻辑的控制方法,它能够处理不确定性和模糊性的问题,广泛应用于各个领域。
本文将对模糊控制技术的发展现状进行概述,并介绍当前的研究热点。
二、模糊控制技术的发展现状1. 历史回顾模糊控制技术最早由日本学者松原英利于1973年提出,随后逐渐发展起来。
在过去的几十年中,模糊控制技术在工业控制、机器人、交通系统等领域得到了广泛应用,并取得了显著的成果。
2. 应用领域模糊控制技术被广泛应用于以下几个领域:(1) 工业控制:模糊控制技术在工业自动化中起到了重要的作用,能够处理复杂的控制问题,提高生产效率和产品质量。
(2) 机器人:模糊控制技术在机器人控制中广泛应用,能够使机器人具备自主决策和适应性。
(3) 交通系统:模糊控制技术在交通信号控制、智能交通系统等方面有着广泛的应用,能够提高交通效率和减少交通事故。
(4) 医疗领域:模糊控制技术在医疗设备控制、疾病诊断等方面有着广泛的应用,能够提高医疗效果和患者生活质量。
3. 发展趋势随着科技的不断进步,模糊控制技术也在不断发展。
目前,模糊控制技术的发展趋势主要体现在以下几个方面:(1) 模糊控制算法的改进:研究者们正在不断改进模糊控制算法,提高控制系统的性能和鲁棒性。
(2) 模糊控制与其他技术的结合:模糊控制技术与神经网络、遗传算法等其他智能控制技术的结合,能够进一步提高控制系统的性能。
(3) 模糊控制系统的优化:研究者们正在研究如何优化模糊控制系统的结构和参数,以提高系统的控制性能。
(4) 模糊控制技术在新领域的应用:模糊控制技术正在拓展到新的应用领域,如金融、环境保护等。
三、模糊控制技术的研究热点1. 模糊控制系统的建模与设计(1) 模糊控制系统的建模方法:研究者们正在研究如何准确地建立模糊控制系统的数学模型,以便更好地进行控制系统设计和分析。
(2) 模糊控制系统的设计方法:研究者们正在研究如何设计出性能优良的模糊控制系统,以满足不同应用领域的需求。
一、实验目的1. 了解智能控制的基本原理和方法。
2. 掌握智能控制系统的设计和实现方法。
3. 熟悉智能控制实验平台的操作和应用。
二、实验原理智能控制是利用计算机技术、控制理论、人工智能等知识,实现对复杂系统的自动控制。
实验主要涉及以下原理:1. 模糊控制:利用模糊逻辑对系统进行控制,实现对系统不确定性和非线性的处理。
2. 专家控制:通过专家系统对系统进行控制,实现对系统复杂性和不确定性的处理。
3. 神经网络控制:利用神经网络强大的学习能力和泛化能力,实现对系统的自适应控制。
三、实验器材1. 实验平台:智能控制实验箱2. 传感器:温度传感器、湿度传感器、压力传感器等3. 执行器:电机、继电器、阀门等4. 控制器:单片机、PLC等5. 信号线、连接线等四、实验内容1. 模糊控制器设计(1)建立模糊控制模型:根据实验要求,确定输入、输出变量和模糊控制规则。
(2)设计模糊控制器:根据模糊控制规则,设计模糊控制器,包括模糊化、去模糊化等环节。
(3)仿真实验:利用仿真软件对模糊控制器进行仿真实验,验证控制效果。
2. 专家控制器设计(1)建立专家系统:收集专家知识,构建专家系统。
(2)设计专家控制器:根据专家系统,设计专家控制器,实现对系统的控制。
(3)仿真实验:利用仿真软件对专家控制器进行仿真实验,验证控制效果。
3. 神经网络控制器设计(1)建立神经网络模型:根据实验要求,确定神经网络的结构和参数。
(2)训练神经网络:利用实验数据对神经网络进行训练,提高网络的控制能力。
(3)设计神经网络控制器:根据训练好的神经网络,设计神经网络控制器,实现对系统的控制。
(4)仿真实验:利用仿真软件对神经网络控制器进行仿真实验,验证控制效果。
五、实验步骤1. 熟悉实验平台,了解各模块的功能和操作方法。
2. 根据实验要求,设计模糊控制器、专家控制器和神经网络控制器。
3. 利用仿真软件对控制器进行仿真实验,验证控制效果。
4. 分析实验结果,对控制器进行优化和改进。