智能控制 第2章 模糊控制仿真简介(2)
- 格式:ppt
- 大小:2.08 MB
- 文档页数:77
模糊控制理论模糊控制理论是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
模糊控制作为以模糊集合论、模糊语言变量及模糊逻辑推理为基础的一种计算机数字控制,它已成为目前实现智能控制的一种重要而又有效的形式尤其是模糊控制与神经网络、遗传算法及混沌理论等新学科的融合,正在显示出其巨大的应用潜力。
实质上模糊控制是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
本文简单介绍了模糊控制的概念及应用,详细介绍了模糊控制器的设计,其中包含模糊控制系统的原理、模糊控制器的分类及其设计元素。
“模糊”是人类感知万物,获取知识,思维推理,决策实施的重要特征。
“模糊”比“清晰”所拥有的信息容量更大,内涵更丰富,更符合客观世界。
模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量与模糊逻辑推理为基础的一种计算机数字控制技术。
模糊控制理论是由美国著名的学者加利福尼亚大学教授Zadeh·L·A于1965年首先提出,它是以模糊数学为基础,用语言规则表示方法与先进的计算机技术,由模糊推理进行决策的一种高级控制策。
在1968~1973年期间Zadeh·L·A先后提出语言变量、模糊条件语句与模糊算法等概念与方法,使得某些以往只能用自然语言的条件语句形式描述的手动控制规则可采用模糊条件语句形式来描述,从而使这些规则成为在计算机上可以实现的算法。
1974年,英国伦敦大学教授Mamdani·E·H研制成功第一个模糊控制器, 并把它应用于锅炉与蒸汽机的控制,在实验室获得成功。
这一开拓性的工作标志着模糊控制论的诞生并充分展示了模糊技术的应用前景。
模糊控制实质上是一种非线性控制,从属于智能控制的范畴。
模糊控制的一大特点是既具有系统化的理论,又有着大量实际应用背景。
第一章绪论1 •什么是智能、智能系统、智能控制答:“智能”在美国Heritage词典定义为“获取和应用知识的能力”。
“智能系统”指具有一定智能行为的系统,是模拟和执行人类、动物或生物的某些功能的系统。
“智能控制”指在传统的控制理论中引入诸如逻辑、推理和启发式规则等因素,使之具有某种智能性;也是基于认知工程系统和现代计算机的强大功能,对不确定环境中的复杂对象进行的拟人化管理。
2 •智能控制系统有哪几种类型,各自的特点是什么答:智能控制系统的类型:集散控制系统、模糊控制系统、多级递阶控制系统、专家控制系统、人工神经网络控制系统、学习控制系统等。
各自的特点有:集散控制系统:以微处理器为基础,对生产过程进行集中监视、操作、管理和分散控制的集中分散控制系统。
该系统将若干台微机分散应用于过程控制,全部信息通过通信网络由上位管理计算机监控,实现最优化控制,整个装置继承了常规仪表分散控制和计算机集中控制的优点,克服了常规仪表功能单一,人机联系差以及单台微型计算机控制系统危险性高度集中的缺点,既实现了在管理、操作和显示三方面集中,又实现了在功能、负荷和危险性三方面的分散。
人工神经网络:它是一种模范动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。
这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的尖系,从而达到处理信息的目的。
专家控制系统:是一个智能计算机程序系统,其内部含有大量的某个领域专家水平的知识与经验,能够利用人类专家的知识和解决问题的经验方法来处理该领域的高水平难题。
可以说是一种模拟人类专家解决领域问题的计算机程序系统。
多级递阶控制系统是将组成大系统的各子系统及其控制器按递阶的方式分级排列而形成的层次结构系统。
这种结构的特点是:1 •上、下级是隶属矢系,上级对下级有协调权,它的决策直接影响下级控制器的动作。
2- 信息在上下级间垂直方向传递,向下的信息有优先权。
同级控制器并行工作,也可以有信息交换,但不是命令。
第2章模糊控制2.1 模糊控制自从1965年美国加利福尼亚大学控制论专家L .A .zadeh教授提出模糊数学以来”,吸引了众多的学者对其进行研究,使其理论与方法日臻完善,并且广泛地应用于自然科学和社会科学的各个领域,尤其是在第5代计算机研制和知识工程开发等领域占有特殊重要的地位。
把模糊逻辑应用于控制领域则始于1973年”。
1974年英国的E.H.Mamdani成功地将模糊控制应用于锅炉和蒸汽机控制。
此后20多年来,模糊控制不断发展并在许多领域中得到成功应用。
由于模糊逻辑本身提供了由专家构造语言信息并将其转化为控制策略的一种系统的推理方法,因而能够解决许多复杂而无法建立精确数学模型系统的控制问题,所以它是处理推理系统和控制系统中不精确和不确定性的一种有效方法。
从广义上讲,模糊控制是适于模糊推理,模仿人的思维方式,对难以建立精确数学模型的对象实施的一种控制策略。
它是模糊数学同控制理论相结合的产物,同时也是智能控制的重要组成部分。
模糊控制的突出特点在于:①控制系统的设计不要求知道被控对象的精确数学模型,只需要提供现场操作人员的经验知识及操作数据。
⑦控制系统的鲁棒性强,适应于解决常规控制难以解决的非线性、时变及大纯滞后等问题。
③以语言变量代替常规的数学变量,易于形成专家的“知识”。
④控制推理采用“不精确推理”(Approximatc Reasoning)。
推理过程模仿人的思维过程。
由于介入了人类的经验.因而能够处理复杂甚至“病态”系统。
2.1.1模糊数学模糊数学是基于模糊集理论。
模糊集的概念与古典集非此即彼的概念相对应,描述没有明确、清楚地定义界限的集合。
模糊集的理论叙述为:模糊集A是定义在一个输入ξ之上并由其隶属函数µA(·):ξ→[0,1]表征的集合。
假设ξ是一个普通集合,称为论域。
从ξ到区间[0,1]的映射A称为ξ上的一个模糊集合。
µA(·)表示ξ隶属于模糊集合A的程度,称为隶属度。
智能控制基础了解智能控制基础了解1.介绍智能控制的概念智能控制是指利用先进的技术和算法,对系统进行实时的监测和调整,以提高系统的性能和效率。
智能控制可以应用于各种领域,如工业控制、智能家居、自动驾驶等。
2.智能控制的基本原理(1) 传感器和执行器传感器用于感知系统的状态和环境信息,执行器用于执行控制命令。
(2) 控制算法控制算法根据传感器信息进行决策,并相应的控制命令。
(3) 反馈机制反馈机制用于对系统的输出进行实时监测和反馈,以调整控制算法的参数。
(4) 优化算法优化算法用于优化控制算法的参数,以实现最优的控制效果。
3.智能控制的分类(1) 闭环控制和开环控制闭环控制通过反馈机制实时调整控制命令,以减小系统的误差,而开环控制没有反馈机制。
(2) 模糊控制模糊控制是一种基于模糊逻辑的控制方法,适用于复杂、非线性的系统。
(3) 神经网络控制神经网络控制利用神经网络模型进行系统建模和控制决策,具有自学习和适应能力。
(4) 遗传算法控制遗传算法控制通过模拟自然界的进化过程,对控制算法的参数进行优化。
4.智能控制的应用领域(1) 工业控制智能控制在工业领域广泛应用,如生产线控制、控制等,提高生产效率和质量。
(2) 智能家居智能控制在智能家居领域可以实现灯光、空调、门窗等设备的自动控制和优化管理。
(3) 自动驾驶智能控制在自动驾驶领域可以实现车辆的自主导航和行为决策,提高驾驶安全性和舒适性。
本文档涉及附件:________附件1 ●智能控制系统示意图本文所涉及的法律名词及注释:________1.智能控制:________指利用先进的技术和算法,对系统进行实时的监测和调整的过程。
2.闭环控制:________通过反馈机制实时调整控制命令,以减小系统的误差。
3.开环控制:________没有反馈机制的控制方式。
4.模糊控制:________一种基于模糊逻辑的控制方法,适用于复杂、非线性的系统。
5.神经网络控制:________利用神经网络模型进行系统建模和控制决策的控制方式。