第26章《二次函数》小结与复习1导学案
- 格式:doc
- 大小:68.50 KB
- 文档页数:1
教师归纳点评:(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系: y=ax2+bx+c————→y=a(x+b 2a )2+4ac-b24a(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。
(3)抛物线的平移抓住关键点顶点的移动,分析完例题后归纳;投影展示:强化练习:(1)抛物线y=x2+bx+c的图象向左平移2个单位。
再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。
(2)通过配方,求抛物线y=12x2-4x+5的开口方向、对称轴及顶点坐标,再画出图象。
3.知识点串联,综合应用。
例:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1)。
(1)求直线和抛物线的解析式;(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。
学生活动:开展小组讨论,体验用待定系数法求函数的解析式。
教师点评:(1)直线AB过点A(2,0),B(1,1),代入解析式y=kx+b,可确定k、b,抛物线y=ax2过点B(1,1),代人可确定a。
求得:直线解析式为y=-x+2,抛物线解析式为y=x2。
(2)由y=-x+2与y=x2,先求抛物线与直线的另一个交点C的坐标为(-2,4),S△OBC =S△ABC-S△OAB=3。
∵ S△AOD=S△OBC,且OA=2 ∴ D的纵坐标为3又∵ D在抛物线y=x2上,∴x2=3,即x=± 3 ∴ D(-3,3)或(3,3)强化练习:函数y=ax2(a≠0)与直线y=2x-3交于点A(1,b),求:(1)a和b的值;(2)求抛物线y=ax2的顶点和对称轴;(3)x取何值时,二次函数y=ax2中的y随x的增大而增大,(4)求抛物线与直线y=-2两交点及抛物线的顶点所构成的三角形面积。
二、课堂小结1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。
二次函数小结与复习教案一、教学目标1. 理解二次函数的定义、性质及图象特征。
2. 掌握二次函数的解析式、顶点式及标准式之间的转换。
3. 能够运用二次函数解决实际问题,提高解决问题的能力。
4. 培养学生的逻辑思维能力和团队协作能力。
二、教学内容1. 二次函数的定义与性质1.1 二次函数的定义:一般式为y=ax^2+bx+c(a≠0)1.2 二次函数的性质:开口方向、对称轴、顶点、单调性等。
2. 二次函数的图象特征2.1 开口方向:a>0时,开口向上;a<0时,开口向下。
2.2 对称轴:x=-b/(2a)2.3 顶点:(-b/(2a), c-b^2/(4a))2.4 与y轴的交点:x=0时,y=c。
3. 二次函数的解析式3.1 一般式:y=ax^2+bx+c3.2 顶点式:y=a(x-h)^2+k3.3 标准式:y=a(x-α)^2+β4. 二次函数的转换4.1 一般式与顶点式的转换:4.2 顶点式与标准式的转换:5. 实际问题中的应用5.1 抛物线与坐标轴的交点问题5.2 实际问题转化为二次函数问题,求最值等。
三、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质及图象特征。
2. 利用数形结合法,让学生直观地理解二次函数的图象与性质之间的关系。
3. 运用小组合作探究法,培养学生的团队协作能力和解决问题的能力。
4. 结合实际例子,让学生感受二次函数在生活中的应用。
四、教学准备1. PPT课件:二次函数的性质、图象、实际应用等。
2. 练习题:涵盖本节课的主要知识点。
3. 小组讨论:分组安排。
五、教学过程1. 导入:复习一次函数和反比例函数,引出二次函数。
2. 讲解:介绍二次函数的定义、性质、图象特征等。
3. 演示:利用PPT展示二次函数的图象,让学生直观地感受开口方向、对称轴等。
4. 练习:让学生完成一些简单的练习题,巩固所学知识。
5. 小组讨论:布置一道实际问题,让学生分组讨论,运用二次函数解决问题。
二次函数小结与复习教案一、教学目标1. 知识与技能:(1)理解二次函数的定义、性质和图像;(2)掌握二次函数的求解方法,包括配方法、公式法、图像法;(3)能够运用二次函数解决实际问题。
2. 过程与方法:(2)培养学生运用二次函数解决实际问题的能力;(3)培养学生合作学习、讨论交流的能力。
3. 情感态度与价值观:(1)激发学生对数学的兴趣,培养其自信心;(2)培养学生勇于探究、积极思考的精神;(3)培养学生团队协作、分享的品质。
二、教学内容1. 复习二次函数的定义:函数式y = ax^2 + bx + c(a ≠0);2. 复习二次函数的性质:开口方向、对称轴、顶点、单调性等;3. 复习二次函数的图像:开口向上/向下的抛物线,顶点式、对称轴式等;4. 复习二次函数的求解方法:配方法、公式法、图像法;5. 运用二次函数解决实际问题:长度、面积、最大值、最小值等问题。
三、教学重点与难点1. 教学重点:(1)二次函数的定义、性质和图像;(2)二次函数的求解方法;(3)运用二次函数解决实际问题。
2. 教学难点:(1)二次函数的图像分析;(2)运用二次函数解决实际问题。
四、教学过程1. 导入:通过提问方式引导学生回顾二次函数的相关知识,激发学生的学习兴趣;2. 讲解:根据教材,系统讲解二次函数的定义、性质、图像和求解方法,让学生清晰地理解二次函数的基本概念;3. 案例分析:分析实际问题,引导学生运用二次函数解决问题,培养学生运用知识的能力;4. 练习:布置课堂练习题,让学生巩固所学知识,并及时给予解答和指导;五、课后作业1. 复习二次函数的定义、性质、图像和求解方法;2. 完成课后练习题,巩固所学知识;3. 选择一个实际问题,运用二次函数解决,并将解题过程和答案写在作业本上。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2. 课后作业:检查学生完成的课后作业,评估其对二次函数知识的掌握程度;3. 练习题:分析学生完成的练习题,了解其在二次函数求解方法和实际问题解决方面的能力;4. 小组讨论:评估学生在小组讨论中的表现,了解其合作学习、交流分享的能力。
九年级下册数学第26章小结与复习教案分层次复习本章的主要内容,将所学的知识与以前学过的知识进行紧密联结。
通过思考,知识得到内化,认知结构得到进一步完善。
再次通过练习稳固这些知识。
教学目标
1.表述二次函数的概念,会用描点法画出二次函数的图象,能从图象上认识二次函数的性质;
2.会利用二次函数的图象求一元二次方程的近似解;
3.能用二次函数解决一些实际问题。
1.有目的地梳理本章知识,形成完整的知识体系;
2.提高归纳和概括能力,形成反思自己学习过程的意识。
在总结学习经验和活动经验的过程中,体验因学习方法的大力改良而带来的快乐,成为一个乐于学习的人。
通过学习利用二次函数的图象求一元二次方程,体会数形结合的思想。
重点是:二次函数的图像和性质,二次函数的应用。
难点是:二次函数的应用。
启发引导、小组讨论
教学媒体
课件
课时安排
1课时
教学过程设计
ppt课件2~20页
根据课件内容提出相关的问题,由学生讨论得出问题的答案,不能只是按顺序播放课件。
ppt课件21~29页
先由学生根据题意得出函数,再根据具体实例得出问题的最终答案,最后教师点评。
引导学生总结出本节的主要内容。
小结与复习
二次函数的概念
函数的图像和性质
二次函数与一元二次方程
函数的应用(练习)。
人教版九年级数学下册第26章二次函数导学案26.1.1二次函数(第一课时)教学目标:(1)理解并掌握二次例函数的概念;(2)、能判断一个给定的函数是否为二次例函数(3)、能根据实际问题中的条件确定二次例函数的解析式。
重点:理解二次例函数的概念,能根据已知条件写出函数解析式;难点:理解二次例函数的概念.。
教学过程:一.预习检测案一般地,形如____________________________的函数,叫做二次函数。
其中x是________,a是__________,b是___________,c是_____________.二.合作探究案:三.达标测评案:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x);(6)y=x-2+x. 2.若函数y=(a-1)x+2x+a-1是二次函数,则( ) A.a=1 B.a=±1 C.a≠1 D.a≠-13.一定条件下,若物体运动的路段s(米)与时间t(秒)之间的关系为s=5t+2t,则当t =4秒时,该物体所经过的路程为 A.28米B.48米C.68米D.88米2224.一个长方形的长是宽的2倍,写出这个长方形的面积与宽之间的函数关系式.问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x,表面积为y,写出y 与x的关系。
5.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。
问题2: n边形的对角线数d与边数n之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x倍,那么两年后这种产品的数量y将随计划所定的x的值而定,y与x 之间的关系怎样表示? 问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有的形式。
第26章 《二次函数》小结与复习【学习目标】:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与方程、不等式以及几何图形等知识相结合的综合题。
【学习重点、难点】:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。
难点:会运用二次函数知识解决有关综合问题。
【学习过程】一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。
(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。
(2)抛物线顶点P(-1,-8),且过点A(0,-6)。
(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,且以x =1为对称轴。
【强化练习】:已知一抛物线与x轴的交点是、B(1,0),且经过点C(2,8)。
求该抛物线的解析式;二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x -3与坐标轴的两个交点B、C。
(1)求抛物线的解析式;(2)求抛物线的顶点坐标,(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。
【强化练习】:已知二次函数y=2x2-(m+1)x+m-1。
(1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。
(2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。
(3)若函数图象的顶点在第四象限,求m的取值范围。
三、课堂小结1.让学生完成下表:2.归纳二次函数三种解析式的求法:一般式、顶点式、交点式。
3.强调二次函数与方程、不等式、三角形,一次函数等知识综合的综合题解题思路。
4. 常见的数学思想方法:方程思想、转化思想,化归思想、待定系数法、数形结合法等等。
四、作业:课时作业优化设计一、填空。
1. 如果一条抛物线的形状与y=-x2+2的形状相同,且顶点坐标是(4,-2),它的解析式是_____。
26章小结与复习题(一)教学内容:课本P31~32教学目标1、形成二次函数的知识结构,能够根据知识结构解读知识要点;2、形成二次函数的方法体系;教学重难点重点:形成二次函数的知识结构,能够根据知识结构解读知识要点;难点:形成二次函数的方法体系;教学准备:课件教学方法:讲练法教学过程一、展示知识结构二、解读知识点(一)知识点一:二次函数的解析式1、定义:一般要,形如的函数,叫做二次函数。
2、二次函数的解析式(1)一般式:;其中二次函数的对称轴是,顶点坐标是;(2)顶点式:;其中二次函数的对称轴是,顶点坐标是;(3)交点式:;其中二次函数的对称轴是,顶点坐标是;3、利用图象平移求解析式(1)平移条件:两个二次函数的a相等,就可以通过平移其中一个函数图象得到另一个函数图象。
(2)平移方法:先把一般式转换成顶点式,再确定顶点坐标,最后按要求平移顶点。
(3)平移规律:h满足正右移,负左移;k满足正上移,负下移。
即左加右减,上加下减。
(二)知识点二:二次函数的图象及性质1、当△>0时,抛物线与x轴有2个交点,两个交点的横坐标就是一元二次方程的两个不相等的实数根。
2、当△=0,抛物线与x轴有1个交点,交点是顶点,一元二次方程有两个相等的实数根;3、当△<0时,抛物线与x轴没有交点,一元二次方程没有初数根。
(四)知识点四:二次函数的图象与字母a、b、c之关系。
(1)抛物线开口向上,a>0,开口向下,a<0;(2)对称轴在y轴左侧,a,b同号;对称轴在y轴右侧,a,b异号;对称轴在y轴,b=0.简记:左同右异中间0.(3)抛物线与y轴的交点在x轴上方,c>0,抛物线与y轴交点在x轴下方,c<0,抛物线与y轴交点在原点,c=0.简记:上正下负中间0.(4)判断2a-b与0的关系,需比较对称轴与-1的大小;判断2a+b与0的关系,需比较对称轴与1的大小;(5)判断a+b+c与0的关系,需看x=1时,函数值与0的大小;判断a-b+c与0的关系,需看x=-1时,函数值与0的大小。
二次函数导学案 26.1 二次函数及其图像26.1.1 二次函数 九年级下册 编号01【学习目标】1. 了解二次函数的相关概念.2. 会确定二次函数关系式中各项的系数。
3. 确定实际问题中二次函数的关系式。
【学法指导】类比一次函数,反比例函数来学习二次函数,注意知识结构的建立。
【学习过程】 一、知识链接:1.若在一个变化过程中有两个变量x 和y ,如果对于x 的每一个值, y 都有唯一的值与它对应,那么就说y 是x 的 ,x 叫做 。
2. 形如___________y =0)k ≠(的函数是一次函数,当______0=时,它是 函数;形如 0)k ≠(的函数是反比例函数。
二、自主学习:1.用16m 长的篱笆围成长方形圈养小兔,圈的面积y(㎡)与长方形的长x(m)之间的函数关系式为 。
分析:在这个问题中,可设长方形生物园的长为x 米,则宽为 米,如果将面积记为y 平方米,那么y 与x 之间的函数关系式为y = ,整理为y = .2.n 支球队参加比赛,每两队之间实行一场比赛.写出比赛的场次数m 与球队数n 之间的关系式_______________________.3.用一根长为40cm 的铁丝围成一个半径为r 的扇形,求扇形的面积S 与它的半径r 之间的函数关系式是 。
4.观察上述函数函数关系有哪些共同之处?。
5.归纳:一般地,形如 ,(,,a b c a 是常数,且 )的函数为二次函数。
其中x 是自变量,a 是__________,b 是___________,c 是_____________.三、合作交流:(1)二次项系数a 为什么不等于0?答: 。
(2)一次项系数b 和常数项c 能够为0吗?答: . 四、跟踪练习1.观察:①26y x =;②235y x =-+;③y =200x 2+400x +200;④32y x x =-;⑤213y x x=-+;⑥()221y x x =+-.这六个式子中二次函数有 。
第26章小结与复习【学习目标】1.复习本章内容,形成对本章知识整体性认识. 2.通过巩固复习,达到对各知识点的熟练掌握. 【学习重点】对本章知识结构的整体性认识. 【学习难点】熟练应用二次函数相关知识解决问题.情景导入 生成问题知识结构框图:二次函数⎩⎪⎪⎪⎨⎪⎪⎪⎧二次函数的定义二次函数的图象和性质⎩⎨⎧y =ax 2,y =ax 2+k ,y =a (x -h )2(a≠0)的图象与性质y =a (x -h )2+k (a≠0)y =ax 2+bx +c (a≠0)二次函数表达式的求法⎩⎪⎨⎪⎧已知顶点和另一点求表达式已知三点求函数表达式实践与探索——利用二次函数解决实际问题自学互研 生成能力知识模块一 二次函数图象与性质范例:将抛物线y =-2x 2+1向右平移1个单位,再向上平移2个单位后所得到的抛物线为y =-2x 2+4x +1.仿例1:抛物线y =-3(x +1)2不经过的象限是( A )A .第一、二象限B .第二、四象限C .第三、四象限D .第二、三象限仿例2:二次函数y =x 2-3x +m 的顶点在x 轴上,则m =94,.)仿例3:抛物线y =-x 2+2x +c 的对称轴和x 轴相交于点(m ,0),则m 的值是1. 仿例4:已知二次函数y =a(x +1)2-b(a≠0)有最小值1,则a ,b 的大小关系为a>b . 知识模块二 求二次函数表达式范例:(1)某抛物线经过点A(1,1),B(-1,4),C (3,0)三点,则该抛物线表达式为y =14x 2-32x +94,;)(2)已知二次函数当x =1时有最大值-6,且其图象经过点(2,-8),则其函数表达式为y =-2x 2+4x -8. 仿例1:某抛物线的对称轴为直线x =2,且经过点(1,4)和(5,0),则其表达式为y =-12x 2+2x +52,.)仿例2:一个二次函数的图象如图所示,则它的表达式为y =x 2+2x -3. 知识模块三 二次函数的应用范例:商店购进一批单价为8元的商品,如果按每件10元出售,那么每天可销售100件.经调查发现,这种商品的销售单价每提高1元,其销售量相应地减少10件.将销售价定为多少,才能使每天所获销售利润最大?最大利润是多少?解:设销售单价定为x 元(x≥10),每天所获利润为y 元.根据题意,得y =[100-10(x -10)]·(x-8)=-10x 2+280x -1600=-10(x -14)2+360.所以将销售价定为14元时,每天所获销售利润最大,且最大利润是360元.仿例:如图所示,隧道的截面由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系,y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m .(1)求抛物线的表达式;(2)如果该隧道内设双行道,现有一辆货运卡车高 4.2m ,宽2.4m ,这辆货运卡车能否通过该隧道?通过计算说明.解:(1)设抛物线的表达式为y =ax 2+6,又因为抛物线过(4,2)点,则16a +6=2,∴a =-14.∴抛物线的表达式为y =-14x 2+6;(2)当x =2.4时,y =-14x 2+6=-1.44+6=4.56>4.2,故这辆货运卡车能通过该隧道.交流展示 生成新知1.将阅读教材时“生成的问题”和通过“自学互研”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块一 二次函数图象与性质 知识模块二 求二次函数表达式 知识模块三 二次函数的应用检测反馈 达成目标【当堂检测】见所赠光盘和学生用书 【课后检测】见学生用书课后反思查漏补缺1.收获:________________________________________________________________________ 2.困惑:________________________________________________________________________。
二次函数导学目标知识点:体会二次函数的意义,了解二次函数的有关概念;会运用配方 法确定 二次函数的图象的顶点、开口方向和对称轴,并能确定其最值;会运用待定系数法求 二次函数的解析式;将实际问题转化为函数问题,并利用函数的性质进行决策. 课 时:1课时导学方法:整理、分析、归纳法导学过程:一、课前导学1. 二次函数的概念及图象特征 二次函数:如果 ,那么y 叫做x 的二次函数.通过配方2y ax bx c =++可写成 ,它的图象是以直线 为对称轴,以 为顶点的一条抛物线.2. 二次函数的性质 值,函数有最大值3. 二次函数图象的平移规律抛物线()2+0y ax bx c a =+≠可由抛物线()20y ax a =≠平移得到. 由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况. 因此有关抛物线的平移问题,需要利用二次函数的顶点式 来讨论.4. 、、及的符号与图象的关系5. 二次函数解析式的确定用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:(1)设一般形式: ;(2)设顶点形式: ;(3)设交点式: .6. 二次函数的应用问题解决实际应用问题的关键是选准变量,建立好二次函数模型,同时还要注意符合实际情景.二、课堂导学1. 二次函数21213y x x =-+-通过向 (左、右)平移 个单位,再向_______(上、下)平移 个单位,便可得到二次函数213y x =-的图象. 2. 已知二次函数2y ax bx c =++的图象如下图所示,则下列6个代数式:ab ,ac ,a b c -+,24b ac -,2a b +,93a b c -+中,值大于0的个数有( )A. 5B. 4C.3 D. 23. 如图,抛物线()2213y x m x m =-++++与x 轴交于A 、B 两点,且:3:1OA OB=,则m 的值为( ) A. 53- B. 0 C. 53-或0 D.14. 已知二次函数()211ymx m x m =+-+-有最小值为0,求m 的值.5. 已知关于x 的二次函数()()()26211ym x m x m =++-++的图象与x 轴总有交点,求m 的取值范围.6.已知二次函数c bx ax y ++=2的图象经过A(-1,0)、B(3,0)、C(0,3)三点,求这个二次函数的解析式.7. 如图所示,有一条双向公路隧道,其横断面由抛物线和矩形ABCO 的三边组成,隧道的最大高度为4. 9m ,AB=10m ,BC=2. 4m. 现把隧道的横断面放在平面直角坐标系中,若有一辆高为4m ,宽为2m 的装有集装箱的汽车要通过隧道. 问:如果不考虑其他因素,汽车的右侧离开隧道右壁多少米才不至于碰隧道顶部?(抛物线部分为隧道顶部,AO 、BC 为壁)8 、今年夏季我国部分地区遭受水灾,空军某部奉命赶赴灾区空投物资。
第 26 章《二次函数》小结与复习(1)教学目标:理解二次函数的概念,掌握二次函数y = ax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y= ax2经过适当平移得到y= a(x-h) 2 +k 的图象。
重点难点:1 .重点:用配方法求二次函数的顶点、对称轴,根据图象概括二次函数y = ax2图象的性质。
2.难点:二次函数图象的平移。
教学过程:一、结合例题精析,强化练习,剖析知识点1 .二次函数的概念,二次函数y= ax2 (a ≠ 0) 的图象性质。
例:已知函数 y (m 2)x m 2m 4 是关于 x 的二次函数,求:(1) 满足条件的 m 值; (2)m为何值时,抛物线有最低点?求出这个最低点.这时当x 为何值时, y 随 x 的增大而增大 ?(3)m 为何值时,函数有最大值?最大值是什么 ?这时当 x 为何值时, y 随 x 的增大而减小 ?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。
教师精析点评,二次函数的一般式为y= ax 2+ bx + c(a ≠ 0) 。
强调 a≠ 0.而常数 b、 c 可以为 0,当 b, c 同时为0 时,抛物线为y= ax2 (a ≠ 0) 。
此时,抛物线顶点为 (0 , 0) ,对称轴是 y 轴,即直线x = 0。
(1) 使y ( m 2)x m 2 m 4 2是关于x 的二次函数,则 m+ m- 4= 2,且 m+ 2≠ 0,即:m2+ m- 4= 2, m+ 2≠ 0,解得; m= 2 或 m=- 3, m≠- 2(2)抛物线有最低点的条件是它开口向上,即m+ 2> 0,(3)函数有最大值的条件是抛物线开口向下,即m+ 2< 0。
抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。
强化练习;已知函数y (m 1)x m2m是二次函数,其图象开口方向向下,则m= _____,顶点为 _____,当 x_____0 时, y 随 x 的增大而增大,当x_____0 时, y 随 x 的增大而减小。
第二十六章小结与复习一、本章学习回顾1. 知识结构2.学习要点(1)能结合实例说出二次函数的意义。
(2)能写出实际问题中的二次函数的关系式,会画出它的图象,说出它的性质。
(3)掌握二次函数的平移规律。
(4)会通过配方法确定抛物线的开口方向、对称轴和顶点坐标和最值。
(5)会用待定系数法灵活求出二次函数关系式。
(6)熟悉二次函数与一元二次方程及方程组的关系。
(7)会用二次函数的有关知识解决实际生活中的问题。
3.需要注意的问题在学习二次函数时,要注重数形结合的思想方法。
在二次函数图象的平移变化中,在用待定系数法求二次函数关系式的过程中,在利用二次函数图象求解方程与方程组时,都体现了数形结合的思想。
二、本章复习题A 组一、填空题01.已知函数m m mx y -=2,当m= 时,它是二次函数;当m= 时,抛物线的开口向上;当m= 时,抛物线上所有点的纵坐标为非正数.02.抛物线2ax y =经过点(3,-1),则抛物线的函数关系式为 . 03.抛物线9)1(22-++=k x k y ,开口向下,且经过原点,则k= .04.点A (-2,a )是抛物线2x y =上的一点,则a= ; A 点关于原点的对称点B 是 ;A 点关于y 轴的对称点C 是 ;其中点B 、点C 在抛物线2x y =上的是 .05.若抛物线c x x y +-=42的顶点在x 轴上,则c 的值是 .06.把函数261x y -=的图象向左平移2个单位,再向下平移3个单位,所得新图象的函数关系式为 . 07.已知二次函数m x x y +-=82的最小值为1,那么m 的值等于 .08.二次函数322++-=x x y 的图象在x 轴上截得的两交点之间的距离为 . 09.抛物线122--=x x y 的对称轴是 ,根据图象可知,当x 时,y 随x 的增大而减小.10.已知抛物线的顶点在原点,对称轴是y 轴,且经过点(-2,-2),则抛物线的函数关系式为 .11.若二次函数c bx x y ++=2的图象经过点(2,0)和点(0,1),则函数关系式为 .12.抛物线322--=x x y 的开口方向向 ,顶点坐标是 ,对称轴是 ,与x 轴的交点坐标是 ,与y 轴的交点坐标是 ,当x= 时,y 有最 值是 .13.抛物线c x x y ++=2与x 轴的两个交点坐标分别为)0,(1x ,)0,(2x ,若32221=+x x ,那么c 值为 ,抛物线的对称轴为 .14.已知函数42)1(22-++-=m x x m y .当m 时,函数的图象是直线;当m 时,函数的图象是抛物线;当m 时,函数的图象是开口向上,且经过原点的抛物线.15.一条抛物线开口向下,并且与x 轴的交点一个在点A (1,0)的左边,一个在点A (1,0)的右边,而与y 轴的交点在x 轴下方,写出这条抛物线的函数关系式 .二、选择题16.下列函数中,是二次函数的有 ( ) ①221x y -= ②21x y = ③)1(x x y -= ④)21)(21(x x y +-= A 、1个 B 、2个 C 、3个 D 、4个 17.若二次函数32)1(22--++=m m x m y 的图象经过原点,则m 的值必为( )A 、-1或3B 、-1C 、3D 、无法确定18.二次函数m x m x y 4)1(22++-=的图象与x 轴( )A 、没有交点B 、只有一个交点C 、只有两个交点D 、至少有一个交点19.二次函数222+-=x x y 有( )A 、最大值1B 、最大值2C 、最小值1D 、最小值220.在同一坐标系中,作函数23x y =,23x y -=,231x y =的图象,它们的共同特点是 A 、都是关于x 轴对称,抛物线开口向上 (D )B 、都是关于y 轴对称,抛物线开口向下C 、都是关于原点对称,抛物线的顶点都是原点D 、都是关于y 轴对称,抛物线的顶点都是原点21.已知二次函数772--=x kx y 的图象和x 轴有交点,则k 的取值范围是( ) A 、47->K B 、47-≥K 且0≠k C 、47-≥K D 、47->K 且0≠k 22.二次函数2)1(212+-=x y 的图象可由221x y =的图象( ) A .向左平移1个单位,再向下平移2个单位得到B .向左平移1个单位,再向上平移2个单位得到C .向右平移1个单位,再向下平移2个单位得到D .向右平移1个单位,再向上平移2个单位得到23.某旅社有100张床位,每床每晚收费10元时,客床可全部租出.若每床每晚收费提高2元,则减少10张床位租出;若每床每晚收费再提高2元,则再减少10张床位租出.以每次提高2元的这种方法变化下去.为了投资少而获利大,每床每晚应提高A 、4元或6元B 、4元C 、6元D 、8元 ( )24.若抛物线c bx ax y ++=2的所有点都在x 轴下方,则必有( )A 、04,02>-<ac b aB 、04,02>->ac b aC 、04,02<-<ac b aD 、04,02<->ac b a25.抛物线1422-+=x x y 的顶点关于原点对称的点的坐标是 ( )A 、(-1,3)B 、(-1,-3)C 、(1,3)D 、(1,-3)三、解答题26.已知二次函数12212++=x x y . (1)写出抛物线的开口方向、顶点坐标、对称轴、最大或最小值;(2)求抛物线与x 轴、y 轴的交点;(3)作出函数图象的草图;(4)观察图象,x 为何值时,y >0;x 为何值时,y= 0;x 为何值时,y <0?27.已知抛物线过(0,1)、(1,0)、(-1,1)三点,求它的函数关系式.28.已知二次函数,当x=2时,y 有最大值5,且其图象经过点(8,-22),求此二次函数的函数关系式.29.已知二次函数的图象与x 轴交于A (-2,0),B (3,0)两点,且函数有最大值2.(1)求二次函数的函数关系式;(2)设此二次函数图象的顶点为P ,求⊿ABP 的面积.30.利用函数的图象,求下列方程(组)的解:(1)0322=--x x ;(2)⎩⎨⎧-=--=x x y x y 213. 31.某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销售量m (件)与每件的销售价x (元)满足一次函数:m=162-3x .(1)写出商场卖这种商品每天的销售利润y 与每件的销售价x 间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?B 组一、选择题32.若所求的二次函数的图象与抛物线1422--=x x y 有相同的顶点,并且在对称轴的左侧,y 随x 的增大而增大;在对称轴的右侧,y 随x 的增大而减小,则所求二次函数的函数关系式为( D )A 、422-+-=x x yB 、)0(322>-+-=a a ax ax yC 、5422---=x x yD 、)0(322<-+-=a a ax ax y33.二次函数)0(2≠++=a c bx ax y ,当x=1时,函数y 有最大值,设),(11y x ,(),22y x 是这个函数图象上的两点,且211x x <<,则( )A 、21,0y y a >>B 、21,0y y a <>C 、21,0y y a <<D 、21,0y y a ><34.若关于x 的不等式组⎩⎨⎧-≤-≥ax a x 5153无解,则二次函数41)2(2+--=x x a y 的图象与x 轴 ( )A 、没有交点B 、相交于两点C 、相交于一点D 、相交于一点或没有交点二、解答题35.若抛物线)5(2342-+=--m x y m m的顶点在x 轴的下方,求m 的值. 36.把抛物线n mx x y ++=2的图象向左平移3个单位,再向下平移2个单位,所得图象的解析式是222+-=x x y ,求m 、n .37.如图,已知抛物线3)5(2122-+-+-=m x m x y ,与x 轴交于A 、B , 且点A 在x 轴正半轴上,点B 在x 轴负半轴上,OA=OB ,(1)求m 的值;(2)求抛物线关系式,并写出对称轴和顶点C 的坐标.38.有一个二次函数的图象,三位学生分别说出了它的一些特点:甲:对称轴是直线x=4;乙:与x 轴两个交点的横坐标都是整数;丙:与y 轴交点的纵坐标也是整数,且以这三个交点为顶点的三角形面积为3.请写出满足上述全部特点的一个二次函数的关系式.C 组39.如图,已知二次函数n mx x y ++-=2,当x=3时有最大值4.(1)求m 、n 的值;(2)设这个二次函数的图象与x 轴的交点是A 、B ,求A 、B 点的坐标;(3)当y <0时,求x 的取值范围;(4)有一圆经过A 、B ,且与y 轴的正半轴相切于点C ,求C 点坐标.40.阅读下面的文字后,解答问题.有这样一道题目:“已知二次函数y=ax 2+bx+c 的图象经过点A(0,a) 、B(1,-2)、 ,求证:这个二次函数图象的对称轴是直线x=2.”题目中的矩形框部分是一段被墨水污染了无法辨认的文字.(1)根据现有信息,你能否求出题目中二次函数的解析式? 若能,写出求解过程,若不能请说明理由;(2)请你根据已有信息在原题中的矩形框内填上一个适当的条件,把原题补充完整.41.已知开口向下的抛物线c bx ax y ++=2与x 轴交于两点A (1x ,0)、B (2x ,0),其中1x <2x ,P 为顶点,∠APB=90°,若1x 、2x 是方程021)2(222=-+--m x m x 的两个根,且262221=+x x .(1)求A 、B 两点的坐标;(2)求抛物线的函数关系式.42.已知二次函数)1(3)2(2++-+-=m x m x y 的图象如图所示.(1)当m ≠-4时,说明这个二次函数的图象与x 轴必有两个交点;(2)求m 的取值范围;(3)在(2)的情况下,若6=⋅OB OA ,求C 点坐标;(4)求A 、B 两点间的距离;(5)求⊿ABC 的面积S .。
二次函数小结与复习 班级 姓名 学号一. 教学内容: 二次函数小结与复习二. 重点、难点:1. 重点: ⑴体会二次函数的意义,了解二次函数的有关概念;⑵会运用配方法确定二次函数的图象的顶点、开口方向和对称轴,并能确定其最值;⑶会运用待定系数法求二次函数的解析式;⑷利用二次函数的知识解决实际问题,并对解决问题的策略进行反思.2. 难点:⑴二次函数图象的平移;⑵将实际问题转化为函数问题,并利用函数的性质进行决策. c bx ax y ++=2a b ac a b x a y 44222-+⎪⎭⎫ ⎝⎛+= 三. 知识梳理:1. 二次函数的概念及图象特征二次函数:如果 ,那么y 叫做x 的二次函数. 通过配方,可写成 ,它的图象是以直线 为对称轴,以 为顶点的一条抛物线.2. 二次函数2的性质值开口方向 对称轴 顶点坐标 最大(或)最小值 >0<0 3. 二次函数图象的平移规律抛物线c bx ax y ++=2可由抛物线y=ax 2(a ≠0)平移得到. 由于平移时,抛物线上所有的点的移动规律都相同,所以只需研究其顶点移动的情况. 因此有关抛物线的平移问题,需要利用二次函数的顶点式来讨论.4. 、、及的符号与图象的关系⑴a →决定抛物线的 ;a >0. ;a <0, .⑵a 、b →决定抛物线的 位置:a 、b 同号,对称轴(2b x a =-<0)在y 轴的 侧; a 、b 异号,对称轴(2b x a =->0)在y 轴的 侧. ⑶c →决定抛物线与y 轴的交点(此时点的横坐标x =0)的位置:c >0,与y 轴的交点在y 轴的 ;c =0,抛物线经过 ;c <0,与y 轴的交点在y 轴的 .⑷b 2-4ac →决定抛物线与x 轴交点的个数:①当b 2-4ac >0时,抛物线与x 轴有 交点;②当b 2-4ac =0时,抛物线与x 轴有 个交点;③当b 2-4ac <0时,抛物线与x 轴 交点.5. 二次函数解析式的确定用待定系数法可求出二次函数的解析式,确定二次函数一般需要三个独立的条件,根据不同的条件选择不同的设法:⑴设一般形式: (a≠0);⑵设顶点形式: (a≠0);⑶设交点式:(a≠0).6. 二次函数的应用问题解决实际应用问题的关键是选准变量,建立好二次函数模型,同时还要注意符合实际情景.四、例题讲解例1. 二次函数2y x 2x 1=+--通过向 (左、右)平移 个单位,再向___________(上、下)平移 个单位,便可得到二次函数213y x =-的图象. 例2. 已知二次函数y=ax 2+bx+c 的图象如下图所示,则下列5个代数式:ab ,ac ,a -b+c ,b 2-4ac ,2a+b 中,值大于0的个数有( )A. 5B. 4C. 3D. 2例3. 如图,抛物线y=-x 2+2(m+1)x+m+3与x 轴交于A 、B 两点,且OA :OB=3:1,则m 的值为( )A. -53 B. 0 C. - 53或0 D. 1例4. 已知二次函数y=mx 2+(m -1)x+m -1有最小值为0,求m 的值.例5. 已知关于x 的二次函数y=(m+6)x 2+2(m -1)x+(m+1)的图象与x 轴总有交点,求m 的取值范围.五、巩固练习1.抛物线y=3x 2,y=-3x 2,y=31x 2+3共有的性质是( ) A.开口向上 B.对称轴是y 轴 C.都有最高点 D.y 随x 值的增大而增大2.将二次函数y=3(x+2)2-4的图象向右平移3个单位,再向上平移1个单位,所得的图象的函数关系式是( )A.y=3(x+5)2-5B.y=3(x-1)2-5C.y=3(x-1)2-3D.y=3(x+5)2-33.如图是二次函数y=ax 2+bx+c 的图象,则a 、b 、c 满足( )A.a>0,b>0,c>0B.a>0,b<0,c>0C.a>0,b>0,c<0D.a>0,b<0,c<04.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的()5.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个,若这种商品的零售价在一定范围内每降价1元,其日销量就增加1个,为了获取最大利润则应降价( )A.20元B.15元C.10元D.5元6.二次函数y=ax 2+bx+c (a>0)的图象是____,它的顶点坐标是______,对称轴是_ _.7.函数y=21x 2-6当x=____________时,y 有最____________值为__________. 8.开口方向和开口大小与y=3x 2相同,顶点在(0,3)的抛物线的关系式是________ ____.9.抛物线y=ax 2+3与x 轴的两个交点分别为(m ,0)和(n ,0),则当x=m+n 时,y 的值为____________.10.如图,有一个抛物线形拱桥,其桥拱的最大高度为16米,跨度为40米,现把它的示意图放在平面直角坐标系中,则此抛物线的函数关系式为_______________.11、若函数y=mx2-6x+2的图象与x轴只有一个公共点,则m=12.如图,正方形ABCD边长是16 cm,P是AB上任意一点(与A、B不重合),QP⊥DP.设AP=x cm,BQ=y cm.试求出y与x之间的函数关系式.13、某商场购进一批单价为16元的日用品,若按每件20元的价格销售,每月能卖出360元件,若按每件25元的价格销售,每月能卖210件,假定每月销售件数y (件)与x(元/件)之间满足一次函数(1)试求y与x的函数关系式(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w最大?每月的最大毛利润是多少?14.△ABC是锐角三角形,BC=6,面积为12.点P在AB上,点Q在AC上.如图9-33,正方形PQRS(RS与A在PQ的异侧)的边长为x,正方形PQRS与△ABC的公共部分的面积为y.(1)当RS落在BC上时,求x;(2)当RS不落在BC上时,求y与x的函数关系式;(3)求公共部分面积的最大值.。