一次函数与方程、不等式的关系 教法建议
- 格式:doc
- 大小:24.00 KB
- 文档页数:1
一次函数与方程、不等式之间的关系人教版九年制义务教育八年级数学下册宁都县赖村中学谢新华教学重点、难点:一次函数与方程、不等式之间的关系教学目标:1.让学生理解一次函数与方程、不等式之间的关系,从而解答有关的函数坐标、函数值等问题2.通过探索一次函数与方程、不等式之间的关系,经历具体到抽象再到具体,到抽象,最后具体的学习过程,体会探索的严谨性,科学性,掌握循序渐进的学习方法,树立数形结合的学习函数的思想方法3.经历了探索一次函数与方程、不等式之间的关系过程,掌握了学法,树立起了学好函数的信心,体会到成功的喜悦教学策略:运用多媒体技术,讲练结合与小组讨论法教学教学过程谭金林说:可是这两个点怎么画呢?当函数值大于某值时,x怎样取值?这下难住了他们,为此他们举出一个例子已知一次函数y=2x+8,请你帮他们画出两点,作出直线?当y>4时,x取何值?设计意图:通过举自己身边的两位同学的例子引入课题,从而让问题变得那么的贴近自身实际,提高学习的兴趣板书:一次函数与方程、不等式之间的关系学习目标1.能理解感悟一次函数与方程、不等式之间的数形关系,并能运用这种关系解决有关一次函数的问题2.通过问题解决,经历探索一次函数与方程、不等式之间关系的过程,体验知识产生、发展、形成的过程,感悟数形结合思想3.通过问题解决,经历探索一次函数与方程、不等式之间的数形关系,掌握了学习函数的方法设计意图:明确学习目标,使学习更具针对性一、动动手,填一填(1)当x 取___值时,函数值等于3.(2)当x 取___值时,函数值等于0.(3)当x 取___值时,函数值等于-12.已知一次函数y=2x+3的图像(如右上图)及图像上的一些点的纵坐标,求出相应各点的横坐标设计意图:让学生亲自计算出x的值,经历函数与方程之间的转化过程,为下面探讨一次函数与方程之间的关系打下实践基础,化抽象为具体小组合作思考探究:你从问题1和问题2获得什么样的思路方法?(学生先思考,然后师生一起归纳)1.已知方程y=2x+3(1)当x取___值时,函数值等于3.(2)当x取___值时,函数值等于0.(3)当x取___值时,函数值等于-1相当于分别解方程:2x+3=3,2x+3=0,2x+3=-1,求x的值也相当于已知一次函数y=2x+3的图像上点的纵坐标,求出相应各点的横坐标设计意图:拓展延伸,深化认识二、随堂跟踪,测一测(学生独立完成)(1)根据图像,不解方程,已知函数y=x-1当x= _时,函数值为2当y= _时,该点的横坐标为1当x= _时,y= 0(2)已知方程y=-x+2,完成图中的空格(教师补充图像)0((0,,2)设计意图:进一步深化,使认识更具严谨性、科学性,为下面理解与感悟提供充分的事实基础,从而掌握学法,树立学好函数与方程的信心理解与感悟一次函数与方程之间存在怎样的联系?一次函数与方程之间存在紧密的联系。
19.2.3一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式【学习目标】1.理解一次函数与一元一次方程、一元一次不等式之间的关系,会根据一次函数的图象解决一元一次方程和一元一次不等式的求解问题.2.学习用函数的观点看待方程及不等式的方法,初步感受用全面的观点处理局部问题的思想.【学习重点】用一次函数解一元一次方程、一元一次不等式.【学习难点】理解一次函数与一元一次方程、一元一次不等式之间的关系.情景导入生成问题1.已知直线经过点A(2,4)和点B(0,-2),那么这条直线的解析式是( )A.y=-2x+3B.y=3x-2C.y=-3x+2 D.y=2x-32.一个y关于x的函数同时满足两个条件:①图象过点(2,1);②当x>0时,y随x 的增大而减小,这个函数的解析式为(写出一个即可)自学互研生成能力一.阅读教材P96思考,完成下列内容:1.一元一次方程kx+b=0的解就是一次函数的图象与轴交点的坐标.2.已知一次函数y=ax+3与x轴的交点的横坐标为-4,则一元一次方程ax+3=0的解为.二.合作探究一次函数y=kx+b(k,b为常数,且k≠0)的图象如图所示,根据图象信息可求得关于x的方程kx+b=0的解为()A.x=-1B.x=2C.x=0 D.x=3归纳:当某一个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=kx+b,确定它与x轴的交点的横坐标的值.三.自主探究阅读教材P96思考,完成下列问题:1.一次函数与一元一次不等式的关系:一元一次不等式kx+b>0(或kx+b<0)的解集,就是一次函数的图象在x轴方(或方)相应的自变量x的取值范围.2.已知一次函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b≤0的解集是.四.合作探究对照图象,请回答下列问题:(1)当x取何值时,2x-5=-x+1?(2)当x取何值时,2x-5>-x+1?(3)当x取何值时,2x-5<-x+1?解:(1)由图象可知,直线y=2x-5与直线y=-x+1的交点的横坐标是,所以当x取时,2x-5=-x+1;(2)由图象可知,当时,直线y=2x-5落在直线y=-x+1的上方,即2x-5>-x+1;(3)由图象可知,当时,直线y=2x-5落在直线y=-x+1的下方,即2x-5<-x+1.五.合作探究A、B两城相距600 km,甲、乙两车同时从A城出发驶向B城,甲车到达B城后立即返回.如图是它们离A城的距离y(km)与行驶时间x(h)之间的函数图象.(1)求甲车行驶过程中,y与x之间的函数解析式,并写出自变量x的取值范围;(2)当它们行驶了7小时,两车相遇,求乙车车速.解:(1)(2)交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上,并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.检测反馈达成目标一.当堂检测1.一次函数y=2x-4的图象与x轴的交点坐标为(2,0),则一元一次不等式2x-4≤0的解集应是( )A.x≤2 B.x<2 C.x≥2 D.x>22.函数y=kx+b,当x>5时,y<0;当x<5时,y>0,则y=kx+b的图象必经过点( ) A.(0,5) B.(5,0) C.(-5,0) D.(0,-5)3.若直线y=3x-1与y=x-k的交点在第四象限,则k的取值范围为.二课后检测见《长江作业》课后反思查漏补缺1.我的收获:------------------------------------------------------------------------------------------------------- ------------------------------------------------------------------------------------------------------- 2.我的困惑:------------------------------------------------------------------------------------------------------- ---------------------------------------------------------------------------------------------------------。
17.5 实践与探索第2课时一次函数与一元一次方程、一元一次不等式的关系【教学目标】知识目标:一次函数与一元一次方程、一元一次不等式的关系.过程与方法:通过观察,分析一次函数与一元一次不等式(或方程)的内在联系. 情感与态度:在探索新知的过程中体会数形结合的思想.【重点】利用图象解一元一方程、一元一次不等式.【难点】一次函数与一元一次不等式的关系.【教学方法】探究式教学法【教学过程】情境导入:通过上节课的学习我们知道,两个一次函数图象的交点坐标就是函数关系式所组成的二元一次方程组的解。
据此,我们可以利用图象法来求二元一次方程组的解。
能否利用图象来解一元一次方程、一元一次不等式?探究活动一1、一次函数 y= -x-2的图象与x轴的交点坐标为(,),与y轴的交点坐标为(,)2、在平面直角坐标系中画出该函数的图象3、观察图象,指出:(1)x 取什么值时,函数值y = 0? (2)x 取什么值时,函数值y > 0? (3)x 取什么值时,函数值y < 0?结论:1、求一元一次方程ax+b=0的解,就是求一次函数y=ax+b 的图象与x 轴交点的横坐标的值.2、求不等式ax+b>0(或<0)的解集,就是求一次函数y=ax+b 的图象在x 轴上方(或下方)时对应横坐标的取值范围. 跟踪训练1、根据下列一次函数的图像,直接写出下列不等式的解集。
(1)3x+6>0 (2)3x+6 ≤0(3) –x+3 ≥0 (4) –x+3<0x2、根据函数y= 的图像,直接写出:3.如右图, 一次函数 的图象经过点 ,则关于x 的不等式的解集为________________.探究活动二做一做:请在同一坐标系中画出函数 y =2x -5和y =-x +1的图象的解方程0525)1(=+-x 的解集不等式0525)2(>+-x ()的解集不等式552504<+-<x ()的解集不等式55253<+-x55+-x )0(≠+=k b kx y )2,3(--P 2->+b kx利用图象解不等式:(1)2x-5>-x+1 (2) 2x-5<-x+1 (3) 2x-5=-x+1.跟踪训练能力跃升5.6.7超越自我7. 如图,一次函数y =kx +b 的图象与反比例函数 的图象交于A 、B 两点.(1)利用图中条件,求反比例函数和一次函数的解析式;(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围.课堂小结通过这节课的学习,你有什么收获? ◆一次函数与一元一次方程、不等式的关系 ◆数形结合的思想在解决问题中的直观性x my。
一次函数与方程、不等式详细教案教学设计:一次函数与方程、不等式教材:人教版《数学》八年级下册教学目标:1.理解一次函数、一元一次方程、一元一次不等式、二元一次方程之间的内在联系,明白它们相互转化、相互渗透的关系。
2.通过画函数图像、观察函数图像,体会数形结合思想。
3.能够结合利用函数、方程、不等式的相关知识解决实际问题。
教学重点:理解一次函数与一元一次方程、一元一次不等式的关系。
教学难点:根据一次函数的图像求一元一次方程的解和一元一次不等式的解集,发展学生数形结合的思想和辩证思维能力。
教具:多媒体教学过程:活动一:复引入(时间:2分钟)提问:对于点P(x,y),当y=0,y>0,y<0时,点P位于坐标平面内什么位置?回答:(1)x轴上,点的纵坐标都等于,即y=0;(2)x轴的上方,点的纵坐标都大于,即y>0;(3)x轴的下方,点的纵坐标都小于,即y<0.活动二:探究新知(时间:4分钟)知识点一:一次函数与一元一次方程一)观察观察y=2x+6的y变化:若令y=0,则y=2x+6就会变成一元一次方程:2x+6=0. 若令y>0,则y=2x+6就会变成一元一次不等式:2x+6>0. 若令y<0,则y=2x+6就会变成一元一次不等式:2x+6<0. 二)动手操作请画出一次函数y=2x+6的图像。
三)讨论、交流问题:1、求函数图像与x轴交点坐标。
2、已知一次函数y=2x+6,问x取什么值时,y=0?3、函数y=2x+6的图像与x轴交点横坐标与一元一次方程2x+6=0的解有何关系?四)归纳观察图像可以看出,一次函数y=2x+6的图像与x轴交点坐标为(-3,0),而-3正是方程2x+6=0的解。
一般来说,解一元一次方程kx+b=0就是当y=kx+b时,y=0时对应的x值。
从图像上看,就是一元一次函数y=kx+b 与x轴的交点的横坐标值。
练:1.已知一元一次函数y=0.8x-2与x轴的交点为(2.5,0),你能求出方程0.8x-2=0的解吗?2.已知一元一次函数y=kx-5与x轴的交点为(-3,0),那么你能求出方程kx-5=0的解吗?3.已知一元一次函数y=kx+b与x轴的交点为(2,0),那么你能求出方程kx+b=0的解吗?知识点二:一次函数与一元一次不等式一)讨论、交流根据一元一次函数y=2x+6的图像,你能求出一元一次不等式2x+6>0和2x+6<0的解集吗?二)归纳当2x+6>0时,即函数y=2x+6中函数值y>0.观察图像可知,当图像在x轴上方时y>0;同样地,当图像在x轴下方时y<0.因为一元一次函数y=2x+6的图像与x轴相交于点(-3,0),所以要使y>0,即2x+6>0,应有x>-3;要使y<0,即2x+6<0,应有x<-3.从图像上看,方程kx+b>0的解集是使直线y=kx+b位于x 轴上方相应x的取值范围,kx+b<0的解集是使直线y=kx+b位于x轴下方相应x的取值范围。
人教版数学八年级下册19.2.3《一次函数与方程、不等式说课稿一. 教材分析《一次函数与方程、不等式》是人教版数学八年级下册第19章第2节的一部分。
这部分内容是在学生已经掌握了函数、方程、不等式的基本概念和性质的基础上进行讲解的。
通过这部分的学习,使学生能够掌握一次函数与方程、不等式的关系,能够运用一次函数解决实际问题,培养学生解决实际问题的能力。
教材中通过丰富的例题和练习题,帮助学生理解和掌握一次函数与方程、不等式的解法与应用。
二. 学情分析八年级的学生已经具备了一定的数学基础,对于函数、方程、不等式的概念和性质有一定的了解。
但是,对于一次函数与方程、不等式的关系,以及如何运用一次函数解决实际问题,还需要进一步的学习和引导。
因此,在教学过程中,需要注重学生的参与和实践,通过引导学生自主探索和合作交流,帮助学生理解和掌握一次函数与方程、不等式的关系,提高学生解决实际问题的能力。
三. 说教学目标1.知识与技能目标:使学生理解和掌握一次函数与方程、不等式的关系,能够运用一次函数解决实际问题。
2.过程与方法目标:通过学生的自主探索和合作交流,培养学生的解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的自信心和自尊心,使学生感受到数学的实际应用价值。
四. 说教学重难点1.教学重点:一次函数与方程、不等式的关系,一次函数解决实际问题的方法。
2.教学难点:一次函数与方程、不等式的关系的理解,一次函数解决实际问题的方法的运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、合作交流法等,引导学生自主探索和合作交流,培养学生的解决问题的能力。
2.教学手段:使用多媒体课件、黑板、粉笔等教学工具,帮助学生理解和掌握一次函数与方程、不等式的关系。
六. 说教学过程1.导入:通过一个实际问题,引发学生对一次函数与方程、不等式的关系的思考,激发学生的学习兴趣。
2.讲解:通过讲解一次函数与方程、不等式的关系,引导学生理解一次函数解决实际问题的方法。
19.2.3一次函数与方程、不等式(教案)老店一中张晓彦《19.2.3一次函数与方程、不等式》老店一中张晓彦【教学目标】一、知识与技能1、理解一次函数与一元一次方程、一元一次不等式的关系;2、会根据图像解答一元一次方程、一元一次不等式的有关问题。
二、过程与方法让学生在做题过程中,学会用函数的观点看待方程、不等式的方法。
体会数形结合及转化的思想方法。
三、情感态度与价值观通过对一次函数与方程、不等式相关题目的研究,培养学生自主探究,合作交流的精神,训练学生语言组织能力和分析、解决问题的能力。
【教学重点、难点】1、重点:一次函数与一元一次方程、一次函数与一元一次不等式的关系的理解。
2、难点:根据一次函数的图像求一元一次方程、一元一次不等式的解(或解集)。
【教学辅助工具】ppt 导学案【教学过程】一、“关于数学课堂中的“一””导课师:今天我们做一件有意思的事儿,总结一下上初中以来,我们所学的带“一”的知识点;生1:一元一次方程;生2:一次函数;生3:一元一次不等式......师:对,大家很聪明,这几个知识点都包含了“一”,那么它们之间有什么样的联系吗?我们今天就来共同学习一下一次函数与方程、不等式之间的关系。
(课件显示本节课题:19.2.3 一次函数与方程、不等式)【设计意图:通过回顾的形式导入新课,激发学生的学习兴趣。
】二、出示学习目标1、理解一次函数与一元一次方程、一元一次不等式的关系;2、会根据图像解答一元一次方程、一元一次不等式的有关问题。
(学生默读学习目标,做到心中有数)【设计意图:让学生明白本节课的主要任务是什么。
】三、自主学习,检测自我探究一:一次函数与一元一次方程的关系1、解方程01=+x ;2、当自变量x 为何值时,函数1+=x y 的值为0?3、画函数1+=x y 的图像,并确定它与x轴的交点坐标?归纳:从“数的角度”看:一元一次方程()00≠=+a b ax 的解是一次函数()0≠+=a b ax y 当0=y 时所对应的 的值。
《19.2 一次函数》教学设计19.2.3 一次函数与方程、不等式第1课时一次函数与一元一次方程、不等式教材分析本节内容是在学生已有对一元一次方程、一元一次不等式的认识之后,从变化和对应的角度,对一次函数进行更深入的讨论,是站在更高起点上的动态分析.通过讨论一次函数与一元一次方程及不等式的关系,用函数的观点加深对这些已经学习过的内容的认识,加强知识间的横向和纵向联系,发挥函数的统领作用.备课素材一、新知导入【复习导入】(1)按照“列表——描点——连线”的步骤画出一次函数y=2x-3的图象;(2)观察一次函数y=2x-3的图象与x轴的交点,指出当y=0时,自变量x的取值是多少?它与方程2x-3=0的解相同吗?它们之间有什么联系?(3)观察一次函数y=2x-3的图象在x轴上方的部分,这些点的纵坐标的符号是怎样的?(4)观察一次函数y=2x-3的图象在x轴下方的部分,这些点的纵坐标的符号是怎样的?【说明与建议】说明:复习一次函数图象的画法,把所列表格中的数据与函数图象中点的坐标结合起来,分析函数值的不同符号特征,与方程、不等式建立起联系.建议:用描点法画一次函数图象时,可以多列出几组数对,在x=1的左右两侧分别列出3~4组对称的数对,再将其与函数图象对照,发挥数形结合思想的优势,使函数值的符号特征更加明显.二、命题热点命题角度1 利用一次函数图象求一元一次方程的解1.一次函数y=ax+b的图象如图所示,则方程ax+b=0的解为(A)A.x=-2 B.y=-2 C.x=1 D.y=1第1题图第2题图2.一次函数y=kx+b(k≠0,k,b是常数)的图象如图所示,则关于x的方程kx+b=4的解是x =3W.命题角度2 利用一次函数图象求一元一次不等式的解集3.如图,已知直线y =kx -2,根据图象可知不等式kx -2<0的解集是(C ) A .x >1 B .x >-2 C .x <1 D .x <-2第3题图 第4题图4.一次函数y =kx +b 的图象如图所示,当0<kx +b <3时,x 的取值范围为-4<x <0.命题角度3 通过解一元一次方程确定一次函数的图象与坐标轴的交点坐标 5.已知直线经过点(1,2)和点(4,5). (1)求这条直线的解析式;(2)求直线与坐标轴所围成的三角形面积. 解:(1)设直线解析式为y =kx +b ,把(1,2),(4,5)代入,得⎩⎪⎨⎪⎧k +b =2,4k +b =5, 解得⎩⎪⎨⎪⎧k =1,b =1.∴这条直线的解析式为y =x +1.(2)如图,对于直线y =x +1, 令x =0,则y =1; 令y =0,则x =-1. ∴A (0,1),B (-1,0). ∴S △AOB =12 ×1×1=12.∴直线与坐标轴所围成的三角形面积为12.教学设计课题 19.2.3 第1课时 一次函数与一元一次方程、不等式 授课人 素养目标1.会用图象法解一元一次方程、一元一次不等式.2.经历用函数图象表示方程、不等式解集的过程,进一步体会“以形表示数,以数解释形”的数形结合思想.3.通过对一次函数与一元一次方程、一元一次不等式关系的探究,发展学生辩证思维能力.4.体会数学知识的融会贯通,从不同方面认识事物的本质.教学重点理解一次函数、一元一次方程、一元一次不等式之间的联系.教学难点根据一次函数的图象求一元一次方程的解和一元一次不等式的解集.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾1.解方程4x+1=0;当自变量x为何值时,函数y=4x+1的值为0?2.解不等式3x+6>-2;当自变量x为何值时,函数y=3x+6的值大于-2?回顾旧知,更好地学习新知,为突破重难点做准备.活动一:创设情境、导入新课【课堂引入】(1)观察下面的一元一次方程与一元一次不等式,它们有什么共同之处?2x-2>0,2x-2=0,2x-2<0.(2)上面的一元一次方程与一元一次不等式的解或解集,与一次函数y=2x-2的图象有关系吗?师生活动:教师引导学生观察一元一次方程与一元一次不等式的左边,并与一次函数y=2x-2的右边进行比较,让学生初步感知它们之间有一定的联系.通过直观观察这三个式子与一次函数的区别,联合一次函数的意义,使学生产生深入探究的欲望,更好地进入新课.活动二:实践探究、交流新知【探究新知】1.一次函数的图象与一元一次方程的解下面三个方程有什么共同特点?你能从函数的角度对这三个方程进行解释吗?(1)2x+1=3;(2)2x+1=0;(3)2x+1=-1.观察、思考、分析、归纳,引导学生探索一元一次函数、一元一次不等式的关系,学生进一步体会数形结合思想,构建完整的知识体系.师生活动:教师引导学生从函数的角度看一元一次方程.学生小组讨论之后,派出代表汇报想法,教师帮助总结.归纳:解关于x的一元一次方程ax+b=k,就是求当y=ax +b的函数值为k时对应的自变量的值.从数的角度看:求ax+b=0(a≠0)的解⇩x为何值时,y=ax+b的值为0?从形的角度看:求ax+b=0(a≠0)的解⇩确定直线y=ax+b与x轴交点的横坐标2.一次函数的图象与一元一次不等式的解集下面三个不等式有什么共同特点?你能从函数的角度对这三个不等式进行解释吗?你能把你得到的结论推广到一般情形吗?(1)3x+2>2;(2)3x+2<0;(3)3x+2<-1.师生活动:教师引导学生类比一元一次方程,自主探究从函数的角度看一元一次不等式.归纳:利用图象求ax+b>0(a≠0)或ax+b<0(a≠0)的解集,就是求一次函数y=ax+b的图象在x轴上方或下方部分所有的点的横坐标所构成的集合.活动三:开放训练、体现应【典型例题】例1 一次函数y=kx+b的图象如图所示,根据图象信息可典型例题巩固新知,让学生进一步熟悉一用求得关于x的方程kx+b=3的解为(C)A.x=-1 B.x=1 C.x=2 D.x=3例1题图例2题图例2 如图是一次函数y=kx+b的图象,当y<2时,x的取值范围是(C)A.x<1 B.x>1 C.x<3 D.x>3【变式训练】1.若一次函数y=ax+b的图象过点A(2,1),则ax+b=1的解是x=2W.2.已知关于x的方程ax+b=2的解为x=-5,则一次函数y=ax+b-2的图象与x轴交点的坐标为(-5,0)W.3.如图,直线y=kx+3经过点(2,0),则关于x的不等式kx+3>0的解集是(B)A.x>2B.x<2C.x≥2D.x≤2师生活动:学生独立思考,举手回答,师生交流心得和方法.次函数与一元一次方程与一元一次不等式的关系,发展学生数形结合的思想,培养灵活地解决问题的能力.活动四:课堂检测【课堂检测】1.若关于x的方程4x-b=0的解是x=-2,则直线y=4x-b一定经过点(C)A.(2,0) B.(0,-2) C.(-2,0) D.(0,2)2.若直线y=2x+b与x轴交于点A(-3,0),则方程2x+b=0的解是(A)A.x=-3 B.x=-2 C.x=6 D.x=-32通过设置当堂检测,及时获知学生对所学知识的掌握情况,明确哪些学生需要在课后加强辅导,达到全面提高的目的.3.直线y=kx+b在平面直角坐标系中的位置如图所示,则不等式kx+b-1≥0的解集是(D)A.x≥2 B.x≥0 C.x≤2 D.x≤0第3题图第4题图4.如图,已知一次函数y=kx+b,观察图象回答下列问题:当x>2.5时,kx+b>0;当x>3时,kx+b>1.师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结(1)本节课你学到了什么?有哪些体会与收获?(2)本节课你还有哪些疑惑?2.布置作业教材第99页第8题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思,更进一步提升.19.2 一次函数19.2.3 一次函数与方程、不等式第2课时一次函数与二元一次方程组教材分析函数、方程和不等式都是人们刻画现实世界的重要数学模型.用函数的观点看方程(组)与不等式,不仅能帮助学生加深对方程(组)、不等式的理解,提高认识问题的水平,而且能从函数的角度将三者统一起来,感受数学的统一美.本节课是学生学习完一次函数、一元一次方程及一元一次不等式的联系后对一次函数和二元一次方程(组)关系的探究,学生在探索过程中体验数形结合的思想方法和数学模型的应用价值,这对今后的学习有着十分重要的意义.备课素材一、新知导入【置疑导入】小聪和小惠去某景区游览,约好在“飞瀑”见面.上午7:00小聪乘电动汽车从“古刹”出发:沿景区公路去“飞瀑”,车速为36 km/h ,小慧也于上午7:00从“塔林”出发,骑电动自行车沿景区公路去“飞瀑”,车速为26 km/h.(1)当小聪追上小慧时,他们是否已经过了“草甸”? (2)当小聪到达“飞瀑”时,小慧离“飞瀑”还有多远?追问:当小聪追上小慧时,他们两个人的什么量是相同的?是否已经过了“草甸”?该用什么量来表示?你会选择用哪种方式来解决?图象法?还是解析式法?【说明与建议】 说明:通过问题串的精心设计,引导学生根据实际问题建立适当的函数模型,利用该函数图象的特征解决问题,在此过程中渗透数形结合的思想方法,发展学生的数学应用能力.建议:在这个环节的学习过程中,如果学生入手感到困难.可用以下问题串引导学生进行分析:(1)两个人是否同时起步?(2)在两个人到达之前所用时间是否相同?所行驶的路程是否相同?出发地点是否相同?两个人的速度各是多少?(3)这个问题中的两个变量是什么?它们之间是什么函数关系?(4)如果用s 表示路程,t 表示时间,那么他们各自的解析式分别是什么?【情景导入】在河道A ,B 两个码头之间有客轮和货轮通行.一天,客轮从A 码头匀速行驶到B 码头,同时货轮从B 码头出发,运送一批物资匀速行驶到A 码头,两船距B 码头的距离y (km )与行驶时间x (min )之间的函数关系如图所示,请根据图象解决下列问题:(1)A ,B 两个码头之间的距离是80km ;(2)已知货轮距B 码头的距离与行驶时间的函数解析式为y 1=12 x ,求客轮距B 码头的距离y 2(km )与时间x (min )之间的函数解析式;(3)求出点P 的坐标,并指出点P 的横坐标与纵坐标所表示的实际意义.【说明与建议】 说明:通过学生熟悉的问题导入新课,培养学生的识图能力和探究能力,调动学生学习的自主意识及学习兴趣.建议:引导学生建立函数模型,结合图象利用“数形结合”解决问题.二、命题热点命题角度1 利用两个一次函数图象求二元一次方程组的解1.如图,已知函数y =ax +b 和y =kx 的图象交于点P ,则根据图象可得,关于x ,y 的二元一次方程组⎩⎪⎨⎪⎧y =ax +b ,y =kx 的解是(C )A .⎩⎪⎨⎪⎧x =3y =-1B .⎩⎪⎨⎪⎧x =-3y =-1C .⎩⎪⎨⎪⎧x =-3y =1D .⎩⎪⎨⎪⎧x =3y =1第1题图 第3题图2.在平面直角坐标系中,直线y =-2x +11与直线y =13 x +53的交点坐标是(4,3),则方程组⎩⎪⎨⎪⎧2x +y =11,x -3y =-5 的解为⎩⎪⎨⎪⎧x =4y =3 .命题角度2 利用两个一次函数图象求一元一次不等式的解集3.函数y =kx 与y =-x +3的图象如图所示,根据图象可知,不等式kx >-x +3的解集是x >1.命题角度3 利用一次函数与方程、不等式的联系解决实际问题4.某电信公司有两种上网费用的计算方式,方式A 以每分钟0.1元的价格按上网时间计费;方式B 除收月基本费20元外,再以每分钟0.05元的价格按上网时间计费.设上网时间为x 分钟,所需费用为y 元.用函数方法解答何时两种计费方式费用相等.解:y A =0.1x ,y B =0.05x +20.函数图象如图所示.∴当每月上网时间为400分钟时,两种计费方式费用相等.教学设计课题19.2.3第2课时 一次函数与二元一次方程组授课人素养目标 1.理解一次函数的图象与二元一次方程(组)的关系.2.经历用函数观点分析二元一次方程(组)的过程,进一步体会类比思想、分类讨论思想.3.利用一次函数图象的性质,解决实际问题.4.体会数学知识的融会贯通,发现数学的美,激发学生的学习兴趣.教学重点借助两个一次函数图象求二元一次方程(组)的解或一元一次不等式的解集.教学难点借助四个一次[一次函数、一元一次方程、二元一次方程(组)的解、一元一次不等式]之间的关系,解决实际问题.授课类型新授课课时教学活动教学步骤师生活动设计意图回顾 1.解二元一次方程组2.一次函数y=5x+6与y=3x+10的交点坐标是多少?复习旧知,引发思考,为突破本节课重难点做铺垫.活动一:创设情境、导入新课【课堂引入】1号探测气球从海拔5 m出发,以1 m/min的速度上升,与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都上升了1小时.用式子分别表示两个气球所在位置的海拔y(单位:m)关于上升时间t(单位:min)的函数关系;1号气球:y=x+5,2号气球:y=0.5x+15.从实际问题抽象出数学问题,一方面有助于发展学生抽象逻辑能力,另一方面可以激发学生的学习兴趣,更好地开展新课.活动二:实践探究、交流新知【探究新知】针对【课堂引入】的问题,继续思考在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多少时间?位于什么高度?问题1 从数的角度看,二元一次方程组与一次函数有什么关系?问题2 从形的角度看,二元一次方程组与一次函数有什么关系?师生活动:教师引导学生类比一次函数与一元一次方程的关系,结合两个一次函数的图象,探求与二元一次方程组之间的关系.最后,教师帮助学生总结.归纳:(2)图象法解方程组的步骤:①将方程组中各方程化为y=ax+b的形式;②画出各函数的图象;通过类比一次函数与一元一次方程,分别从数和形两个角度分析二元一次方程组与一次函数之间的关系,进一步开拓学生的思维,感受数形结合思想以及分类讨论思想,体会数学思想的应用价值.③由交点坐标得出方程组的解.自主探究:在什么时候,1号气球比2号气球高?在什么时候,2号气球比1号气球高?活动三:开放训练、体现应用【典型例题】例1 如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=x+2的解是(B)A.x=1 B.x=2 C.x=3 D.x=4例2 如图,在平面直角坐标系中,直线y=-2x和y=ax+2相交于点A(m,1),则不等式-2x<ax+2的解集为(D)A.x<12B.x<1 C.x>1 D.x>-12【变式训练】在同一平面直角坐标系内画一次函数y1=-x+4和y2=2x-5的图象,解决下列问题:(1)求方程-x+4=2x-5的解;(2)求二元一次方程组的解;(3)当x取何值时,y1>y2?当x取何值时,y1>0且y2<0?解:画函数图象如图所示.(1)∵一次函数y1=-x+4和y2=2x-5的图象相交于点(3,1),通过典型例题和变式训练.进一步感受两个一次函数与二元一次方程组的解之间的联系.由形判数,培养数形结合思想,体会数学知识的融会贯通.∴方程-x +4=2x -5的解为x =3.(2)由图可知,二元一次方程组(3)由图可知,当x <3时,y 1>y 2; 当x <52时,y 1>0且y 2<0.师生活动:学生独立思考,举手回答,师生交流心得和方法. 活动四:课堂检测 【课堂检测】1.如图,在平面直角坐标系中,直线y =-2x 和y =ax +2相交于点A (m ,1),则关于x ,y 的二元一次方程组的解为(C )第1题图 第2题图 第3题图2.如图,一次函数y 1=k 1x +b 1与y 2=k 2x +b 2的图象交于点A (3,2),它们与x 轴的交点横坐标分别为1和-1,则不等式k 2x +b 2>0>k 1x +b 1的解集为(D )A.x>3 B .x<-1 C .x>1 D .-1<x<13.一次函数y 1=mx +n 与y 2=-x +a 的图象如图所示,则不等式mx +n >-x +a 的解集为(A )A.x >3 B .x <3 C .x <2 D .x >24.如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1,b ).(1)求b 的值;(2)不解关于x ,y 的方程组请你直接写出它的解.学以致用,课堂检测及时获知学生对所学知识掌握情况,并最大限度地调动全体学生学习数学的积极性,帮助每个学生有所收获、有所提高.解:(1)∵P(1,b)在直线l1上,∴b=1+1,即b=2.(2)师生活动:学生进行当堂检测,完成后,教师进行批阅、点评、讲解.课堂小结1.课堂小结1.如何用一次函数的图象解二元一次方程组?2.你是否从中体会到了某种数学思想?2.布置作业教材第98页练习题.注重课堂小结,激发学生参与课堂总结的主动性,为每一个学生的发展与表现创造机会.教学反思反思教学过程和教师表现,进一步提升操作流程和自身素质.。
一次函数与方程不等式的关系凉水河中学王小清教学目标1,借助图像,使学生初步理解一次函数与二元一次方程的关系.。
2,能根据一次函数的图像求二元一次方程的近似解。
3,借助图像,使学生理解一次函数与一元一次不等式的关系。
4,能根据一次函数的图像求不等式的解集。
重点:理解一次函数与二元一次方程,一元一次不等式的关系难点:根据一次函数的图像求二元一次方程组的解、一元一次不等式的解集,发展学生数形结合的思想和辩证思维的能力。
学情分析:本节内容是对一次函数,二元一次方程组,一元一次不等式的综合运用,通过探索方程、不等式与一次函数图像之间的关系,培养学生数形转化的思想。
学生已经有了了解二元一次方程(组)、一元一次不等式的能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解一次函数与二元一次方程和不等式的内在联系,体会“数”和“形”之间的相互转化,从中使学生进一步感受到“数”的问题可以通过“形”来解决,“形”的问题也可以通过“数”来解决。
一,激情导入1.古诗《题西林壁》引入,全体同学背诵古诗,同学代表讲解古诗内容。
老师总结,看待事物和问题要多角度,客观、真实的去认知评价。
2.出示幻灯片2x-y=-1提出问题“老师带来的这位朋友,你们认识吗?”设计意图:通过古诗引入,充分激起学生的兴趣,古诗内容的理解,老师的过度,对2x-y=-1理解,使学生更加全面的认识了它,从而很好的为本节课所学的内容打好基础。
二、探究新知问题1:对于任意的一个二元一次方程是否都可以转化成一次函数的形式呢?学生活动:找同学板演,其他同学自己独立完成,同学总结得出结论设计意图:使学生完成从特殊到一般的转化过程,认识到任何一个二元一次方程都可以转化成一次函数的形式,他们只是形式的不同而已。
问题2:出示幻灯片第6张画一次函数图像的步骤有哪些?对于函数y=2X+1的图像你能得到哪些信息?学生活动:找同学根据图像回答问题。
设计意图:复习旧知识,并进一步明确这些点都在函数图像上,为下边二元一次方程的解做好对比。
一次函数与方程、不等式的关系教法建议
本节在知识上注重一次函数与方程、不等式的横向联系,以便学生学会把一次函数纳入相应的知识网络;在思维方法上注重数形结合,双向思维,为一次函数的灵活运用打下基础。
为此建议:
1.在教学中,应突出学生对文字表述、解析表达式以及图像这三种数学语言的互相转化。
如“试着做做”中的文字表述:“x取哪些值,它们所对应的y的值都大于(或小于)5?”转化为数学表达式即求不等式2x-1>5(或2x-1<5)的解集。
教学时,可在已画函数y=2x-l 图像的基础上再画出所有纵坐标为5的点(即直线y=5)作为参照图形,找出图像上纵坐标等于5、大于5、小于5的点,并确定其相应的横坐标。
这样,就将数学表达式转化为图形语言,从而为本节后面的问题以及今后各类函数与相应的方程、不等式关系的学习奠定了基础。
2.将例题中的3个问题转化为相应的方程、不等式以及用图像解释,均可酌情由学生独立或合作交流来完成。
3.对例题可增加思考题:“(2,-1)可看做哪个方程组的解?”从而过渡到一元一次方程与二元一次方程组的联系,为后面的“做一做”提供相应的准备。