抛物线几何性质的应用
- 格式:ppt
- 大小:205.50 KB
- 文档页数:5
高考数学复习点拨:例析抛物线在生活中的应用例析抛物线在生活中的应用山东陈聪聪武振抛物线的几何特性在实际中应用广泛,解决此类问题的关键是建立恰当的直角坐标系,求出抛物线方程,充分利用抛物线的几何性质,通过方程解决实际问题.例1 一条隧道的横断面由抛物线弧及一个矩形的两边围成,尺寸如图(单位:m),一辆卡车空车时能通过此隧道,现载一集装箱,箱宽3m,车与箱共高 4.5m,此车能否通过隧道?说明理由.分析:先由题意建立坐标系.求出抛物线方程,将实际问题转化为抛物线的相关问题来解决.解:建立坐标系如图1,设矩形与抛物线的接点为A、B,则. 设抛物线方程为,将B点坐标代入得.∴抛物线方程为。
∵车与箱共高4.5m,∴集装箱上表面距抛物线型隧道拱顶0.5m .设抛物线上点D的坐标为.,故此车不能通过隧道.点评:涉及到与抛物线有关的桥的跨度、隧道高低问题,通常建立直角坐标系,利用抛物线的标准方程解决,注意建系后坐标的正负与其实际意义。
例2一个酒杯的轴截面是抛物线的一段弧,它的口宽是的,杯深20,在杯内放一玻璃球,玻璃球的半径r取何值时,才能使玻璃球触及杯底?分析:解决要点就是建立恰当坐标系,将实际问题转化为抛物线问题,再转化为代数问题.解:在酒杯轴截面内,玻璃球成了位于抛物线内的一个圆,以抛物线的顶点为原点,以抛物线的对称轴为y轴建立直角坐标系如图2,则抛物线方程可设为,依题意得点在抛物线上,故抛物线的方程为,若玻璃球触及杯底,圆与x轴切于原点,这时圆心坐标为,在抛物线上任取一点,则,。
故当玻璃球的半径r取值范围为时,才能使玻璃球触及杯底.点评:本题关键将实际问题转化为抛物线问题,再转化为代数问题,利用二次函数求最值的方法使问题获解。
例3已知探照灯的轴截面是抛物线,如图所示,表示平行于对称轴轴的光线于抛物线上的点P、Q的反射情况,设点P的纵坐标为,取何值时,从入射点P到反射点Q的光线的路程最短?分析:关键就是利用抛物线的光学性质建立目标函数.解:由抛物线的光学性质,知光线PQ必过抛物线的焦点. 设P点的坐标为,则直线PQ的方程为:,即联立,解得,由图3可知,根据抛物线的定义得,当且仅当,即时等号成立.∴当从入射点P到反射点Q的光线的路程PQ最短.点评:从抛物线的焦点处发出的光线照到抛物线上,经反射后平行与抛物线的轴;反之,平行抛物线的光线照到抛物线上,经反射后通过焦点,这一光学性质被广泛应用于各种设计中。
数学物理教案:抛物线的性质与应用一、抛物线的性质实践教案1.1 抛物线的定义与基本性质抛物线是二次函数的图像,具有特殊的几何性质和应用价值。
在数学中,我们常用一般式方程 y=ax^2+bx+c (其中a≠0 )来描述抛物线。
在这个教案中,我们将重点探讨抛物线的性质与应用。
首先,我们来介绍抛物线的基本性质。
抛物线的对称轴与 x 轴平行,方程形式为 x= -b/2a。
对称轴上的点称为抛物线的顶点,也是对称中心。
通过点对称性,可以得出抛物线关于顶点对称。
抛物线在顶点处取得最值,当 a>0 时,最小值为 -D/4a;当 a<0 时,最大值为 -D/4a。
其中 D=b^2 - 4ac 称为方程的判别式。
抛物线的开口方向由 a 的正负决定,当 a>0 时,抛物线开口向上;当 a<0 时,抛物线开口向下。
1.2 抛物线的性质之焦点与准线接下来,我们将讨论抛物线的焦点和准线。
对于给定的抛物线,焦点F(p, q)是位于对称轴上的一个点,满足距离的性质:焦点到抛物线上任意一点的距离等于焦点到准线上的相应点的距离。
准线是过焦点 F 且垂直于对称轴的一条直线,其方程为 y=-(D/4a)。
我们可以利用这一性质来确定焦点的坐标,通过解方程组将焦点的坐标表示为(p, q)=(-b/2a, -D/4a)。
二、抛物线的应用实践教案2.1 抛物线的应用之物体运动轨迹抛物线不仅在数学领域有重要性质,而且在物理学中也具有广泛的应用。
抛物线可用于描述和分析物体在自由落体或斜抛运动中的轨迹。
在物理学中,我们知道自由落体运动是指只受重力作用的运动。
当一个物体以初速度 v₀进行向下抛掷时,其运动轨迹可以用抛物线来描述。
根据抛物线的性质,我们可以计算物体的最高点、最大高度以及落地点等重要信息。
2.2 抛物线的应用之天体运动除了物体运动轨迹外,抛物线还可以用于描述天体的运动。
在天文学中,行星、卫星和彗星等天体在星际空间中的运动轨迹往往呈现出抛物线形状。
第05讲抛物线【考点目录】【知识梳理】知识点1 抛物线的定义平面内与一个定点F和一条定直线l(l不经过点F)距离相等的点的轨迹叫做抛物线.点F叫做抛物线的焦点,直线l叫做抛物线的准线.注:①在抛物线定义中,若去掉条件“l不经过点F”,点的轨迹还是抛物线吗?不一定是,若点F在直线l上,点的轨迹是过点F且垂直于直线l的直线.②定义的实质可归纳为“一动三定”一个动点M;一个定点F(抛物线的焦点);一条定直线(抛物线的准线);一个定值(点M到点F的距离与它到定直线l的距离之比等于1).知识点2抛物线的标准方程和几何性质焦点在x轴上时,方程的右端为±2px,左端为y2;焦点在y轴上时,方程的右端为±2py,左端为x2.p的几何意义:焦点F到准线l的距离.标准方程y 2=2px(p>0)y2=-2px(p>0)x2=2py(p>0)x2=-2py(p>0)图形顶点O(0,0)知识点3 直线与抛物线的位置关系设直线l:y=kx+m,抛物线:y2=2px(p>0),将直线方程与抛物线方程联立整理成关于x的方程k2x2+2(km -p)x+m2=0.(1)若k≠0,当Δ>0时,直线与抛物线相交,有两个交点;当Δ=0时,直线与抛物线相切,有一个交点;当Δ<0时,直线与抛物线相离,没有公共点.(2)若k=0,直线与抛物线有一个交点,此时直线平行于抛物线的对称轴或与对称轴重合.注:(1)直线与抛物线有一个公共点是直线与抛物线相切的必要不充分条件.(2)研究直线与抛物线的关系时要注意直线斜率不存在的情况.知识点4 弦长问题过抛物线y2=2px(p>0)的焦点的直线交抛物线于A(x1,y1),B(x2,y2)两点,那么线段AB叫做焦点弦,如图:设AB是过抛物线y2=2px(p>0)焦点F的弦,若A(x1,y1),B(x2,y2),则|AB|=x1+x2+p.注:(1)x 1·x 2=p 24.(2)y 1·y 2=-p 2.(3)|AB |=x 1+x 2+p =2psin 2α (α是直线AB 的倾斜角).(4)1|AF |+1|BF |=2p 为定值(F 是抛物线的焦点). (5)求弦长问题的方法①一般弦长:|AB |=1+k 2|x 1-x 2|,或|AB |=1+1k2|y 1-y 2|. ②焦点弦长:设过焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p .考点一 抛物线的标准方程(一)求抛物线的标准方程1.(2022春·北京海淀·高二校考阶段练习)抛物线的焦点在x 轴正半轴上,且准线与焦点轴间的距离为3,则此抛物线的标准方程为( ) A .26y x = B .23y x = C .26x y = D .23x y =【答案】A【分析】利用抛物线的性质,求出p ,然后求得抛物线方程即可.【详解】解:焦点在x 轴正半轴上的抛物线标准方程为()220y px p =>,又准线与焦点轴间的距离为3,可得3p =,所以抛物线的标准方程为26y x =.故选:A.2.(2022春·辽宁本溪·高二校考阶段练习)以坐标轴为对称轴,焦点在直线45100x y -+=上的抛物线的标准方程为( ) A .210x y =或28y x =-B .210x y =-或28y x =【考点剖析】C .210y x =或28x yD .210y x =-或28x y =【答案】D【分析】直线45100x y -+=与坐标轴的交点即为焦点,根据焦点可求出p ,可得答案. 【详解】直线45100x y -+=与坐标轴的交点为()5,0,0,22⎛⎫- ⎪⎝⎭,当抛物线的焦点为5,02⎛⎫- ⎪⎝⎭时,其标准方程为210y x =-;当抛物线的焦点为()0,2时,其标准方程为28x y =. 故选:D.3.(2022秋·上海黄浦·高二上海市向明中学校考期末)过点1,2,且焦点在y 轴上的抛物线的标准方程是( ) A .24y x = B .24y x =-C .212=-x yD .212x y =【答案】C【分析】设抛物线方程为2x my =,代入点的坐标,即可求出m 的值,即可得解; 【详解】解:依题意设抛物线方程为2x my =,因为抛物线过点1,2, 所以()212m =⨯-,解得12m =-,所以抛物线方程为212=-x y ;故选:C(二)抛物线的几何性质的应用4.(2022·全国·高二假期作业)抛物线26y x =的准线方程为( ) A .124y =-B .112y =-C .y =-6D .=3y -【答案】A【分析】先把抛物线化成标准方程,求出p ,即可得到准线方程.【详解】抛物线26y x =的标准方程为:216x y =,令2126x y py ==,得112p =,于是该抛物线的准线为:124y =-.5.(2022春·山东临沂·高二临沂第四中学校考阶段练习)若抛物线22y px =的焦点与双曲线221x y -=的右焦点重合,则p =( )A .2B .4C .D 【答案】C【分析】先求出双曲线221x y -=的右焦点,此焦点是抛物线22y px =的焦点,求出.p【详解】在双曲线221x y -=中,2112c =+=,所以右焦点)2F ,2F 是抛物线22y px =的焦点,2pp ∴== 故选:C6.(2022春·黑龙江哈尔滨·高二哈九中校考阶段练习)已知圆22:(1)1C x y -+=与抛物线22(0)y px p =>的准线相切,则p =( )A .18B .14C .8D .2【答案】A【分析】根据给定条件,求出抛物线的准线方程,再利用点到直线距离公式求解作答.【详解】圆22:(1)1C x y -+=的圆心(1,0)C ,半径1,抛物线212x y p =的准线为18y p=-, 依题意,118p =,解得18p =, 所以18p =. 故选:A7.(2022·全国·高二假期作业)已知抛物线()2:0C x ay a =≠,则抛物线C 的焦点坐标为( )A .1,04a ⎛⎫ ⎪⎝⎭B .1,04a ⎛⎫± ⎪⎝⎭C .()0,4aD .()0,4a ±【答案】A【分析】将抛物线方程化为标准方程,判断焦点的位置,求出p ,即可得焦点坐标.【详解】已知()20x ay a =≠,则标准方程为21y x a=,焦点在x 轴上, 所以1122p p a a=⇒=, 所以焦点坐标为1,04a ⎛⎫⎪⎝⎭,8.(2022春·江苏泰州·高二统考期中)若抛物线2y mx =上一点(),2t 到其焦点的距离等于4,则( ) A .14m =B .18m =C .4m =D .8m =【答案】B【分析】由抛物线的定义求解即可【详解】因为抛物线2y mx =的标准方程为21x y m=,其准线方程为14y m =-,由于抛物线上一点(),2t 到其焦点的距离等于4, 由抛物线的定义可得,1244m +=,解得18m =. 故选:B9.(2022秋·湖北咸宁·高二统考期末)已知O 是坐标原点,F 是抛物线C :()220y px p =>的焦点,()0,4P x 是C 上一点,且4=PF ,则POF 的面积为( ) A .8 B .6 C .4 D .2【答案】C【分析】根据条件求出p 的值,然后可算出答案.【详解】由题可知0042162p x px ⎧+=⎪⎨⎪=⎩,解得024x p =⎧⎨=⎩,所以POF 的面积为12442⨯⨯=,故选:C考点二 抛物线定义的应用(一)利用抛物线的定义求距离或点的坐标10.(2022秋·新疆乌鲁木齐·高二乌市八中校考期末)抛物线26y x =上一点()11,M x y 到其焦点的距离为92,则点M 到坐标原点的距离为( ) A.B.CD .2【答案】A【分析】由抛物线方程求得焦点坐标及准线方程,再由()11,M x y 到其焦点的距离求得M 横坐标,进一步求得M 纵坐标,则答案可求.【详解】由题意知,焦点坐标为3,02⎛⎫⎪⎝⎭,准线方程为32x =-,由()11,M x y 到焦点距离等于到准线距离,得13922x +=,则13x =,2118y ∴=故选:A.11.(2022·高二单元测试)已知曲线C 上任意一点P 到定点()2,0F 的距离比点P 到直线3x =-的距离小1,M ,N 是曲线C 上不同的两点,若10MF NF +=,则线段MN 的中点Q 到y 轴的距离为( ) A .3 B .4C .5D .6【答案】A【分析】根据抛物线的定义求出曲线C 的方程,再根据抛物线的性质计算可得;【详解】解:依题意曲线C 上任意一点P 到定点()2,0F 的距离和点P 到直线2x =-的距离相等, 由抛物线的定义可知:曲线C 是以()2,0F 为焦点,2x =-为准线的抛物线,所以曲线C 的方程为28y x =.分别设点M 、N 、Q 到准线2x =-的距离分别为1d ,2d ,d , 则12522MF NFd d d ++===,所以中点Q 到y 轴的距离为3, 故选:A .12.(2022·高二课时练习)若()00,P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,则PF =( ). A .08x + B .08x -C .08x -D .016x +【答案】C【分析】根据抛物线定义,得到PF 等于点00(,)P x y 到准线的距离,即PF PM =,即可求解. 【详解】由抛物线232y x =-,可得其焦点在x 轴上,且8p =,准线方程为8x =, 因为点00(,)P x y 是抛物线232y x =-上一点,F 为抛物线的焦点,根据抛物线定义,可得PF 等于点00(,)P x y 到准线的距离,即PF PM =, 如图所示,所以08PF x =-.故选:C13.(2022·高二课时练习)已知抛物线C :22y x =的焦点为F ,()00,A x y 是C 上一点,054AF x =,则0x =( ) A .1 B .2C .4D .5【答案】B【分析】先求出抛物线的准线方程,进而将点到焦点的距离转化为到准线的距离即可求得答案.【详解】由抛物线C :22y x =可得1p =,则准线方程为12x =-,于是00015224p AF x x x =+=+=,解得02x =.故选:B .14.(2022秋·新疆喀什·高二新疆维吾尔自治区喀什第二中学校考期中)已知A ()4,2-,F 为抛物线28y x =的焦点,点M 在抛物线上移动,当MA MF +取最小值时,点M 的坐标为( )A .()0,0B .(1,-C .()2,2-D .1,22⎛⎫- ⎪⎝⎭【答案】D【分析】过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF ME =,当M 在抛物线上移动时,当,,A M E 三点共线时,ME MA +最小,由此即可求出结果.【详解】如图所示,过M 点作准线l 的垂线,垂足为E ,由抛物线定义,知MF .ME =当M 在抛物线上移动时,ME MA +的值在变化,显然M 移动到M '时,,,A M E 三点共线,ME MA +最小,此时//AM Ox ',把=2y -代入28y x =,得12x =,所以当MA MF +取最小值时,点M 的坐标为1,22⎛⎫- ⎪⎝⎭.故选:D.15.(2022春·湖北武汉·高二华中师大一附中阶段练习)已知抛物线2:2(0)C y px p =>的焦点为F ,点M 在抛物线C 的准线l 上,线段MF 与y 轴交于点A ,与抛物线C 交于点B ,若||3||3MA AB ==,则p =( ) A .1 B .2C .3D .4【答案】C【分析】由题知点A 为MF 的中点,结合已知得||6,||2,||4MF BF BM ===,过点B 作BQ l ⊥,由抛物线的定义即可求解.【详解】设l 与x 轴的交点为H ,由O 为FH 中点,知点A 为MF 的中点, 因为||3||3MA AB ==,所以||6,||2,||4MF BF BM ===.过点B 作BQ l ⊥,垂足为Q ,则由抛物线的定义可知||||2BQ BF ==, 所以||2||BM BQ =,则||2||6MF FH ==,所以||3p FH ==. 故选:C16.(2022春·福建·高二福建师大附中校考期末)如图,过抛物线()220y px p =>的焦点F 的直线l 交抛物线于点A ,B ,交其准线于点C ,准线与对称轴交于点M ,若3BC BF=,且3AF =,则p 为( )A .1B .2C .3D .4【答案】B【分析】分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,根据抛物线的定义以及图象可得sin sin sin BCD ACE FCM ∠=∠=∠,结合已知条件求得,a p ,即可. 【详解】如图,分别过点A 、B 作准线的垂线,垂足分别为点E 、D ,设BF a =,则由己知得3BC a =,由抛物线的定义得BD a =, 故1sin 33BD a BCD BC a ∠===, 在直角三角形ACE 中,3AF =,34AC a =+, 又因为31sin sin 343AE BCD ACE AC a ∠=∠===+, 则349a +=,从而得32a =, 又因为1sin sin 463MF p p BCD FCM FC a ∠=∠====, 所以2p =. 故选:B.(二)与抛物线定义有关的最大(小)值问题17.(2022·高二单元测试)已知圆C 经过点()1,0P ,且与直线=1x -相切,则其圆心到直线30x y -+=距离的最小值为( )A .3B .2 CD【答案】D【分析】利用已知可推出圆心C 的轨迹为抛物线,利用抛物线的几何性质求解即可.【详解】解:依题意,设圆C 的圆心(),C x y ,动点C 到点P 的距离等于到直线=1x -的距离, 根据抛物线的定义可得圆心C 的轨迹方程为24y x =, 设圆心C 到直线30x y -+=距离为d,d ====当2y =时,min d ,故选:D .18.(2022春·四川泸州·高二四川省泸县第一中学校考期末)已知抛物线C :212y x =-的焦点为F ,抛物线C 上有一动点P ,()4,2Q -,则PF PQ +的最小值为( )A .5B .6C .7D .8 【答案】C【分析】抛物线的准线l 的方程为3x =,过P 作PM l ⊥于M ,根据抛物线的定义可知PF PM =,则当,,Q P M 三点共线时,可求PM PQ +得最小值,答案可得.【详解】解:抛物线C :212y x =-的焦点为()3,0F -,准线l 的方程为3x =,如图,过P作PM l ⊥于M ,由抛物线的定义可知PF PM =,所以PF PQ PM PQ +=+则当,,Q P M 三点共线时,PM PQ +最小为()347--=. 所以PF PQ +的最小值为7.故选:C.19.(2022秋·江西赣州·高二校联考期中)已知抛物线216y x =的焦点为F ,P 点在抛物线上,Q 点在圆()()22:624C x y -+-=上,则PQ PF +的最小值为( ) A .4B .6C .8D .10【答案】C 【分析】利用抛物线定义,将抛物线上的点到焦点的距离转化为点到准线的距离,再根据三点共线求最小距离.【详解】如图,过点P 向准线作垂线,垂足为A ,则PF PA =,当CP 垂直于抛物线的准线时,CP PA +最小,此时线段CP 与圆C 的交点为Q ,因为准线方程为4x =-,()6,2C ,半径为2,所以PQ PF +的最小值为21028AQ CA =-=-=.故选:C20.(2022春·黑龙江哈尔滨·高二哈尔滨三中校考期中)设点P 是抛物线1C :24x y =上的动点,点M 是圆2C :22(5)(4)4x y -++=上的动点,d 是点P 到直线=2y -的距离,则||d PM +的最小值是( )A .2B .1C .D .1【答案】B 【分析】根据题意画出图像,将d 转化为抛物线上点到准线的距离再加1,也即是抛物线上点到焦点的距离加1,若求||d PM +的最小值,转化为抛物线上点到焦点距离和到圆上点的距离再加1即可,根据三角形两边之和大于第三边,即当112,,,F P M C 共线时,||d PM +取最小值为21FC r +-,算出结果即可.【详解】解:由题知圆2C :22(5)(4)4x y -++=,()25,4,2C r ∴-=()0,1F 为抛物线焦点,1y =-为抛物线准线,则过点P 向1y =-作垂线垂足为D ,如图所示:则1d PD =+, 根据抛物线定义可知=PD PF ,1d PF ∴=+,||d PM ∴+=1PF PM ++,若求||d PM +的最小值,只需求PF PM +的最小值即可,连接2FC 与抛物线交于点1P ,与圆交于点1M ,如图所示,此时PF PM +最小,为2FC r -,()2min 1d PM FC r +=+-,()()220,1,5,4,F C FC -∴=()2min 11d PM FC r ∴+=+-=.故选:B21.(2022春·北京·高二人大附中校考期末)已知直线1:4360l x y -+=和直线2:1l x =-,则抛物线24y x =上一动点P 到直线1l 和直线2l 的距离之和的最小值是( )A .3716B .115C .2D .74【答案】C【分析】由=1x -是抛物线24y x =的准线,推导出点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值即为点P 到直线1:4360l x y -+=的距离和点P 到焦点的距离之和,利用几何法求最值.【详解】1x =-是抛物线24y x =的准线,P ∴到=1x -的距离等于PF .过P 作1PQ l ⊥于 Q ,则P 到直线1l 和直线2l 的距离之和为PF PQ +抛物线24y x =的焦点(1,0)F∴过F 作11Q F l ⊥于1Q ,和抛物线的交点就是1P , ∴111PF PQ PF PQ +≤+(当且仅当F 、P 、Q 三点共线时等号成立)∴点P 到直线1:4360l x y -+=的距离和到直线2:1l x =-的距离之和的最小值就是(1,0)F 到直线4360x y -+=距离,∴最小值1FQ 2==.故选:C .考点三 抛物线的轨迹问题22.(2022·高二课时练习)已知点(2,2)M ,直线:10l x y --=,若动点P 到l 的距离等于PM ,则点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .直线【答案】C【分析】由抛物线的定义求解即可.【详解】由抛物线的定义(平面内,到定点与定直线的距离相等的点的轨迹叫做抛物线)可知,点P 的轨迹是抛物线.故选:C23.(2022春·四川成都·高二成都七中校考阶段练习)已知圆22:1O x y +=,点00(,0),(0)A x x ≥,动圆M 经过点A 且与圆O 相切,记动圆圆心M 的轨迹为E ,有下列几个命题:①00x =,则轨迹E 表示圆,②001x <<,则轨迹E 表示椭圆,③01x =,则轨迹E 表示抛物线,④01x >,则轨迹E 表示双曲线,其中,真命题的个数为( )A .1B .2C .3D .4【答案】C【分析】设动圆M 圆心(),M x y ,半径为r ,根据圆与圆内切和外切两种情况,结合圆,抛物线,椭圆和双曲线的定义,依次判断每个选项得到答案.【详解】设动圆M 圆心(),M x y ,半径为r ,当00x =时,动圆M 与圆O 内切,故1MO r =-,即1MO MO =-,12MO =,轨迹为圆,①正确; 当001x <<时,动圆M 与圆O 内切,故1MO r =-,即1MO MA AO +=>,故轨迹为椭圆,②正确; 当01x =时,动圆M 与圆O 内切时,1MO r =-,1MO MA AO +==,轨迹为线段OA ;动圆M 与圆O 外切时,1MO r =+,1MO MA AO -==,轨迹为射线,③错误;当01x >时,动圆M 与圆O 外切,1MO r =+,即1MO MA AO -=<,故轨迹为双曲线,④正确. 故选:C24.(2022秋·福建福州·高二统考期中)在平面直角坐标系xOy 中,动点(),P x y 到直线1x =的距离比它到定点()2,0-的距离小1,则P 的轨迹方程为( )A .22y x =B .24y x =C .24y x =-D .28y x =-【答案】D【分析】根据抛物线的定义判断轨迹,再由抛物线焦点、准线得到方程即可.【详解】由题意知动点(),P x y 到直线2x =的距离与定点()2,0-的距离相等,由抛物线的定义知,P 的轨迹是以()2,0-为焦点,2x =为准线的抛物线,所以4p =,轨迹方程为28y x =-,故选:D25.(2022春·广东江门·高二新会陈经纶中学校考阶段练习)已知点()1,0F ,过直线=1x -上一动点P 作与y 轴垂直的直线,与线段PF 的中垂线交于点Q ,则Q 点的轨迹方程为( )A .221x y +=B .221x y -=C .22y x =D .24y x = 【答案】D 【分析】根据中垂线性质得到QF QP =,结合抛物线的定义判断出Q 点的轨迹是抛物线,由此求解出轨迹方程.【详解】设(),Q x y ,因为PF 的中垂线经过点Q ,所以QF QP =,又因为PQ y ⊥轴,所以QP 表示Q 到直线=1x -的距离, 且QF 表示Q 点到F 点的距离,F 点不在直线=1x -上,由抛物线的定义可知:Q 点的轨迹是以F 为焦点,以直线=1x -为准线的抛物线,设轨迹方程为()220y px p =>,所以12p =,所以2p =, 所以轨迹方程为24y x =.故选:D.26.(2022秋·山东青岛·高二青岛二中校考阶段练习)已知动圆M 与直线y =2相切,且与定圆2231()C x y =:++ 外切,则动圆圆心M 的轨迹方程为( )A .212x y =-B .212x y =C .212y x =D .212y x =-【答案】A 【分析】根据动圆M 与直线y =2相切,且与定圆2231()C x y =:++外切,可得动点M 到C (0,-3)的距离与到直线y =3的距离相等,由抛物线的定义知,点M 的轨迹是抛物线,由此易得轨迹方程.【详解】设动圆圆心为M (x ,y ),半径为r ,由题意可得M 到C (0,-3)的距离与到直线y =3的距离相等, 由抛物线的定义可知,动圆圆心的轨迹是以C (0,-3)为焦点,以y =3为准线的一条抛物线, 所以3,2122p p ==,其方程为212.x y =-, 故选:A27.(2022·高二课时练习)若动点(,)M x y 满足3412x y =-+,则点M 的轨迹是( ) A .圆B .椭圆C .双曲线D .抛物线 【答案】D34125x y -+=,结合抛物线的定义,即可求解.【详解】由题意,动点(,)M x y 满足3412x y -+,34125x y -+=, 即动点(,)M x y 到定点(1,2)的距离等于动点(,)M x y 到定直线34120x y -+=的距离,又由点(1,2)不在直线34120x y -+=上,根据抛物线的定义,可得动点M 的轨迹为以(1,2)为焦点,以34120x y -+=的抛物线.故选:D.考点四 直线与抛物线的位置关系(一)直线与抛物线位置关系的判断及应用28.(2022春·上海浦东新·高二上海市建平中学校考阶段练习)过定点()0,1P 且与抛物线28y x =有且仅有一个公共点的直线有( )A .1条B .2条C .3条D .4条【答案】C【分析】根据题意,考虑直线斜率不存在和存在两种情况,由直线与抛物线位置关系,联立直线与抛物线方程求解,即可得出结果.【详解】当斜率不存在时,直线方程为0x =,只有一个公共点,符合题意;当斜率存在时,设为k ,则直线方程为1y kx =+,联立218y kx y x=+⎧⎨=⎩,得22(28)10k x k x +-+=, ①当0k =时,直线方程为1y =,只有一个公共点,符合题意;②当0k ≠时,令22(28)40k k ∆=--=,解得2k =,即直线与抛物线有一个公共点.所以满足题意的直线有3条.故选:C29.(2022·高二课时练习)直线()12y k x =-+与抛物线24x y =的位置关系为( )A .相交B .相切C .相离D .不能确定【答案】A【分析】直线()12y k x =-+过定点()1,2,在抛物线24x y =内部,即可得出结论.【详解】直线()12y k x =-+过定点()1,2,∴2142<⨯,∴()1,2在抛物线24x y =内部,∴直线()12y k x =-+与抛物线24x y =相交,故选:A .30.(2022春·江苏连云港·高二期末)已知直线l 过点()1,2且与抛物线24y x =只有一个公共点,则直线l 的方程是( )A .2y =B .10x y -+=C .1x =D .2y =或10x y -+= 【答案】D【分析】先判断点()1,2在抛物线上,再分直线的斜率不存在,直线的斜率为0和直线的斜率存在且不为0,三种情况讨论求解即可.【详解】将点(1,2)的坐标代入抛物线方程得2241=⨯,即该点在抛物线上.①若直线的斜率不存在,直线l 的方程为:1l x =,当直线l 与抛物线有两个交点,不合题意; ②若直线的斜率为0,则直线:2l y =平行于x 轴,则满足题意;③若直线的斜率存在且不为0,设()():210l y k x k -=-≠,联立方程组22(1)4y k x y x -=-⎧⎨=⎩, 将21y x k k =-+代入24y x =化简得24840y y k k-+-=, 则248Δ()4(4)01k k k =---=⇒=,此时:2110l y x x y -=-⇒-+=.综上,直线l 的方程为2y =或10x y -+=.故选:D .31.(2022春·江苏南京·高二校联考阶段练习)过抛物线24x y =的焦点F 作直线交抛物线于,A B 两点,且点A 在第一象限,则当2AF FB =时,直线AB 的斜率为( )AB.C.D.±【答案】A【分析】首先设直线AB ,把直线与抛物线联立,结合2AF FB =,找到12x x + 与12x x 关系式,计算即可得到斜率.【详解】由题意知()0,1F ,设直线AB :1y kx =+,()()1122,,,A x y B x y联立方程214y kx x y =+⎧⎨=⎩, 可得2440x kx --=,即得121244x x k x x +=⎧⎨=-⎩ ① 又因为2AF FB =,可得122x x =-,②结合①②()212122x x x x =-+,24216k -=-⨯ 可得21=8k , 因为122x x =-,1>0x ,20x <又因12=4x x k +所以0k >即可得k 故选:A .32.(2022春·江苏连云港·高二校考期中)过抛物线2:C y x =上定点(P 作圆()22:21M x y -+=的两条切线,分别交抛物线C 于另外两点A 、B ,则直线AB 的方程为( ) A.10x -+= B.10x ++= C.20x -+= D.20x ++=【答案】B【分析】设过点P 且与圆M相切的直线的方程为()2y k x =-,根据该直线与圆M 相切求出k 的值,设点()211,A y y 、()222,B y y ,求出1y 、2y 的值,求出直线AB 的斜率,利用点斜式可得出所求直线的方程.【详解】圆M 的圆心为()2,0M ,半径为1,易知PM x ⊥轴,所以,直线PA 、PB 的斜率必然存在, 设过点P 且与圆M相切的直线的方程为()2y k x =-,即20kx y k -+=,1=,解得1k =±,设点()211,A y y 、()222,B y y ,不妨设直线PA 、PB 的斜率分别为1、1-,则11PA k ==,可得11y =同理1PB k ==-,可得21y =-直线AB的斜率为122212121AB y y k y y y y -===-+ 易知点A的坐标为(3-, 所以,直线AB的方程为(13y x -=-+,即10x ++=. 故选:B.33.(2022秋·安徽·高二校联考期末)已知抛物线2:12C x y =的焦点为F ,其准线与y 轴的交点为A ,点B 为抛物线上一动点,当AB FB取得最大值时,直线AB 的倾斜角为( )A .4π B .3π C .6π或56π D .4π或34π【答案】D【分析】过点B 作抛物线C 的准线的垂线BM ,垂足为点M ,分析可得cos BF BAF AB =∠,当AB FB取得最大值时,BAF ∠最大,此时AB 与抛物线C 相切,设出直线AB 的方程,将抛物线C 的方程,由Δ0=可求得直线AB 的斜率,即可求得直线AB 的倾斜角.【详解】抛物线C 的准线为2:12l x y =,焦点为()0,3F ,易知点()0,3A -,过点B 作BM l ⊥,垂足点为M ,由抛物线的定义可得BM BF =,易知//BM y 轴,则BAF ABM ∠=∠,所以,cos cos BF BMABM BAF AB AB==∠=∠, 当AB FB取得最大值时,cos BAF ∠取最小值,此时BAF ∠最大,则直线AB 与抛物线C 相切,由图可知,直线AB 的斜率存在,设直线AB 的方程为3y kx =-,联立2123x yy kx ⎧=⎨=-⎩可得212360x kx -+=,则21441440k ∆=-=,解得1k =±,因此,直线AB 的倾斜角为4π或34π. 故选:D.(二)弦长问题34.(2022春·四川成都·高二树德中学校考阶段练习)已知抛物线2:8C y x =的焦点为F ,过点F 且倾斜角为π4的直线l 与抛物线C 交于A ,B 两点,则AB =( ).A .8B .C .16D .32【分析】根据过抛物线焦点的弦长公式求得正确答案. 【详解】焦点()2,0F ,直线l 的方程为2y x =-,由228y x y x=-⎧⎨=⎩,消去y 并化简得21240,144161280x x -+=∆=-=>, 设()()1122,,,A x y B x y ,所以1212x x +=, 所以1212416AB x x p =++=+=. 故选:C35.(2022春·湖北·高二校联考阶段练习)根据抛物线的光学性质,从抛物线的焦点发出的光,经抛物线反射后光线都平行于抛物线的轴,已知抛物线22y x =,若从点()3,2Q 发射平行于x 轴的光射向抛物线的A 点,经A 点反射后交抛物线于B 点,则AB =( ) A .258B .2516C .259D .2518【答案】A【分析】由题意求出A 点的坐标,由于直线AB 过焦点,利用点斜式方程求出直线AB 为4320x y --=,联立抛物线方程,得23102y y --=,根据韦达定理求出B 点坐标,利用两点间距离公式可求出AB . 【详解】由条件可知AQ 与x 轴平行,令2y =,可得2A x =,故A 点坐标为()2,2, 因为AB l 经过抛物线焦点1,02F ⎛⎫⎪⎝⎭,所以AB l 为20101222y x -⎛⎫-=- ⎪⎝⎭-,整理得4320x y --=, 联立224320y x x y ⎧=⎨--=⎩,得23102y y --=,()2325411024⎛⎫∆=--⨯⨯-=> ⎪⎝⎭,所以32A B y y +=,又2A y =,所以12B y =-,2111228B x ⎛⎫=⨯-= ⎪⎝⎭,所以258AB =,36.(2022春·山东济南·高二山东省济南市莱芜第一中学校考阶段练习)已知椭圆22154x y +=的右焦点F 是抛物线()220y px p =>的焦点,则过F 作倾斜角为45°的直线分别交抛物线于A ,B (A 在x 轴上方)两点,则AFBF的值为( )A.3+B .2+C .3D .4【答案】A【分析】先根据椭圆方程求抛物线的方程,分别过A ,B 作准线的垂线,得到直角梯形11AA B B ,结合抛物线的定义在梯形中求2ABAP ,即得结果.【详解】依题意,()1,0F 是抛物线()220y px p =>的焦点,故12p=,则2p =,24y x =. 根据已知条件如图所示,A 在x 轴上方,分别过A ,B 作准线的垂线,垂足为11,A B , 过B 作1AA 的垂线,垂足为P ,设,BF x AF kx ==,根据抛物线的定义知11,BB x AA kx ==,所以直角梯形11AA B B 中1A P x =,()111AP AA A P k x =-=-,()1AB k x =+,又直线AB 的倾斜角45,故121k xk x ,解得3k =+3AFBF=+ 故选:A.37.(2022·山东青岛·高二山东省莱西市第一中学学业考试)设F 为抛物线2:3C y x =的焦点,过F 且倾斜角为30°的直线交抛物线C 于A ,B 两点,O 为坐标原点,则OAB 的面积为( )A .94B C .98D【分析】联立直线与抛物线方程消去x 得1212,y y y y +, 121||||2OAB OAF OFB S S S OF y y =+=-△△△代入计算可得结果.【详解】由题意知,3(,0)4F∴过A 、B的直线方程为3)4y x =-,即:34x =+22349034y xy x ⎧=⎪⇒--=⎨+⎪⎩设1122,,()()A x y B x y ,,则121294y y y y +==-∴1212113||||||224OAB OAF OFB S S S OF y y y y =+=-=⨯-△△△3984== 故选:A.38.(2022春·河南·高二校联考期中)已知抛物线2:4C y x =的焦点为,F N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若||2||MN NF =,则MPF △的面积为( ) A .8 B .12C.D.【答案】C【分析】过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E ,进而根据几何关系得MPF △为等边三角形,34MF NF ==,再计算面积即可.【详解】解:如图,过N 作准线的垂线,垂足为Q ,准线与x 轴交于点E , 所以,NF NQ =,2EF =. 因为MQN MEF △△∽, 所以23QN MN MQ EF MF ME ===,43QN NF ==,34MF NF ==. 所以1cos 2EF MFE MF ∠==,60MFE PMF ∠=︒=∠.又因为PM PF =,所以60PFM PMF ∠=∠=︒,所以MPF △为等边三角形,所以2MPF S ==△ 若M 在第三象限,结果相同. 故选:C39.(2022秋·河南许昌·高二统考期末)已知直线l 过点()2,0,且垂直于x 轴.若l 被抛物线24y ax =截得的线段长为 ) A .()1,0 B .()0,1 C .()1,2 D .()2,1【答案】A【分析】将2x =代入24y ax =可得交点坐标,结合弦长为a ,进而得到抛物线的焦点坐标即可【详解】当2x =时,28y a =,显然0a >,解得y =±(-=,解得1a =,故抛物线24y x =,焦点坐标为()1,0故选:A40.(2022秋·河南·高二校联考开学考试)已知A ,B 为抛物线2:C y x =,上的两点,且2AB =,则AB 的中点横坐标的最小值为( ). A .14B .12C .34D .1【分析】根据抛物线的弦长公式,结合基本不等式进行求解即可. 【详解】设直线AB 的方程为()0x ky b b =+≥,()11,A x y ,()22,B x y ,联立方程组2y xx ky b ⎧=⎨=+⎩,得20y ky b --=,则12y y k +=,12y y b =-,240k b ∆=+>.因为2AB ,所以()()22144k k b ++=,得22114k b k =-+.因为()2121222x x k y y b k b +=++=+,所以AB 的中点的横坐标2221202211112241414x x k k k x b k k ++==+=+=+-++.因为2211141k k ++≥=+, 当且仅当221141k k +=+,即1k =±时,等号成立, 所以当1k =±时,0x 取得最小值34. 故选:C41.(2022秋·广东深圳·高二深圳市罗湖外语学校校考阶段练习)已知圆()2220x y r r +=>与抛物线23y x=相交于M ,N ,且MN =r =( )A B .2 C .D .4【答案】B【分析】由圆与抛物线的对称性及MN =M 点纵坐标,代入抛物线得横坐标,求出||OM 即可得解.【详解】因为圆()2220x y r r +=>与抛物线23y x =相交于M ,N ,且MN =由对称性,不妨设(M x ,代入抛物线方程,则33x =,解得1x =,所以M ,故||2r OM ==(三)焦点弦问题42.(2022春·湖南长沙·高二湘府中学校考阶段练习)设F 为抛物线2:2C y x =的焦点,点M 在C 上,点N 在准线l 上,满足//MN OF ,NF MN =,则MF =( )A .12 B C .2 D 【答案】C【分析】由抛物线方程可知p ,焦点坐标及准线方程,设准线l 与x 轴交点为E ,画出图象,由抛物线定义及NF MN =可知MNF 是正三角形,结合平行关系可判断60EFN ∠=︒,利用直角三角形性质即可求解. 【详解】由题,1p =,抛物线焦点F 为1,02⎛⎫⎪⎝⎭,准线l 为12x =-,设准线l 与x 轴交点为E ,如图所示, 由题知MN l ⊥,由定义可知MN MF =, 因为NF MN =,所以MNF 是正三角形,则对Rt NEF ,因为//MN OF ,所以60EFN MNF ∠=∠=︒, 所以222MF NF EF p ====, 故选:C43.(2022·全国·高二假期作业)已知抛物线2:4C y x =的焦点为F ,N 为C 上一点,且N 在第一象限,直线FN 与C 的准线交于点M ,过点M 且与x 轴平行的直线与C 交于点P ,若2MN NF =,则直线PF 的斜率为( ) A .1 B .2C .43D 【答案】D【分析】过N 作准线的垂线,垂足为Q ,根据抛物线的定义以及两直线平行内错角相等、等腰三角形的性质可得30NMQ ∠=,通过直线的倾斜角为πPFM MFO -∠-∠即可得结果. 【详解】如图,过N 作准线的垂线,垂足为Q ,则||||NF NQ =. 又因为||||PM PF =,所以PFM PMF MFO MNQ ∠=∠=∠=∠. 因为||2||MN NF =,即||2||MN NQ = 所以30NMQ ∠=,即60MNQ ∠=︒.直线PF的斜率为tan(π)tan 60PFM MFO -∠-∠=︒= 故选:D.44.(2022春·四川绵阳·高二四川省绵阳南山中学校考期中)已知直线l 过抛物线2:4E y x =的焦点F ,且与抛物线交于A ,B 两点,与抛物线的准线交于C 点,若2AB BC =,则||||AF BF 等于( ) A .2 B .3C .12D .13【答案】B【分析】过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B ,根据相似得到1113BB AA =,再利用抛物线的性质得到答案. 【详解】如图所示:过点A 作1AA 垂直于准线交准线于1A ,过点B 作1BB 垂直于准线交准线于1B , 则1BF BB =,1AF AA =,2AB BC =,故1113BB AA =,即||3||AF BF =. 故选:B45.(2022春·浙江金华·高二浙江金华第一中学校考阶段练习)设倾斜角为α的直线l 经过抛物线C :()220y px p =>的焦点F ,与抛物线C 交于A 、B 两点,设A 在x 轴上方,点B 在x 轴下方.若2AFBF=,则cos α的值为( )A .13B .12C .23D 【答案】A【分析】由抛物线的性质,抛物线上的点到焦点的距离转化为到准线的距离,在直角三角形中求出倾斜角为α的余弦值.【详解】过A ,B 分别作准线的垂线交准线于M ,N ,过B 作BC AM ⊥于C ,则AC AM BN =-,由抛物线的性质可得,AM AF =,BN BF =, 因为||2||AF BF =,∴3AB BF =, 所以1cos 3333AC AM BN AF BF BF CAB AB BF BF BF --=====∠,即1cos 3α=. 故选:A .(四)中点弦问题。
浅谈抛物线焦点弦的性质及应用
抛物线焦点弦,即抛物线两个焦点之间的弦,所连接的直线称为焦点弦,它是抛物线上任何弦的直径,通过这条弦分割出抛物线两部分,经常被用于指定抛物线的位置及大小。
抛物线焦点弦的性质是抛物线的相关性质。
这其中包括了抛物线两个焦点,以及在抛物线围绕焦点弦绕一圈的椭圆弦、圆心和斜率。
此外,它还具有一定的几何特性,例如抛物线的焦点弦是抛物线的轴线。
抛物线焦点弦有很多实际应用。
常见应用之一是物体运动的轨迹计算。
运动物体跟踪系统能够实时计算出物体抛物线轨迹,这种轨迹有许多参数需要调整,如焦点弦长度和弦上点的位置,以便计算出更为精确的轨迹。
另外,抛物线焦点弦还广泛应用在电子信号处理、物理和太空航行等领域。
抛物线焦点弦是一种很重要的几何性质,通过它的参数来指定抛物线的形态和位置,实际应用也很广泛。
因此,要想掌握抛物线焦点弦的性质,不仅要熟悉基本的几何计算,还要深入了解它在不同应用场景中的使用情况,这尤其重要。