2020年3月济宁市一模数学试题(高清版含答案)
- 格式:doc
- 大小:3.97 MB
- 文档页数:10
2020年中考数学一模试卷一、选择题(共10小题)1.若a与2互为相反数,则a+1的值为()A.﹣3.B.﹣1.C.1.D.3.2.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A.7.68×109元B.7.68×1010元C.76.8×108元D.0.768×1010元3.如图是一个正方体的表面展开图,在这个正方体中,与点A重合的点为()A.点C和点N B.点B和点M C.点C和点M D.点B和点N 4.如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①②B.②④C.①③D.③④5.如果关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k<1且k≠0C.k>1D.k≤1且k≠0 6.下列函数中自变量的取值范围是x>2的是()A.y=x﹣2B.y=C.y=D.y=7.将一个圆形纸片,如下图连续对折三次之后,用剪刀剪去其方形部分,展开后得到的多边形的内角和角度为()A.180°B.540°C.1080°D.2160°8.由4个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大9.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x (x≠0)的图象大致是()A.B.C.D.10.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:x3﹣2x2+x=.12.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°得到点B,则点B的坐标是.13.下面4个图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是.14.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是.15.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为.三、解答题(共55分)16.计算:.17.解不等式组:,并把其解集在数轴表示出来.18.某中学九(5)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(5)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中n=,m=;(3)排球兴趣小组4名学生中有2男2女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是一男一女的概率.19.如图,在▱ABCD中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.(1)求证:AB=CE;(2)若∠AFC=2∠D,则四边形ABEC是什么特殊四边形?请说明理由20.如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cos∠E的值.21.阅读材料,解决问题:如图,为了求平面直角坐标系中任意两点A(x1,y1)、B(x2,y2)之间的距离,可以AB为斜边作Rt△ABC,则点C的坐标为C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,根据勾股定理可得AB=,反之,可以将代数式的值看做平面内点(x1,y1)到点(x2,y2)的距离.例如∵可将代数式看作平面内点(x,y)到点(﹣1,3)的距离根据以上材料解决下列问题(1)求平面内点M(2,﹣3)与点N(﹣1,3)之间的距离;(2)求代数式的最小值.22.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?23.如图,在直角坐标系xOy中,矩形OABC的顶点A、C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C、点B重合),连结OP、AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.(1)当x为何值时,OP⊥AP?(2)求y与x的函数关系式,并写出x的取值范围;(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积?若存在,请求x的值;若不存在,请说明理由.参考答案一、选择题:(每小题3分,共30分)1.若a与2互为相反数,则a+1的值为()A.﹣3.B.﹣1.C.1.D.3.【分析】先依据相反数的定义求得a的值,然后再依据有理数加法法则计算即可.解:∵a与2互为相反数,∴a=﹣2,∴a+1=﹣2+1=﹣1.故选:B.2.据统计,截至3月10日,全国已有7436万多名党员自愿捐款,共捐款76.8亿元,则76.8亿元用科学记数法可表示为()A.7.68×109元B.7.68×1010元C.76.8×108元D.0.768×1010元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:76.8亿元=7680000000元=7.68×109元.故选:A.3.如图是一个正方体的表面展开图,在这个正方体中,与点A重合的点为()A.点C和点N B.点B和点M C.点C和点M D.点B和点N 【分析】根据图形,把正方体展开图折叠成正方体,观察即可得到重合的点.解:折叠成正方体时,与点A重合的点为C、N.故选:A.4.如图,在框中解分式方程的4个步骤中,根据等式基本性质的是()A.①②B.②④C.①③D.③④【分析】根据等式的性质1,等式的两边都加或减同一个整式,结果不变,根据等式的性质2,等式的两边都乘或除以同一个不为零的整式,结果不变,可得答案.解:①根据等式的性质2,等式的两边都乘同一个不为零的整式x﹣2,结果不变,③根据等式的性质1,等式的两边都加同一个整式3﹣x,结果不变.故选:C.5.如果关于x的一元二次方程kx2﹣2x+1=0有两个不相等的实数根,则k的取值范围是()A.k<1B.k<1且k≠0C.k>1D.k≤1且k≠0【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根下必须满足△=b2﹣4ac>0.解:根据题意得:4﹣4k>0且k≠0,解得:k<1且k≠0.故选:B.6.下列函数中自变量的取值范围是x>2的是()A.y=x﹣2B.y=C.y=D.y=【分析】当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数为非负数.解:A、项中x的取值范围是全体实数;B、项中x的取值范围是x≠2;C、项中x的取值范围是x≥2;D、项根据二次根式和分式的意义得x﹣2>0,解得:x>2.故选:D.7.将一个圆形纸片,如下图连续对折三次之后,用剪刀剪去其方形部分,展开后得到的多边形的内角和角度为()A.180°B.540°C.1080°D.2160°【分析】根据将一个圆形纸片连续对折三次之后形成的多边形是八边形解答即可.解:将一个圆形纸片连续对折三次之后形成的多边形是八边形,其内角和为:(8﹣2)×180°=1080°,故选:C.8.由4个大小相同的正方体搭成的几何体如图所示,则关于它的视图说法正确的是()A.主视图的面积最大B.俯视图的面积最大C.左视图的面积最大D.三个视图的面积一样大【分析】先得出三视图:正视图为3个小正方形;俯视图为3个小正方形;左视图为3个小正方形;再求其面积,比较大小即可.解:正视图:3个小正方形;俯视图:3个小正方形;左视图:3个小正方形;则三个视图的面积一样大,故选:D.9.定义新运算:a⊕b=例如:4⊕5=,4⊕(﹣5)=.则函数y=2⊕x (x≠0)的图象大致是()A.B.C.D.【分析】根据题意可得y=2⊕x=,再根据反比例函数的性质可得函数图象所在象限和形状,进而得到答案.解:由题意得:y=2⊕x=,当x>0时,反比例函数y=在第一象限,当x<0时,反比例函数y=﹣在第二象限,又因为反比例函数图象是双曲线,因此D选项符合.故选:D.10.如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),B(3,0).下列结论:①2a﹣b=0;②(a+c)2<b2;③当﹣1<x<3时,y<0;④当a=1时,将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣2)2﹣2.其中正确的是()A.①③B.②③C.②④D.③④【分析】根据二次函数图象与系数之间的关系即可求出答案.解:①图象与x轴交于点A(﹣1,0),B(3,0),∴二次函数的图象的对称轴为x==1∴=1∴2a+b=0,故①错误;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)2=b2,故②错误;③由图可知:当﹣1<x<3时,y<0,故③正确;④当a=1时,∴y=(x+1)(x﹣3)=(x﹣1)2﹣4将抛物线先向上平移2个单位,再向右平移1个单位,得到抛物线y=(x﹣1﹣1)2﹣4+2=(x﹣2)2﹣2,故④正确;故选:D.二、填空题(本题共5小题,每小题3分,共15分)11.因式分解:x3﹣2x2+x=x(x﹣1)2.【分析】先提公因式x,再利用完全平方公式,即可解答.【解答】解;x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2,故答案为:x(x﹣1)2.12.在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90°得到点B,则点B的坐标是(﹣5,4).【分析】分别过A、B作x轴的垂线,垂足分别为C、D,可证明△AOC≌△OBD,可求得BD和OD的长,则可求得B点坐标.解:如图,分别过A、B作x轴的垂线,垂足分别为C、D,∵A(4,5),∴OC=4,AC=5,∵把点A(4,5)逆时针旋转90°得到点B,∴OA=OB,且∠AOB=90°,∴∠BOD+∠AOC=∠AOC+∠CAO=90°,∴∠BOD=∠CAO,在△AOC和△OBD中∴△AOC≌△OBD(AAS),∴OD=AC=5,BD=OC=4,∴B(﹣5,4),故答案为:(﹣5,4).13.下面4个图是一根电线杆在一天中不同时刻的影长图,试按其一天中发生的先后顺序排列,正确的是④①③②.【分析】根据北半球上,从早晨到傍晚影子的指向是:西﹣西北﹣北﹣东北﹣东,影长由长变短,再变长的变化规律,可得先后顺序为④①③②.解:依题意,由于太阳是从东边升起,故影子首先指向西方的.然后根据太阳的位置可判断变化规律为④①③②.14.世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是﹣=45.【分析】直接利用5G网络比4G网络快45秒得出等式进而得出答案.解:设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是:﹣=45.故答案为:﹣=45.15.已知抛物线y=x2+2x﹣3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧),若B,C是线段AD的三等分点,则m的值为2或8.【分析】分两种情况:①当C在B的左侧时,先根据三等分点的定义得:AC=BC=BD,由平移m个单位可知:AC=BD=m,计算点A和B的坐标可得AB的长,从而得结论.②当C在B的右侧时,同理可得结论.解:分为两种情况:①如图,当C在B的左侧时,∵B,C是线段AD的三等分点,∴AC=BC=BD,由题意得:AC=BD=m,当y=0时,x2+2x﹣3=0,(x﹣1)(x+3)=0,x1=1,x2=﹣3,∴A(﹣3,0),B(1,0),∴AB=3+1=4,∴AC=BC=2,∴m=2,②同理,当C在B的右侧时,AB=BC=CD=4,∴m=AB+BC=4+4=8,故答案为:2或8.三、解答题(共55分)16.计算:.【分析】分别进行负整数指数幂、零指数幂、绝对值的运算,然后代入特殊角的三角函数值,最后合并即可得出答案.解:原式=1﹣2+2×﹣(﹣2)=﹣+2=2﹣.17.解不等式组:,并把其解集在数轴表示出来.【分析】首先解不等式组中的每个不等式,然后确定两个不等式的解集的公共部分,即可确定不等式组的解集.解:解第一个不等式得:x≥1;解第二个不等式得:x<5.则不等式组的解集是:1≤x<518.某中学九(5)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(5)班的学生人数为40,并把条形统计图补充完整;(2)扇形统计图中n=20,m=10;(3)排球兴趣小组4名学生中有2男2女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是一男一女的概率.【分析】(1)根据篮球的人数和所占的百分比求出总人数,再用总人数减去其它球类项目的人数,求出足球的人数,从而补全统计图;(2)用足球的人数除以总人数,求出n,再用排球的人数除以总人数,即可求出m;(3)根据题意画出树状图得出所有等情况数,找出选出的2名学生恰好是一男一女的情况数,然后根据概率公式即可得出答案.解:(1)九(5)班的学生人数为:12÷30%=40(人),足球的人数是:40﹣4﹣12﹣16=8(人),补图如下:(2)n%=×100%=20%,则n=20;m%=×100%=10%,则m=10;故答案为:20,10;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有8种,则选出的2名学生恰好是1男1女的概率为:=.19.如图,在▱ABCD中,点F是边BC的中点,连接AF并延长交DC的延长线于点E,连接AC、BE.(1)求证:AB=CE;(2)若∠AFC=2∠D,则四边形ABEC是什么特殊四边形?请说明理由【分析】(1)由在▱ABCD中,点F是边BC的中点,易证得△ABF≌△ECF,可得CE =AB即可;(2)由(1)易得四边形ABEC是平行四边形,又由∠AFC=2∠D,易证得AF=BF,即可得AE=BC,证得四边形ABEC是矩形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABF=∠ECF,∵点F是边BC的中点,∴BF=CF,在△ABF和△CEF中,,∴△ABF≌△ECF(ASA),∴AB=CE,(2)解:四边形ABEC是矩形.理由如下:∵AB∥CD,AB=CE,∴四边形ABEC是平行四边形,∴AE=2AF,BC=2BF,∵四边形ABCD是平行四边形,∴∠ABF=∠D,∵∠AFC=2∠D,∠AFC=∠ABF+∠BAF,∴∠ABF=∠BAF,∴AF=BF,∴AE=BC,∴四边形ABEC是矩形.20.如图,在△ABC中,AB=BC,以AB为直径的⊙O与AC交于点D,过D作DF⊥BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙O的切线;(2)当AB=5,AC=8时,求cos∠E的值.【分析】(1)连接圆心和切点,利用平行,OF⊥CB可证得∠ODF=90°;(2)把∠E在相应的直角三角形中进行转移,求出其邻边与斜边即可.【解答】(1)证明:如图,连接OD,BD(1分)∵AB是⊙O的直径,∴∠ADB=∠90°,∴BD⊥AC;∵AB=BC,∴AD=DC;∵OA=OB,∴OD∥BC,∵DE⊥BC,∴DE⊥OD.∴直线DE是⊙O的切线.(2)解:作DH⊥AB,垂足为H,则∠EDH+∠E=90°,又DE⊥OD,∴∠ODH+∠EDH=90°.∴∠E=∠ODH.∵AD=DC,AC=8,∴AD=4.在Rt△ADB中,BD==3,由三角形面积公式得:AB•DH=DA•DB.即5•DH=3×4,DH=.在Rt△ODH中,cos∠ODH==,∴cos∠E=.21.阅读材料,解决问题:如图,为了求平面直角坐标系中任意两点A(x1,y1)、B(x2,y2)之间的距离,可以AB为斜边作Rt△ABC,则点C的坐标为C(x2,y1),于是AC=|x1﹣x2|,BC=|y1﹣y2|,根据勾股定理可得AB=,反之,可以将代数式的值看做平面内点(x1,y1)到点(x2,y2)的距离.例如∵可将代数式看作平面内点(x,y)到点(﹣1,3)的距离根据以上材料解决下列问题(1)求平面内点M(2,﹣3)与点N(﹣1,3)之间的距离;(2)求代数式的最小值.【分析】(1)依据两点间的距离公式进行计算即可;(2)先将原式变形,即可将原式可以看作点P(x,y)到点(3,4)和点(﹣5,2)的距离之和,求得AB的长,即可得到该代数式的最小值.解:(1)MN===3;(2)∵原式=+=+,∴原式可以看作点P(x,y)到点(3,4)和点(﹣5,2)的距离之和,∴当点P(x,y)在线段AB上时,原式有最小值,∵AB===2,∴原式的最小值为2.22.某商店购进一批成本为每件30元的商品,经调查发现,该商品每天的销售量y(件)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求该商品每天的销售量y与销售单价x之间的函数关系式;(2)若商店按单价不低于成本价,且不高于50元销售,则销售单价定为多少,才能使销售该商品每天获得的利润w(元)最大?最大利润是多少?(3)若商店要使销售该商品每天获得的利润不低于800元,则每天的销售量最少应为多少件?【分析】(1)将点(30,100)、(45,70)代入一次函数表达式,即可求解;(2)由题意得w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,即可求解;(3)由题意得(x﹣30)(﹣2x+160)≥800,解不等式即可得到结论.解:(1)设y与销售单价x之间的函数关系式为:y=kx+b,将点(30,100)、(45,70)代入一次函数表达式得:,解得:,故函数的表达式为:y=﹣2x+160;(2)由题意得:w=(x﹣30)(﹣2x+160)=﹣2(x﹣55)2+1250,∵﹣2<0,故当x<55时,w随x的增大而增大,而30≤x≤50,∴当x=50时,w有最大值,此时,w=1200,故销售单价定为50元时,该超市每天的利润最大,最大利润1200元;(3)由题意得:(x﹣30)(﹣2x+160)≥800,解得:40≤x≤70,又∵y=﹣2x+160≥20,则y的最小值为﹣20×70+160=20,每天的销售量最少应为20件.23.如图,在直角坐标系xOy中,矩形OABC的顶点A、C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C、点B重合),连结OP、AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.(1)当x为何值时,OP⊥AP?(2)求y与x的函数关系式,并写出x的取值范围;(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积?若存在,请求x的值;若不存在,请说明理由.【分析】(1)根据相似三角形的判定定理证明△OPC∽△PAB,根据相似三角形的性质列出比例式,得到一元二次方程,解方程即可;(2)证明△OCM∽△PCO,根据相似三角形的性质列出比例式即可求解;(3)过E作ED⊥OA于点D,交MP于点F,根据题意得到△EOA的面积=矩形OABC 的面积,求出ED的长,根据相似三角形的性质求出PM,由(2)的解析式计算即可.解:(1)由题意知,OA=BC=5,AB=OC=2,∠B=∠OCM=90°,BC∥OA,∵OP⊥AP,∴∠OPC+∠APB=∠APB+∠PAB=90°,∴∠OPC=∠PAB,∴△OPC∽△PAB,∴,即,解得x1=4,x2=1(不合题意,舍去).∴当x=4时,OP⊥AP;(2)∵BC∥OA,∴∠CPO=∠AOP,∵∠AOP=∠COM,∴∠COM=∠CPO,∵∠OCM=∠PCO,∴△OCM∽△PCO,∴,即,∴,x的取值范围是2<x<5;(3)假设存在x符合题意,过E作ED⊥OA于点D,交MP于点F,则DF=AB=2,∵△OCM与△ABP面积之和等于△EMP的面积,∴,∴ED=4,EF=2,∵PM∥OA,∴△EMP∽△EOA,∴,即,解得,∴由(2)得,,解得(不合题意舍去),∴在点P的运动过程中,存在,使△OCM与△ABP面积之和等于△EMP的面积.。
2020年济宁市邹城市中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−3的绝对值等于()C. ±3D. 3A. −3B. −132.下列各式计算正确的是()A. a2⋅a3=a6B. a10÷a2=a5C. (−a4)2=a8D. (2ab)4=8a4b43.世界文化遗产长城总长约为670万m,若将670万m用科学记数法表示为6.7×10n(n是正整数),则n的值为()A. 5B. 6C. 7D. 84.一次函数y=−kx+k与反比例函数y=−(k≠0)在同一坐标系中的图象可能是()A. B.C. D.5.把x3−16x分解因式,结果正确的是()A. x(x2−16)B. x(x−4)2C. x(x+4)2D. x(x+4)(x−4)6.如图,已知a//b,小亮把三角板的直角顶点放在直线b上,若∠1=40°,则∠2的度数为()A. 30°B. 40°C. 45°D. 50°7.由五个小立方体搭成如图的几何体,从正面看到的平面图形是()A.B.C.D.8.若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是()A. 6cmB. 9cmC. 12cmD. 18cm9.一种原价均为m元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是().A. 甲或乙或丙B. 乙C. 丙D. 乙或丙10.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.使函数y=1√x−1有意义的自变量x的取值范围是______ .12.在4张完全相同的卡片上分别画上等边三角形、平行四边形、正方形和圆,从中随机摸出1张,这张卡片上的图形是中心对称图形的概率是______.13.如图,甲、乙两船同时从港口出发,甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°方向航行,半小时后甲船到达C点,乙船正好到达甲船正西方向的B点,则乙船的路程______(结果保留根号).14.分式方程1x−1=52x+1的解为______.15.如图,正方形ABCD中,E在BC上,BE=2,CE=1.点P在BD上,则PE+PC的最小值为____________.三、计算题(本大题共2小题,共15.0分)16.先化简,再求值:x−3x2−1⋅x2+2x+1x−3−(1x−1+1),其中x=√2+1.17.苏果超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x元(x为正整数),每天的销售利润为y元.(1)求y与x的函数关系式;(2)每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?四、解答题(本大题共5小题,共40.0分)(a≠0)的图象18.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=ax在第二象限交于点A(m,2).与x轴交于点C(−1,0).过点A作AB⊥x轴于点B,△ABC的面积是3.求一次函数和反比例函数的解析式;19.为了增强学生的身体素质,教育部门规定学生每天参加体育锻炼时间不少于1小时,为了了解学生参加体育锻炼的情况,抽样调查了900名学生每天参加体育锻炼的时间,并将调查结果制成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)请补充这次调查参加体育锻炼时间为1小时的频数分布直方图.(2)求这次调查参加体育锻炼时间为1.5小时的人数.(3)这次调查参加体育锻炼时间的中位数是多少?20.如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.21.如图,将矩形纸片ABCD沿对角线BD折叠,使点A落在平面上的F点处,DF交BC于点E.(1)求证:△DCE≌△BFE;(2)若CD=2,∠ADB=30°,求BE的长.22.如图,在平面直角坐标系中,抛物线y=ax2+bx+4与x轴的一个交点为A(−2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标.【答案与解析】1.答案:D解析:此题考查了绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.根据绝对值的性质解答即可.解:|−3|=3.故选:D.2.答案:C解析:解:A、a2⋅a3=a5,故此选项错误;B、a10÷a2=a8,故此选项错误;C、(−a4)2=a8,正确;D、(2ab)4=16a4b4,故此选项错误;故选:C.直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别计算得出答案.此题主要考查了直接利用同底数幂的乘除运算以及幂的乘方运算、合并同类项,正确掌握相关运算法则是解题关键.3.答案:B解析:解:∵670万=6.7×106,∴n的值为6.故选:B.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.4.答案:C解析:本题考查的是反比例函数及一次函数图象有关知识,根据反比例函数及一次函数图象的特点对四个选项进行逐一分析即可.解:A、∵由反比例函数的图象在一、三象限可知,−k>0,∴k<0,∴一次函数y=−kx+k的图象经过一、三、四象限,故本选项错误;B、∵由反比例函数的图象在一、三象限可知,−k>0,∴k<0,∴一次函数y=−kx+k的图象经过一、三、四象限,故本选项错误;C、∵由反比例函数的图象在二、四象限可知,−k<0,∴k>0,∴一次函数y=−kx+k的图象经过一、二、四象限,故本选项正确;D、∵由反比例函数的图象在一、三象限可知,−k>0,∴k<0,∴一次函数y=−kx+k的图象经过一、三、四象限,故本选项错误.故选C.5.答案:D解析:解:原式=x(x2−16)=x(x+4)(x−4),故选:D.原式提取x,再利用平方差公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.答案:D解析:解:∵∠1=40°,∴∠3=180°−40°−90°=50°,∵a//b,∴∠2=∠3=50°.故选:D.根据平角等于180°求出∠3,再根据两直线平行,同位角相等可得∠2=∠3.本题考查了平行线的性质,熟记性质并准确识图是解题的关键.7.答案:C解析:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.找到从正面看所得到的图形即可.解:从正面可看到三列正方形的个数依次为2,1,1.故选C.8.答案:C解析:考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长.利用弧长公式可得圆锥的侧面展开图的弧长,除以2π即为圆锥的底面半径.=24π,解:圆锥侧面展开扇形的弧长为:240π×18180∴圆锥的底面半径为24π÷2π=12.故选C.9.答案:B解析:本题考查列代数式及代数式的计算;得到实际售价的关系式是解决本题的关键.分别算出3个超市的实际售价,比较得到售价最便宜的超市即可.解:甲超市的实际售价为m×0.8×0.8=0.64m元;乙超市的实际售价为m×0.6=0.6m元;丙超市的实际售价为m×0.7×0.9=0.63m元,∴最划算应到的超市是乙.故选B.10.答案:C解析:解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x 增大而减小,最小面积为0;故选:C.根据题意,分类讨论,即可得解.本题考查了动点问题的函数图象,难度不大.11.答案:x>1解析:解:由题意得,x−1>0,解得x>1.故答案为:x>1.根据被开方数大于等于0,分母不等于0列式计算即可得解.本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.答案:34解析:解:∵4张完全相同的卡片中中心对称图形有平行四边形、正方形和圆3个,∴卡片上的图形是中心对称图形的概率是3;4.故答案为:34根据中心对称图形的定义先找出中心对称图形,再用中心对称图形的个数除以所有图形的个数即可求得答案.此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.13.答案:10√3海里解析:本题主要考查的是解直角三角形的应用−方向角问题及三角函数的定义,理解方向角的定义是解决本题的关键.本题可以求出甲船行进的距离AC,根据三角函数就可以求出AB,即可求出乙船的路程.解:由已知可得:AC=60×0.5=30海里,又∵甲船以60海里/时的速度沿北偏东60°方向航行,乙船沿北偏西30°,∴∠BAC=90°,又∵乙船正好到达甲船正西方向的B点,∴∠C=30°,=10√3海里.∴AB=AC⋅tan30°=30×√33答:乙船的路程为10√3海里.故答案为:10√3海里.14.答案:x=2解析:解:方程两边都乘以(x−1)(2x+1)得,2x+1=5(x−1),解得x=2,检验:当x=2时,(x−1)(2x+1)=(2−1)×(2×2+1)=5≠0,所以,x=2是方程的解,所以,原分式方程的解是x=2.故答案为:x=2.方程两边都乘以(x−1)(2x+1)化为整式方程,然后求解,再进行检验即可.本题考查了解分式方程,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.答案:√13解析:本题考查的是轴对称−最短路线问题及正方形的性质,熟知“两点之间,线段最短”是解答此题的关键.连接AC、AE,由正方形的性质可知A、C关于直线BD对称,故AE的长即为PE+PC的最小值,再根据勾股定理求出AE的长即可.解:连接AC、AE,∵四边形ABCD是正方形,∴A、C关于直线BD对称,∴AE的长即为PE+PC的最小值,∵BE=2,CE=1,∴BC=AB=2+1=3,在Rt△ABE中,∵AE=√AB2+BE2=√32+22=√13,∴PE与PC的和的最小值为√13.故答案为√13.16.答案:解:原式=x−3(x+1)(x−1)⋅(x+1)2x−3−xx−1=x+1x−1−xx−1=1x−1,当x=√2+1时,原式=√22.解析:原式第一项变形后约分化简,括号中两项通分并利用同分母分式的加法法则计算,得到最简结果,把x的值代入计算即可求出值.此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.答案:解:(1)y=(200−x−170)(40+5x)=−5x2+110x+1200;(2)y=−5x2+110x+1200=−5(x−11)2+1805,∵抛物线开口向下,∴当x=11时,y有最大值1805,答:售价定为189元,利润最大1805元;解析:利润等于(售价−成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可; 本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键. 18.答案:解:∵AB ⊥x 轴于点B ,点A(m,2),∴点B(m,0),AB =2.∵点C(−1,0),∴BC =−1−m ,∴S △ABC =12AB ⋅BC =−1−m =3, ∴m =−4,∴点A(−4,2).∵点A 在反比例函数y =ax (a ≠0)的图象上,∴a =−4×2=−8,∴反比例函数的解析式为y =−8x .将A(−4,2)、C(−1,0)代入y =kx +b ,得:{−4k +b =2−k +b =0,解得:{k =−23b =−23, ∴一次函数的解析式为y =−23x −23.解析:本题考查了反比例函数与一次函数的交点问题、反比例(一次)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:由△ABC 的面积是3求出m 的值.由点A 的坐标可得出点B 的坐标,结合点C 的坐标可得出AB 、BC 的长度,由△ABC 的面积是3可得出关于m 的一元一次方程,解之可得出点A 的坐标,由点A 、C 的坐标利用反比例函数图象上点的坐标特征以及待定系数法,即可求出一次函数和反比例函数的解析式. 19.答案:解:(1)锻炼时间是1小时的人数是:900×40%=360(人).;(2)这次调查参加体育锻炼时间为1.5小时的人数是:900−270−360−90=180(人);(3)锻炼的中位数是:1小时.解析:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.(1)利用总人数乘以百分比即可求得时间是1小时的一组的人数,即可作出直方图;(2)总数减去其它各组的人数即可求解;(3)根据中位数的定义就是大小处于中间位置的数,据此即可求解.20.答案:解:(1)证明:连接OD、OE.∵CD切⊙O于点D,∴OD⊥CD.∵AC⊥CD,∴OD//AC.∴∠EAO=∠DOB,∠AEO=∠EOD.又∵∠EAO=∠AEO,∴∠EOD=∠DOB.∴BD=ED.(2)∵AC⊥CD,∴∠ACD=90°又∵CE=3,CD=4,∴ED=5.∵BD=ED,∴BD=5.∵AB为⊙O的直径,∴∠ADB=90°∴∠ACD=∠ADB.∵四边形ABDE内接于⊙O,∠CED=∠B,∴△CDE∽△DAB.∴CEDB =DEAB.∴35=5AB.∴AB=253.解析:本题主要考查的是切线的性质、相似三角形的性质和判定、平行线的性质,证得OD//AC、△CDE∽△DAB是解题的关键.(1)连接OD、OE,由切线的性质可知OD⊥CD,从而可证明AC//OD,接下来由平行线的性质、等腰三角形的性质可证明∠EOD=∠DOB;(2)在△CED中依据勾股定理可求得ED的长,从而得到BD的长,接下来证明△ECD∽△BDA,依据相似三角形的性质可求得AB的长.21.答案:解:(1)∵AD//BC,∴∠ADB=∠DBC,根据折叠的性质∠ADB=∠BDF,∠F=∠A=∠C=90°,∴∠DBC=∠BDF,∴BE=DE,在△DCE和△BFE中,{∠BEF=∠DEC∠F=∠C& BE=DE&,∴△DCE≌△BFE(AAS);(2)在Rt△DEC中,∵CD=2,∠DEC=2∠DBC=60°,∠EDC=30°,∴DE=2EC,∴(2EC)2−EC2=CD2,∴CE=2√33,∴BE =DE =2EC =4√33. 解析:(1)由AD//BC ,知∠ADB =∠DBC ,根据折叠的性质∠ADB =∠BDF ,所以∠DBC =∠BDF ,得BE =DE ,即可用AAS 证△DCE≌△BFE ;(2)在Rt △BCD 中,CD =2,∠EDC =30°,知CE =2√33,所以BE =DE =2EC =4√33. 本题考查了折叠的性质、全等三角形的判定和性质、等角对等边、平行线的性质以及勾股定理的综合运用,熟练的运用折叠的性质是解决本题的关键.22.答案:解:(1)∵抛物线y =ax 2+bx +4交x 轴于A(−2,0),∴0=4a −2b +4,∵对称轴是直线x =3,∴−b2a =3,即6a +b =0,关于a ,b 的方程联立为{4a −2b +4=06a +b =0, 解得 a =−14,b =32, ∴抛物线的表达式为y =−14x 2+32x +4;(2)∵四边形为平行四边形,且BC//MN ,∴BC =MN .分两种情况:①N 点在M 点下方,如图所示:即M 点向下平移4个单位,向右平移3个单位与N 重合.设M(x,−14x 2+32x +4),则N(x +3,−14x 2+32x),∵N 在x 轴上,∴−14x 2+32x =0,解得 x =0(舍去),或x =6,∴x M =6,∴M(6,4);②M 点在N 点右下方,即N 向下平移4个单位,向右平移3个单位与M 重合.设M(x,−14x 2+32x +4),则N(x −3,−14x 2+32x +8),∵N在x轴上,∴−14x2+32x+8=0,解得x=3−√41,或x=3+√41,∴x M=3−√41或3+√41.∴M2(3−√41,−4)或M3(3+√41,−4).综上所述,M的坐标为(6,4)或(3−√41,−4)或(3+√41,−4)解析:(1)根据点A的坐标和对称轴得出方程组,解方程组求出a和b即可;(2)由平行四边形的性质得出BC//MN,BC=MN.分两种情况:①N点在M点下方,设M(x,−14x2+32x+4),则N(x+3,−14x2+32x),由N在x轴上得出−14x2+32x=0,解方程即可;②M点在N点右下方,设M(x,−14x2+32x+4),则N(x−3,−14x2+32x+8),由N在x轴上得出方程,解方程即可.本题是二次函数综合题目,考查了二次函数解析式的求法、平行四边形的性质、平移的性质、解方程等知识;本题综合性强,有一定难度.。
2020年山东省济宁市任城区中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−12的绝对值为()A. −2B. −12C. 12D. 12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10−9米,用科学记数法将16纳米表示为()A. 1.6×10−9米B. 1.6×10−7米C. 1.6×10−8米D. 16×10−7米3.如图是由6个大小相同的小正方体组成的几何体,它的主视图是()A.B.C.D.4.下列计算正确的是()A. 5ab−3a=2bB. (−3a2b)2=6a4b2C. (a−1)2=a2−1D. 2a2b÷b=2a25.下列二次根式中属于最简二次根式的是()A. 2√xyB. √ab2C. √0.5D. √2x26.如图,AB//CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、F为圆心,大于12EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,若∠ACD=110°,则∠CMA的度数为()A. 30°B. 35°C. 70°D. 45°7.关于x的一元一次不等式m−2x3≤−2的解集为x≥4,则m的值为()A. 14B. 7C. −2D. 28.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A. 2B. √3C. √2D. 129.如图,四个直角边分别是6和8的全等直角三角形拼成“赵爽弦图”,随机往大正方形区域内投针一次,则针扎在小正方形GHEF部分的概率是()A. 34B. 14C. 124D. 12510.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E→A→D→C移动至终点C.设P点经过的路径长为x,△CPE的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.二、填空题(本大题共5小题,共15.0分)11.分解因式:x3y−2x2y+xy=______.12.若关于x的分式方程xx−2+2m2−x=2m有增根,则m的值为______.13.在平面直角坐标系中,Rt△OAB的顶点A的坐标为(√3,1),若将△OAB绕O点,逆时针旋转60°后,B点到达B′点,则点B′的坐标是______.14.如图,将矩形ABCD绕点A旋转至矩形AEFG的位置,此时点D恰好与AF的中点重合,AE交CD于点H,若BC=2√3,则HC的长为______ .15.如图,在平面直角坐标系中,△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,其直角顶点P1(3,3),P2,P3,…均在直线y=−13x+4上,设△P1OA1,△P2A1A2,△P3A2A3,…的面积分别为S1,S2,S3,…依据图形所反映的规律,S2020=______.三、解答题(本大题共7小题,共55.0分)16. 先化简,再求值(1−4x+3)÷x 2−2x+12x+6,其中x =√2+1.17. 某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):请你根据统计图表中的信息,解答下列问题:抽取的男生“引体向上”成绩统计表(1)填空:m =______,n =______.(2)求扇形统计图中D 组的扇形圆心角的度数;(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.18.如图,在足够大的空地上有一段长为a米的旧墙MN,某人利用旧墙和木栏围成一个矩形菜园ABCD,其中AD≤AM,已知矩形菜园的一边靠墙,另三边一共用了100米木栏.(1)若a=20米,所围成的矩形菜园的面积为450平方米,求所利用旧墙AD的长;(2)若a=70米,求矩形菜园ABCD面积的最大值.19.如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=m的图象在第二象限交于点B,与xx轴交于点C,点A在y轴上,满足条件:CA⊥CB,且CA=CB,点C的坐标为(−3,0),cos∠ACO=√5.5(1)求反比例函数的表达式;(2)直接写出当x<0时,kx+b<m的解集.x20.在平面直角坐标系中,⊙M过坐标原点O且分别交x轴、y轴于点A,B,点C为第一象限内⊙M上一点.若点A(6,0),∠BCO=30°.(1)求点B的坐标;(2)若点D的坐标为(−2,0),试猜想直线DB与⊙M的位置关系,并说明理由.21.(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=3√3,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD//AC,交AO的延长线于点D,通过构造△ABD 就可以解决问题(如图2).请回答:∠ADB=______°,AB=______.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=3√3,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.22.如图,抛物线y=ax2−5ax+c与坐标轴分别交于点A,C,E三点,其中A(−3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N 分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.(1)求抛物线的解析式及点D的坐标;(2)当△CMN是直角三角形时,求点M的坐标;(3)试求出AM+AN的最小值.答案和解析1.【答案】C【解析】解:∵|−12|=12,∴−12的绝对值为12.故选:C.计算绝对值要根据绝对值的定义求解,第一步列出绝对值的表达式,第二步根据绝对值定义去掉这个绝对值的符号.本题主要考查了绝对值的定义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0,比较简单.2.【答案】C【解析】【分析】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:∵1纳米=10−9米,∴16纳米表示为:16×10−9米=1.6×10−8米.故选C.3.【答案】C【解析】解:该主视图是:底层是3个正方形横放,右上角有一个正方形,左边有一个正方形.故选:C.根据组合体的形状即可求出答案.本题考查了学生的思考能力和对几何体三种视图的空间想象能力.解题的关键是根据组合体的形状进行判断,4.【答案】D【解析】【分析】此题主要考查合并同类项,幂的乘方与积的乘方,完全平方公式,整式的除法,熟记运算法则是解题的关键.运用相应的公式或运算法则进行计算即可.【解答】解:A选项,5ab与3a不属于同类项,不能合并,选项错误,B选项,(−3a2b)2=(−3)2a4b2=9a4b2,选项错误,C选项,完全平方公式(a−1)2=a2−2a+1,选项错误,D选项,整式除法,计算正确.故选:D.5.【答案】A【解析】解:A、2√xy是最简二次根式,此选项正确;B、√ab2=√2ab2,此选项错误;C、√0.5=√22,此选项错误;D、√2x2=√2|x|,此选项错误;故选:A.根据最简二次根式的定义逐一判断即可得.本题主要考查最简二次根式,掌握(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式是解题的关键.6.【答案】B【解析】【分析】此题主要考查了基本作图以及平行线的性质,正确得出∠CAM=∠BAM是解题关键.直接利用平行线的性质结合角平分线的作法得出∠CAM=∠BAM=35°,即可得出答案.【解答】解:∵AB//CD,∠ACD=110°,∴∠CAB=70°,∵以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于点E、F,再分别以E、EF的同样长为半径作圆弧,两弧交于点P,作射线AP,交CD于点M,F为圆心,大于12∴AP平分∠CAB,∴∠CAM=∠BAM=35°,∵AB//CD,∴∠CMA=∠MAB=35°.故选:B.7.【答案】D≤−2,【解析】解:m−2x3m−2x≤−6,−2x≤−m−6,x≥1m+3,2≤−2的解集为x≥4,∵关于x的一元一次不等式m−2x3m+3=4,∴12解得m=2.故选:D.本题是关于x的不等式,应先只把x看成未知数,求得不等式的解集,再根据x≥4,求得m的值.考查了不等式的解集,当题中有两个未知字母时,应把关于某个字母的不等式中的字母当成未知数,求得解集,再根据解集进行判断,求得另一个字母的值.8.【答案】B【解析】【分析】本题考查了切线的性质和圆周角定理、解直角三角形等知识点,能熟记切线的性质是解此题的关键,注意:圆的切线垂直于过切点的半径.连接OA,根据圆周角定理求出∠AOC,根据切线的性质求出∠OAP=90°,解直角三角形求出AP即可.【解答】解:连接OA,∵∠ABC=30°,∴∠AOC=2∠ABC=60°,∵PA是⊙O的切线,∴∠OAP=90°,∵OA=OC=1,∴AP=OA·tan60°=1×√3=√3,故选:B.9.【答案】D【解析】【分析】本题考查了几何概率:某事件的概率=相应事件所占的面积与总面积之比.也考查了勾股定理.先利用勾股定理计算AB的长,然后用小正方形的面积除以大正方形的面积即可.【解答】解:AB=√62+82=10,所以小正方形的面积=102−4×12×6×8=4,所以针扎在小正方形GHEF部分的概率=4100=125.故选:D.10.【答案】C【解析】解:通过已知条件可知,当点P与点E重合时,△CPE的面积为0;当点P在EA上运动时,△CPE的高BC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=2时有最大面积为4,当P在AD边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而增大,当x=6时,有最大面积为8,当点P在DC边上运动时,△CPE的底边EC不变,则△CPE的面积y是x的一次函数,面积y随x增大而减小,最小面积为0;故选:C.根据题意,分类讨论,即可得解.本题考查了动点问题的函数图象,难度不大.11.【答案】xy(x−1)2【解析】解:原式=xy(x2−2x+1)=xy(x−1)2.故答案为:xy(x−1)2原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】1【解析】解:方程两边都乘x−2,得x−2m=2m(x−2)∵原方程有增根,∴最简公分母x−2=0,解得x=2,当x=2时,m=1故m的值是1,故答案为1增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x −2=0,得到x =2,然后代入化为整式方程的方程算出m 的值. 本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.13.【答案】(√32,32)【解析】解:将△OAB 绕O 点,逆时针旋转60°后,位置如图所示,作B′C′⊥y 轴于C′点,∵A 的坐标为(√3,1),∴OB =√3,AB =1,∠AOB =30°,∴OB′=√3,∠B′OC′=30°,∴B′C′=√32,OC′=32,∴B′(√32,32). 根据A 点坐标可知∠AOB =30°,因此旋转后OA 在y 轴上.如图所示.作B′C′⊥y 轴于C′点,运用三角函数求出B′C′、OC′的长度即可确定B′的坐标.本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心O ,旋转方向逆时针,旋转角度60°,通过画图计算得B′坐标.14.【答案】4【解析】解:由旋转的性质可知:AC =AF ,∵D 为AF 的中点,∴AD =12AC , ∵四边形ABCD 是矩形,∴AD ⊥CD ,∴∠ACD =30°,∵AB//CD ,∴∠CAB =30°,∴∠EAF =∠CAB =30°,∴∠EAC =30°,∴AH=CH,∴DH=12AH=12CH,∴CH=2DH,∵CD=√3AD=√3BC=6,∴HC=23CD=4.故答案为:4.根据旋转后AF的中点恰好与D点重合,利用旋转的性质得到直角三角形ACD中,∠ACD=30°,再由旋转后矩形与已知矩形全等及矩形的性质得到∠DAE为30°,进而得到∠EAC=∠DCA,利用等角对等边得到AH=CH,根据BC、AD的长,即可得到CH 的长.本题考查了旋转的性质、矩形的性质、特殊角的三角函数等知识点,熟练掌握旋转的性质是解题的关键.15.【答案】942019【解析】解:过点P n作P n E n⊥x轴于点E n,如图所示.∵△P1OA1,△P2A1A2,△P3A2A3,…都是等腰直角三角形,∴OA1=2P1E1,A1A2=2P2E2,A2A3=2P3E3,…,A n−1A n=2P n E n.∵点P1的坐标为(3,3),∴S1=12OA1⋅P1E1=P1E12=9;设点P n的坐标为(x n,y n),则点P2的坐标为(6+y2,y2).∵点P2在直线y=−13x+4上,∴y2=−13(6+y2)+4,∴y2=32,∴S2=12A1A2⋅P2E2=P2E22=y22=94,∴点P3的坐标为(6+2y2+y3,y3),即(9+y3,y3).∵点P 3在直线y =−13x +4上,∴y 3=−13(9+y 3)+4, ∴y 3=34,∴S 3=12A 2A 3⋅P 3E 3=P 3E 32=y 32=916.∵y 1=3,y 2=32,y 3=34,…,∴y n =32n−1,∴S n =12A n−1A n ⋅P n E n =P n E n 2=y n 2=(32n−1)2=94n−1,∴S 2020=942019. 故答案为:942019.过点P n 作P n E n ⊥x 轴于点E n ,利用等腰直角三角形的性质可得出A n−1A n =2P n E n ,结合点P 1的坐标可求出S 1的值,设点P n 的坐标为(x n ,y n ),利用一次函数图象上点的坐标特征可得出y 2,y 3,…,y n 的值,再利用三角形的面积公式即可得出S 1,S 2,…,S n 的值,代入n =2020即可求出结论.本题考查了一次函数图象上点的坐标特征、等腰直角三角形以及规律型:点的坐标,利用点的变化,找出点P n 纵坐标的变化规律“y n =32n−1”是解题的关键.16.【答案】解:(1−4x+3)÷x 2−2x+12x+6 =x +3−4x +3⋅2(x +3)(x −1)2 =x −11⋅2(x −1)2=2x−1, 当x =√2+1时,原式=√2+1−1=√2.【解析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.【答案】解:(1)8;20 ;(2)11120×360°=33°,即扇形统计图中D组的扇形圆心角是33°;(3)3600×32120=960(人),答:“引体向上”得零分的有960人.【解析】【分析】本题考查扇形统计图、统计表、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答,注意n和n%的区别.(1)根据题意和表格、统计图中的数据可以计算出m、n的值;(2)根据(1)中的结论和统计图中的数据可以求得扇形统计图中D组的扇形圆心角的度数;(3)根据统计图中的数据可以估计其中“引体向上”得零分的人数.【解答】解:(1)由题意可得,本次抽查的学生有:30÷25%=120(人),m=120−32−30−24−11−15=8,n%=24÷120×100%=20%,故答案为8;20;(2)见答案;(3)见答案.18.【答案】解:(1)设AB=xm,则BC=(100−2x)m,由题意得:x(100−2x)=450解得:x1=5,x2=45当x=5时,100−2x=90>20,不合题意舍去;当x=45时,100−2x=10<20答:AD的长为10m;(2)设AB=xm,则S=12x(100−x)=−12(x−50)2+1250,(0<x≤70)∴x=50时,S的最大值是1250.答:当x=50时,矩形菜园ABCD面积的最大值为1250.【解析】(1)设AB=xm,则BC=(100−2x)m,列方程求解即可;(2)设AB=xm,由题意得关于x的二次函数,利用二次函数的性质即可解决问题.本题考查了一元二次方程和二次函数在实际问题中的应用,根据题意正确列式并明确二次函数的相关性质,是解题的关键.19.【答案】解:(1)过点B作BD⊥x轴于点D,∵CA⊥CB,∴∠BCD+∠ACO=∠BCD+∠CBD=90°,∴∠ACO=∠CBD,∵∠BDC=∠AOC=90°,AC=BC,∴△AOC≌△CDB(AAS),∴OC=DB=3,CD=AO,∵cos∠ACO=√5.5=3√5,∴AC=OCcos∠ACO∴CD=AO=√AC2−OC2=6,∴OD=OC+CD=3+6=9,∴B(−9,3),把B(−9,3)代入反比例函数y=m中,得m=−27,x∴反比例函数为y=−27;x(2)当x<0时,由图象可知一次函数y=kx+b的图象在反比例函数y=m图象的下方时,x自变量x的取值范围是−9<x<0,∴当x<0时,kx+b<m的解集为−9<x<0.x【解析】(1)过点B作BD⊥x轴于点D,证明△AOC≌△CDB得到BD与CD的长度,便可求得B点的坐标,进而求得反比例函数解析式;(2)观察函数图象,当一次函数图象在反比例函数图象下方时的自变量x的取值范围便是结果.本题考查了反比例函数和一次函数的交点问题,熟练掌握函数解析式的求法以及利用数形结合根据函数图象的上下位置关系得出不等式的解集是重点.20.【答案】(1)如图,连接AB,∵∠BAO=∠BCO=30°,∠AOB=90°,∴AB为⊙M的直径,∵A(6,0),∴OA=6.∵tan∠BAO=OBOA,∴OB=2√3,∴B(0,2√3);(2)DB与⊙M相切,理由如下:∵D(−2,0),∴OD=2,在Rt△BOD中,tan∠DBO=ODOB =22√3=√33,∴∠DBO=30°,连接OM,∵∠BOM=2∠BCO=2×30°=60°,MO=MA,∴△MOA是等边三角形,∴∠MBO=60°,∴∠DBM=∠DBO+∠MBO=30°+60°=90°,∴DB是⊙M的切线,即DB与⊙M相切.【解析】(1)连接AB,可得出AB就是直径,利用圆周角定理可得出△OAB是含有30°的直角三角形,通过解直角三角形求出OB即可;(2)根据直角三角形的边角关系可求出∠DBO=30°,再根据等边三角形的性质可求出∠MBO=60°,进而得出∠MBD=90°,得出结论.本题考查圆周角定理,等边三角形的判断和性质,直角三角形的边角关系,掌握直角三角形的边角关系和圆周角定理是解决问题的关键.21.【答案】75 4√3【解析】解:(1)∵BD//AC,∴∠ADB=∠OAC=75°.∵∠BOD=∠COA,∴△BOD∽△COA,∴ODOA =OBOC=13.又∵AO=3√3,∴OD=13AO=√3,∴AD=AO+OD=4√3.∵∠BAD=30°,∠ADB=75°,∴∠ABD=180°−∠BAD−∠ADB=75°=∠ADB,∴AB=AD=4√3.故答案为:75;4√3.(2)过点B作BE//AD交AC于点E,如图所示.∵AC⊥AD,BE//AD,∴∠DAC=∠BEA=90°.∵∠AOD=∠EOB,∴△AOD∽△EOB,∴BODO =EOAO=BEDA.∵BO:OD=1:3,∴EOAO =BEDA=13.∵AO=3√3,∴EO=√3,∴AE=4√3.∵∠ABC=∠ACB=75°,∴∠BAC=30°,AB=AC,∴AB=2BE.在Rt△AEB中,BE2+AE2=AB2,即(4√3)2+BE2=(2BE)2,解得:BE=4,∴AB=AC=8,AD=12.在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,解得:CD =4√13.(1)根据平行线的性质可得出∠ADB =∠OAC =75°,结合∠BOD =∠COA 可得出△BOD∽△COA ,利用相似三角形的性质可求出OD 的值,进而可得出AD 的值,由三角形内角和定理可得出∠ABD =75°=∠ADB ,由等角对等边可得出AB =AD =4√3,此题得解;(2)过点B 作BE//AD 交AC 于点E ,同(1)可得出AE =4√3,在Rt △AEB 中,利用勾股定理可求出BE 的长度,再在Rt △CAD 中,利用勾股定理可求出DC 的长,此题得解. 本题考查了相似三角形的性质、等腰三角形的判定与性质、勾股定理以及平行线的性质,解题的关键是:(1)利用相似三角形的性质求出OD 的值;(2)利用勾股定理求出BE 、CD 的长度.22.【答案】解:(1)把A(−3,0),C(0,4)代入y =ax 2−5ax +c 得{9a +15a +c =0c =4,解得{a =−16c =4, ∴抛物线解析式为y =−16x 2+56x +4;∵AC =BC ,CO ⊥AB ,∴OB =OA =3,∴B(3,0),∵BD ⊥x 轴交抛物线于点D ,∴D 点的横坐标为3,当x =3时,y =−16×9+56×3+4=5,∴D 点坐标为(3,5);(2)在Rt △OBC 中,BC =√OB 2+OC 2=√32+42=5,设M(0,m),则BN =4−m ,CN =5−(4−m)=m +1,∵∠MCN =∠OCB ,∴当CM CO =CN CB 时,△CMN∽△COB ,则∠CMN =∠COB =90°,即4−m 4=m+15,解得m =169,此时M 点坐标为(0,169);当CM CB =CN CO 时,△CMN∽△CBO ,则∠CNM =∠COB =90°,即4−m 5=m+14,解得m =119,此时M 点坐标为(0,119);综上所述,M 点的坐标为(0,169)或(0,119);(3)连接DN,AD,如图,∵AC=BC,CO⊥AB,∴OC平分∠ACB,∴∠ACO=∠BCO,∵BD//OC,∴∠BCO=∠DBC,∵DB=BC=AC=5,CM=BN,∴△ACM≌△DBN,∴AM=DN,∴AM+AN=DN+AN,而DN+AN≥AD(当且仅当点A、N、D共线时取等号),∴DN+AN的最小值=√62+52=√61,∴AM+AN的最小值为√61.【解析】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和相似三角形的判定与性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.(1)利用待定系数法求抛物线解析式;利用等腰三角形的性质得B(3,0),然后计算自变量为3所对应的二次函数值可得到D点坐标;(2)利用勾股定理计算出BC=5,设M(0,m),则BN=4−m,CN=5−(4−m)=m+1,由于∠MCN=∠OCB,根据相似三角形的判定方法,当CMCO =CNCB时,△CMN∽△COB,于是有∠CMN=∠COB=90°,即4−m4=m+15;当CMCB=CNCO时,△CMN∽△CBO,于是有∠CNM=∠COB=90°,即4−m5=m+14,然后分别求出m的值即可得到M点的坐标;(3)连接DN,AD,如图,先证明△ACM≌△DBN,则AM=DN,所以AM+AN=DN+AN,利用三角形三边的关系得到DN+AN≥AD(当且仅当点A、N、D共线时取等号),然后计算出AD即可.。
2020年山东省济宁市邹城市中考数学一模试卷一、选择题1.﹣2的绝对值等于()A.±2B.﹣2C.2D.42.下列各式运算正确的是()A.a+a=2a2B.a2•a3=a6 C.a3÷a=3D.(﹣a)3=﹣a33.世界文化遗产长城总长约为6700000m,6700000用科学记数法可表示为()A.67×105B.0.67×107C.6.7×105D.6.7×1064.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.5.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)6.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.68°C.60°D.58°7.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由6个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.8.用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是()A.4πB.8πC.4D.89.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算()A.甲B.乙C.同样D.与商品的价格有关10.如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图象中,能正确反映y 与x的函数关系的是()A.B.C.D.二、填空题(本大题共5个小题,每小题3分,共15分)11.在函数y=中,自变量x的取值范围是.12.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是.13.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我航海区域的C处截获可疑渔船,问我渔政船的航行路程是海里(结果保留根号).14.分式方程的解为.15.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.三、解答题(本大题共7个小题,共55分)16.先化简,再求值:,其中a=﹣2.17.如图,直线l经过点A(3,0)和点B(0,2).(1)求直线l的解析式;(2)直线l与函数y=的图象交于点C(C在第二象限),若△COB的面积与△AOB 的面积相等,求出m的值.18.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求户外活动时间的众数和中位数是多少?(4)本次调查中学生参加户外活动的平均时间是否符合要求?说明理由.19.如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ABD∽△OBC;(2)若AB=2,BC=,求AD的长.20.某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?21.如图1,△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,过点C作CF∥BD,交AB于点E,交AD于点F.(1)求证:△AEF≌△BEC;(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,如图2,求sin∠ACH 的值.22.已知:矩形OABC在平面直角坐标系中的位置如图所示,A(6,0),C(0,3),直线y=x与BC边交于D点.(1)求D点的坐标;(2)若抛物线y=ax2+bx经过A、D两点,求此抛物线的表达式;(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P.参考答案一、选择题(本大题共10个小题,每小题3分,共30分)1.﹣2的绝对值等于()A.±2B.﹣2C.2D.4【分析】根据绝对值的性质:一个负数的绝对值是它的相反数解答即可.解:根据绝对值的性质,|﹣2|=2.故选:C.【点评】此题主要考查了绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0,难度适中.2.下列各式运算正确的是()A.a+a=2a2B.a2•a3=a6 C.a3÷a=3D.(﹣a)3=﹣a3【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.解:A、a+a=2a,故原题计算错误;B、a2•a3=a5,故原题计算错误;C、a3÷a=a2,故原题计算错误;D、(﹣a)3=﹣a3,故此原题计算正确;故选:D.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.3.世界文化遗产长城总长约为6700000m,6700000用科学记数法可表示为()A.67×105B.0.67×107C.6.7×105D.6.7×106【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.解:将6700000用科学记数法表示为6.7×106.故选:D.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列图象中,能反映函数y随x增大而减小的是()A.B.C.D.【分析】观察函数图象,根据函数图象的单调性,可以直接做出选择.解:A、根据图象可知,函数在实数范围内是增函数,即函数y随x增大而增大;故本选项错误;B、根据图象可知,函数在对称轴的左边是减函数,函数y随x增大而减小;函数在对称轴的右边是增函数,即函数y随x增大而增大;故本选项错误;C、根据图象可知,函数在两个象限内是减函数,但是如果不说明哪个象限内是不能满足题意的;故本选项错误;D、根据图象可知,函数在实数范围内是减函数,即函数y随x增大而减小;故本选项正确.故选:D.【点评】本题综合考查了二次函数、一次函数、反比例函数以及正比例函数的图象.解答此题时,采用了“数形结合”的数学思想,使问题变得直观化了,降低了题的难度.5.把多项式a3﹣a分解因式,结果正确的是()A.a(a2﹣1)B.a(a﹣1)2C.a(a+1)2D.a(a+1)(a﹣1)【分析】原式提取a,再利用平方差公式分解即可.解:原式=a(a2﹣1)=a(a+1)(a﹣1),故选:D.【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.6.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32°B.68°C.60°D.58°【分析】本题主要利用两直线平行,同位角相等及余角的定义作答.解:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°﹣∠1=58°.故选:D.【点评】主要考查了平行线的性质和互余的两个角的性质.互为余角的两角的和为90°.解此题的关键是能准确的从图中找出这两个角之间的数量关系,从而计算出结果.7.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由6个立方体叠成的几何体,从正前方观察,可画出的平面图形是()A.B.C.D.【分析】根据主视图是从正面看到的图形判定则可.注意用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加.解:从正面看,左边两列都只有一个正方体,中间一列有三个正方体,右边一列是一个正方体.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.8.用弧长为8π的扇形做成一个圆锥的侧面,那么这个圆锥的底面的半径是()A.4πB.8πC.4D.8【分析】圆锥侧面展开图的弧长=底面周长,那么底面半径=周长÷2π.解:∵弧长为8π,∴底面周长=8π,则圆锥的底面的半径=8π÷2π=4,故选C.【点评】本题利用了圆的周长公式l=2πr求解,关键是明白圆锥底面周长和侧面弧长的相等的关系.9.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,在哪家超市购买此种商品更合算()A.甲B.乙C.同样D.与商品的价格有关【分析】此题可设原价为x元,分别计算出两超市降价后的价钱,再比较即可.解:设原价为x元,则甲超市价格为x×(1﹣10%)×(1﹣10%)=0.81x乙超市为x×(1﹣20%)=0.8x,0.81x>0.8x,所以在乙超市购买合算.故选:B.【点评】本题看起来很繁琐,但只要理清思路,分别计算降价后的价格是原价的百分之多少便可判断.渗透了转化思想.10.如下图,在平行四边形ABCD中,∠DAB=60°,AB=5,BC=3,点P从起点D出发,沿DC、CB向终点B匀速运动.设点P所走过的路程为x,点P所经过的线段与线段AD、AP所围成图形的面积为y,y随x的变化而变化.在下列图象中,能正确反映y 与x的函数关系的是()A.B.C.D.【分析】本题考查动点函数图象的问题,先求出函数关系式在判断选项.解:当点P在CD上运动时,y为三角形,面积为:×3×x=x,为正比例函数;当点P在CB上运动时,y为梯形,面积为×(x﹣5+3)×=,为一次函数.由于后面的面积的x的系数>前面的x的系数,所以后面函数的图象应比前面函数图象要陡.故选:A.【点评】本题需注意的知识点是:两个在第一象限的一次函数,比例系数大的图象较陡.二、填空题(本大题共5个小题,每小题3分,共15分)11.在函数y=中,自变量x的取值范围是x>2.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.解:由题意得,x﹣2>0,解得x>2.故答案为:x>2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是.【分析】根据中心对称图形的定义得到平行四边形、菱形和正六边形是中心对称图形,于是利用概率公式可计算出抽到的图形属于中心对称图形的概率.解:在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中,平行四边形、菱形和正六边形是中心对称图形,所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=.故答案为:.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.也考查了中心对称图形.13.如图,一天,我国一渔政船航行到A处时,发现正东方向的我领海区域B处有一可疑渔船,正在以12海里/时的速度向西北方向航行,我渔政船立即沿北偏东60°方向航行,1.5小时后,在我航海区域的C处截获可疑渔船,问我渔政船的航行路程是18海里(结果保留根号).【分析】作CD⊥AB于点D,垂足为D,首先在Rt△BCD中求得CD的长,然后在Rt △ACD中求得AC的长即可.解:作CD⊥AB于点D,垂足为D,在Rt△BCD中,∵BC=12×1.5=18(海里),∠CBD=45°,∴CD=BC•sin45°=18×=9(海里),则在Rt△ACD中,AC==9×2=18(海里).故我渔政船航行了18海里.故答案为:18.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中构造出直角三角形并利用三角函数的知识求解.14.分式方程的解为x=6.【分析】首先方程两边同时乘以(x+4)(x﹣1)即可转化成整式方程,然后即可求得方程的解.解:方程两边同时乘以(x+4)(x﹣1)得:2(x﹣1)=x+4,去括号得:2x﹣2=x+4,解得:x=6,检验:当x=6时(x+4)(x﹣1)=10×5=50≠0,则x=6是方程的解.故答案是:x=6.【点评】本题考查了分式方程的解法,注意(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD 内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE =BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.三、解答题(本大题共7个小题,共55分)16.先化简,再求值:,其中a=﹣2.【分析】首先把括号里因式通分,然后进行约分化简,最后代值计算.解:原式=•=2a+4;当a=﹣2时,原式=.【点评】本题主要考查分式的化简求值这一知识点,把分式化到最简是解答的关键.17.如图,直线l经过点A(3,0)和点B(0,2).(1)求直线l的解析式;(2)直线l与函数y=的图象交于点C(C在第二象限),若△COB的面积与△AOB 的面积相等,求出m的值.【分析】(1)利用待定系数法求一次函数解析式;(2)根据三角形面积公式得到C点和A点到OB的距离相等,则C点的横坐标为﹣3,利用一次函数解析式可确定C(﹣3,4),然后把C点坐标代入y=中可求出m的值.解:(1)设直线l的解析式为y=kx+b,把A(3,0)、点B(0,2)分别代入得,解得,∴一次函数解析式为y=x+2;(2)∵△COB的面积与△AOB的面积相等,∴C点和A点到OB的距离相等,∴C点的横坐标为﹣3,当x=﹣3时,y=﹣x+2=2+2=4,∴C(﹣3,4),把C(﹣3,4)代入y=得m=﹣3×4=﹣12.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.18.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求户外活动时间的众数和中位数是多少?(4)本次调查中学生参加户外活动的平均时间是否符合要求?说明理由.【分析】(1)根据户外活动时间为0.5小时的人数和所占的百分比,即可求出这次调查中共调查的学生数;(2)用50乘以户外活动时间为1.5小时的人数所占的百分比即可求出人数,再补全统计图即可;(3)根据众数的定义求出出现的次数最多的数,根据中位数的定义求出第25、26个数的平均数即可;(4)根据加权平均数的计算公式列式,求出本次调查中学生参加户外活动的平均时间,再与1小时比较即可.解:(1)根据题意得:=50(名),答:在这次调查中共调查了50名学生;(2)户外活动时间为1.5小时的人数是:50×24%=12(人),(3)∵1小时出现的次数最多,∴众数是1;∵共有50个数,∴中位数是第25、26个数的平均数,∴中位数是:(1+1)÷2=1;(4)∵本次调查中学生参加户外活动的平均时间是:=1.18>1,∴本次调查中学生参加户外活动的平均时间符合要求.【点评】此题考查了频数分布直方图,用到的知识点是平均数、中位数、众数,将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.频率=频数÷总数,一组数据中出现次数最多的数是众数.19.如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ABD∽△OBC;(2)若AB=2,BC=,求AD的长.【分析】(1)根据AB为圆O的直径,根据圆周角定理得到∠D为90°,又BC为圆O 的切线,根据切线性质得到∠CBO=90°,进而得到这两个角相等,又AD∥CO,根据两直线平行,得到一对同位角相等,从而利用两角对应相等的两三角形相似即可得证;(2)根据勾股定理求得OC=,由(1)得到的相似三角形,根据相似三角形的对应边成比例得出=,即AD=,求出AD的长.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=∠90°,∵BC是⊙O的切线,∴∠OBC=∠90°,∵AD∥CO,∴∠A=∠COB,在△ABD和△OBC中∵∠ADB=∠OBC,∠A=∠COB,∴△ABD∽△OCB;(2)由(1)知,△ABD∽△OCB,∴=,即AD=,∵AB=2,BC=,∴OB=1,∴OC==,∴AD==.【点评】此题考查了切线的性质,平行线的性质,圆周角定理以及相似三角形的判定与性质.对于第一问这样的几何证明题,要求学生多观察,多分析,根据题意选择合适的判定方法;第二问的突破点在于利用勾股定理表示出OC,借助第一问的相似得比例.20.某公司为一工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).(1)当每吨售价是240元时,计算此时的月销售量;(2)求出y与x的函数关系式(不要求写出x的取值范围);(3)该经销店要获得最大月利润,售价应定为每吨多少元?【分析】(1)由题意得出售价下降了20元,则可求出此时的月销售量;(2)月利润=(每吨售价﹣每吨其它费用)×销售量,从而可得出y与x的函数关系式;(3)根据(2)的关系式,利用配方法可求出售价.解:(1)售价降低了260﹣240=20元,故月销量=45+×7.5=60(吨).(2)每吨的利润为(x﹣100)吨,销量为:(45+×7.5),则y=(x﹣100)(45+×7.5)=﹣x2+315x﹣24000.(3)y=﹣x2+315x﹣24000=﹣(x﹣210)2+9075,故该经销店要获得最大月利润,材料的售价应定为每吨210元.答:该经销店要获得最大月利润,售价应定为每吨210元.【点评】本题考查了二次函数在应用,为数学建模题,要把实际问题转化为二次函数,利用函数的知识求解,难度一般.21.如图1,△ABC中,∠ACB=90°,∠CAB=30°,△ABD是等边三角形,过点C作CF∥BD,交AB于点E,交AD于点F.(1)求证:△AEF≌△BEC;(2)如图2,将四边形ACBD折叠,使D与C重合,HK为折痕,如图2,求sin∠ACH 的值.【分析】(1)由已知可得∠ABC=60°,从而推得∠BAD=∠ABC=60°.由E为AB 的中点,得到AE=BE.又因为∠AEF=∠BEC,所以△AEF≌△BEC;(2)在Rt△ABC中,设BC=a,则AB=2BC=2a,AD=AB=2a.设AH=x,则HC =HD=AD﹣AH=2a﹣x.在Rt△ABC中,由勾股定理得AC2=3a2.在Rt△ACH中,由勾股定理得AH2+AC2=HC2,即x2+3a2=(2a﹣x)2.解得x=a,即AH=a,求得HC的值后,即可求解.【解答】(1)证明:在△ABC中,∠ACB=90°,∠CAB=30°,∴∠ABC=60°.在等边△ABD中,∠BAD=60°,∴∠BAD=∠ABC=60°.∵E为AB的中点,∴AE=BE,在△AEF和△BEC中,,∴△AEF≌△BEC(ASA);(2)∵∠BAD=60°,∠CAB=30°,∴∠CAH=90°.在Rt△ABC中,∠CAB=30°,设BC=a,∴AB=2BC=2a,∴AD=AB=2a,设AH=x,则HC=HD=AD﹣AH=2a﹣x,在Rt△ABC中,AC2=(2a)2﹣a2=3a2,AC=a,在Rt△ACH中,AH2+AC2=HC2,即x2+3a2=(2a﹣x)2,解得x=a,即AH=a,∴HC=2a﹣x=2a﹣a=a,∴sin∠ACH==.【点评】本题考查了折叠的性质,全等三角形的性质和判定,等边三角形性质,含30度角的直角三角形性质,勾股定理,平行线的性质和判定等知识点的应用,注意:折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.22.已知:矩形OABC在平面直角坐标系中的位置如图所示,A(6,0),C(0,3),直线y=x与BC边交于D点.(1)求D点的坐标;(2)若抛物线y=ax2+bx经过A、D两点,求此抛物线的表达式;(3)设(2)中的抛物线的对称轴与直线OD交于点M,点P是对称轴上一动点,以P、O、M为顶点的三角形与△OCD相似,求出符合条件的点P.【分析】(1)已知直线y=x与BC交于点D(x,3),把y=3代入等式可得点D的坐标;(2)如图抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把已知坐标代入解析式得出a,b的值即可;(3)证明Rt△P1OM∽Rt△CDO以及Rt△P2P1O≌Rt△DCO后推出CD=P1P2=4得出符合条件的坐标.解:(1)由题知,直线y=x与BC交于点D(x,3).(1分)把y=3代入y=x中得,x=4,∴D(4,3);(2)抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,把x=4,y=3;x=6,y=0,分别代入y=ax2+bx中,得解之得∴抛物线的解析式为y=﹣x2+x;(3)抛物线的对称轴与x轴交于点P1,符合条件.∵CB∥OA,∴∠P1OM=∠CDO,∵∠DCO=∠OP1M=90°,∴Rt△P1OM∽Rt△CDO.∵x=﹣=3,∴该点坐标为P1(3,0).过点O作OD的垂线交抛物线的对称轴于点P2,∵对称轴平行于y轴,∴∠P2MO=∠DOC,∴Rt△P2MO∽Rt△DCO.在Rt△P2P1O和Rt△DCO中P1O=CO=3,∠P2=∠ODC,∴Rt△P2P1O≌Rt△DCO.∴CD=P1P2=4,∵点P2位于第四象限,∴P2(3,﹣4).因此,符合条件的点有两个,分别是P1(3,0),P2(3,﹣4).【点评】此题考查函数性质与坐标关系,最后一问探究点的存在性问题,几何图形形式问题和直角三角形性质,综合性比较强,难度较大.。
山东省济宁市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x12+x22=()A.6 B.8 C.10 D.122.将一块直角三角板ABC按如图方式放置,其中∠ABC=30°,A、B两点分别落在直线m、n上,∠1=20°,添加下列哪一个条件可使直线m∥n( )A.∠2=20°B.∠2=30°C.∠2=45°D.∠2=50°3.如图,在矩形ABCD 中,AB=2a,AD=a,矩形边上一动点P 沿A→B→C→D 的路径移动.设点P 经过的路径长为x,PD2=y,则下列能大致反映y 与x 的函数关系的图象是()A.B.C.D.4.如图,在扇形CAB中,CA=4,∠CAB=120°,D为CA的中点,P为弧BC上一动点(不与C,B重合),则2PD+PB的最小值为()A.B.C.10 D.5.如图,将△OAB绕O点逆时针旋转60°得到△OCD,若OA=4,∠AOB=35°,则下列结论错误的是( )A .∠BDO =60°B .∠BOC =25° C .OC =4D .BD =46.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x 米,所列方程正确的是( )A .1000100030x x -+=2B .1000100030x x -+=2 C .1000100030x x --=2 D .1000100030x x --=2 7.实数a 、b 、c 在数轴上的位置如图所示,则代数式|c ﹣a|﹣|a+b|的值等于( )A .c+bB .b ﹣cC .c ﹣2a+bD .c ﹣2a ﹣b8.如图,在ABC 中,30B ∠=︒,BC 的垂直平分线交AB 于点E ,垂足为D .如果8CE =,则ED 的长为( )A .2B .3C .4D .69.如图,正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,CH┴AF 与点H ,那么CH 的长是( )A .223B .5C .322D 35 10.已知A 、B 两地之间铁路长为450千米,动车比火车每小时多行驶50千米,从A 市到B 市乘动车比乘火车少用40分钟,设动车速度为每小时x 千米,则可列方程为( )A .4504504050x x-=- B .4504504050x x -=- C .4504502503x x -=+ D .4504502503x x -=- 11.若关于x 的不等式组221x m x m ->⎧⎨-<-⎩无解,则m 的取值范围( ) A .m >3 B .m <3C .m≤3D .m≥312.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是()A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,矩形ABCD的边AB在x轴上,AB的中点与原点O重合,AB=2,AD=1,点E的坐标为(0,2).点F(x,0)在边AB上运动,若过点E、F的直线将矩形ABCD的周长分成2:1两部分,则x的值为__.14.如图,已知AB∥CD,若14ABCD=,则OAOC=_____.15.方程15x12x1=-+的解为.16.如图,在正方形ABCD中,AD=5,点E,F是正方形ABCD内的两点,且AE=FC=3,BE=DF=4,则EF的长为__________.17.如图,在Rt△ABC中,∠ACB=90°,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=________cm.18.用4块完全相同的长方形拼成正方形(如图),用不同的方法,计算图中阴影部分的面积,可得到1个关于a b、的等式为________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知ABCD是边长为3的正方形,点P在线段BC上,点G在线段AD上,PD=PG,DF⊥PG于点H,交AB于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连接EF.(1)求证:DF=PG;(2)若PC=1,求四边形PEFD的面积.20.(6分)如图,直线y=kx+2与x轴,y轴分别交于点A(﹣1,0)和点B,与反比例函数y=mx的图象在第一象限内交于点C(1,n).求一次函数y=kx+2与反比例函数y=mx的表达式;过x轴上的点D(a,0)作平行于y轴的直线l(a>1),分别与直线y=kx+2和双曲线y=mx交于P、Q两点,且PQ=2QD,求点D的坐标.21.(6分)综合与实践﹣﹣﹣折叠中的数学在学习完特殊的平行四边形之后,某学习小组针对矩形中的折叠问题进行了研究.问题背景:在矩形ABCD中,点E、F分别是BC、AD 上的动点,且BE=DF,连接EF,将矩形ABCD沿EF折叠,点C落在点C′处,点D落在点D′处,射线EC′与射线DA相交于点M.猜想与证明:(1)如图1,当EC′与线段AD交于点M时,判断△MEF的形状并证明你的结论;操作与画图:(2)当点M与点A重合时,请在图2中作出此时的折痕EF和折叠后的图形(要求:尺规作图,不写作法,保留作图痕迹,标注相应的字母);操作与探究:(3)如图3,当点M在线段DA延长线上时,线段C′D'分别与AD,AB交于P,N两点时,C′E与AB 交于点Q,连接MN 并延长MN交EF于点O.求证:MO⊥EF 且MO平分EF;(4)若AB=4,AD=43,在点E由点B运动到点C的过程中,点D'所经过的路径的长为.22.(8分)某新建成学校举行美化绿化校园活动,九年级计划购买A,B两种花木共100棵绿化操场,其中A花木每棵50元,B花木每棵100元.(1)若购进A,B两种花木刚好用去8000元,则购买了A,B两种花木各多少棵?(2)如果购买B花木的数量不少于A花木的数量,请设计一种购买方案使所需总费用最低,并求出该购买方案所需总费用.23.(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”三个等级,并根据调查结果绘制了如下两幅不完整的统计图.(1)这次调查的市民人数为________人,m=________,n=________;(2)补全条形统计图;(3)若该市约有市民100000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(10分)已知在梯形ABCD中,AD∥BC,AB=BC,DC⊥BC,且AD=1,DC=3,点P为边AB上一动点,以P为圆心,BP为半径的圆交边BC于点Q.(1)求AB的长;(2)当BQ的长为409时,请通过计算说明圆P与直线DC的位置关系.25.(10分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF.求证:EA⊥AF.26.(12分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.27.(12分)如图,将连续的奇数1,3,5,7…按如图中的方式排成一个数,用一个十字框框住5个数,这样框出的任意5个数中,四个分支上的数分别用a,b,c,d表示,如图所示.(1)计算:若十字框的中间数为17,则a+b+c+d=______.(2)发现:移动十字框,比较a+b+c+d 与中间的数.猜想:十字框中a 、b 、c 、d 的和是中间的数的______; (3)验证:设中间的数为x ,写出a 、b 、c 、d 的和,验证猜想的正确性;(4)应用:设M=a+b+c+d+x ,判断M 的值能否等于2020,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】试题分析:根据根与系数的关系得到x 1+x 2=2,x 1•x 2=﹣3,再变形x 12+x 22得到(x 1+x 2)2﹣2x 1•x 2,然后利用代入计算即可.解:∵一元二次方程x 2﹣2x ﹣3=0的两根是x 1、x 2,∴x 1+x 2=2,x 1•x 2=﹣3,∴x 12+x 22=(x 1+x 2)2﹣2x 1•x 2=22﹣2×(﹣3)=1.故选C .2.D【解析】【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.3.D【解析】解:(1)当0≤t≤2a 时,∵222PD AD AP =+,AP=x ,∴22y x a =+;(2)当2a <t≤3a 时,CP=2a+a ﹣x=3a ﹣x ,∵222PD CD CP =+,∴22(3)(2)y a x a =-+=22613x ax a -+;(3)当3a <t≤5a 时,PD=2a+a+2a ﹣x=5a ﹣x ,∵2PD =y ,∴2(5)y a x =-=2(5)x a -;综上,可得22225)2(02)613(23)((35)x a x a x a y x ax a a x a a x a -⎧+≤≤⎪=-+<≤⎨⎪<≤⎩,∴能大致反映y 与x 的函数关系的图象是选项D 中的图象.故选D .4.D【解析】【分析】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2,推出△APD ∽△ABP′,得到BP′=2PD ,于是得到2PD+PB=BP′+PB≥PP′,根据勾股定理得到PP′=,求得2PD+PB≥4,于是得到结论.【详解】如图,作∥∠PAP′=120°,则AP′=2AB=8,连接PP′,BP′,则∠1=∠2, ∵=2,∴△APD ∽△ABP′,∴BP′=2PD ,∴2PD+PB=BP′+PB≥PP′,∴PP′=,∴2PD+PB≥4,∴2PD+PB 的最小值为4, 故选D .【点睛】本题考查了轴对称-最短距离问题,相似三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.5.D【解析】【分析】由△OAB绕O点逆时针旋转60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,据此可判断C;由△AOC、△BOD是等边三角形可判断A选项;由∠AOB=35°,∠AOC=60°可判断B选项,据此可得答案.【详解】解:∵△OAB绕O点逆时针旋转60°得到△OCD,∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C选项正确;则△AOC、△BOD是等边三角形,∴∠BDO=60°,故A选项正确;∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B选项正确.故选D.【点睛】本题考查旋转的性质,解题的关键是掌握旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等及等边三角形的判定和性质.6.A【解析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:1000100030x x-+=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.7.A【解析】【分析】根据数轴得到b<a<0<c,根据有理数的加法法则,减法法则得到c-a>0,a+b<0,根据绝对值的性质化简计算.【详解】由数轴可知,b<a<0<c,∴c-a>0,a+b<0,则|c-a|-|a+b|=c-a+a+b=c+b ,故选A .【点睛】本题考查的是实数与数轴,绝对值的性质,能够根据数轴比较实数的大小,掌握绝对值的性质是解题的关键.8.C【解析】【分析】先利用垂直平分线的性质证明BE=CE=8,再在Rt △BED 中利用30°角的性质即可求解ED .【详解】解:因为DE 垂直平分BC ,所以8BE CE ==,在Rt BDE 中,30B ∠=︒, 则118422ED BE ==⨯=; 故选:C .【点睛】 本题主要考查了线段垂直平分线的性质、30°直角三角形的性质,线段的垂直平分线上的点到线段的两个端点的距离相等.9.D【解析】【分析】连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,最后由直角三角形面积的两种表示法即可求得CH 的长.【详解】如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,2∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,==∵CH ⊥AF , ∴1122AC CF AF CH ⋅=⋅,12CH =⨯, ∴CH=5. 故选D.【点睛】本题考查了正方形的性质、勾股定理及直角三角形的面积,熟记各性质并作辅助线构造出直角三角形是解题的关键.10.D【解析】解:设动车速度为每小时x 千米,则可列方程为:45050x -﹣450x =23.故选D . 11.C【解析】【分析】根据“大大小小找不着”可得不等式2+m≥2m -1,即可得出m 的取值范围.【详解】 221x m x m ->⎧⎨-<-⎩①② , 由①得:x >2+m ,由②得:x <2m ﹣1,∵不等式组无解,∴2+m≥2m ﹣1,∴m≤3,故选C .【点睛】考查了解不等式组,根据求不等式的无解,遵循“大大小小解不了”原则得出是解题关键.12.C【解析】解:A .小丽从家到达公园共用时间20分钟,正确;B .公园离小丽家的距离为2000米,正确;C .小丽在便利店时间为15﹣10=5分钟,错误;D .便利店离小丽家的距离为1000米,正确.故选C .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.23或﹣23. 【解析】【分析】【详解】试题分析:当点F 在OB 上时,设EF 交CD 于点P ,可求点P 的坐标为(2x ,1). 则AF+AD+DP=3+32x , CP+BC+BF=3﹣32x , 由题意可得:3+32x=2(3﹣32x ), 解得:x=23. 由对称性可求当点F 在OA 上时,x=﹣23, 故满足题意的x 的值为23或﹣23. 故答案是23或﹣23. 【点睛】考点:动点问题.14.14【解析】【分析】利用相似三角形的性质即可解决问题;【详解】∵AB ∥CD ,∴△AOB ∽△COD , ∴14OA AB OC CD ==, 故答案为14. 【点睛】本题考查平行线的性质,相似三角形的判定和性质等知识,熟练掌握相似三角形的判定与性质是解题的关键.15.x 2=.【解析】试题分析:首先去掉分母,观察可得最简公分母是()()x 12x 2-+,方程两边乘最简公分母,可以把分式方程转化为整式方程求解,然后解一元一次方程,最后检验即可求解: 152x 15x 53x 6x 2x 12x 1=⇒+=-⇒-=-⇒=-+,经检验,x 2=是原方程的根. 16.2【解析】分析:延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG=BE=4,由AE=3,得出EG=1,同理得出GF=1,再根据勾股定理得出EF 的长.详解:延长AE 交DF 于G ,如图, ∵AB=5,AE=3,BE=4,∴△ABE 是直角三角形,同理可得△DFC 是直角三角形,可得△AGD 是直角三角形,∴∠ABE+∠BAE=∠DAE+∠BAE ,∴∠GAD=∠EBA ,同理可得:∠ADG=∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△BAE (ASA ),∴AG=BE=4,DG=AE=3,∴EG=4﹣3=1,同理可得:GF=1,∴EF=22112+=.故答案为2.点睛:本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG=FG=1,再利用勾股定理计算.17.3【解析】试题分析:根据点D 为AB 的中点可得:CD 为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E 、F 分别为中点可得:EF 为△ABC 的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质18.(a+b)2﹣(a﹣b)2=4ab【解析】【分析】根据长方形面积公式列①式,根据面积差列②式,得出结论.【详解】S阴影=4S长方形=4ab①,S阴影=S大正方形﹣S空白小正方形=(a+b)2﹣(b﹣a)2②,由①②得:(a+b)2﹣(a﹣b)2=4ab.故答案为(a+b)2﹣(a﹣b)2=4ab.【点睛】本题考查了完全平方公式几何意义的理解,此题有机地把代数与几何图形联系在一起,利用几何图形的面积公式直接得出或由其图形的和或差得出.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)1.【解析】【分析】作PM⊥AD,在四边形ABCD和四边形ABPM证AD=PM;DF⊥PG,得出∠GDH+∠DGH=90°,推出∠ADF=∠MPG;还有两个直角即可证明△ADF≌△MPG,从而得出对应边相等(2)由已知得,DG=2PC=2;△ADF≌△MPG得出DF=PD;根据旋转,得出∠EPG=90°,PE=PG 从而得出四边形PEFD为平行四边形;根据勾股定理和等量代换求出边长DF的值;根据相似三角形得出对应边成比例求出GH的值,从而求出高PH 的值;最后根据面积公式得出【详解】解:(1)证明:∵四边形ABCD为正方形,∴AD=AB,∵四边形ABPM为矩形,∴AB=PM,∴AD=PM,∵DF⊥PG,∴∠DHG=90°,∴∠GDH+∠DGH=90°,∵∠MGP+∠MPG=90°,∴∠GDH=∠MPG,在△ADF和△MPG中,∴△ADF≌△MPG(ASA),∴DF=PG;(2)作PM⊥DG于M,如图,∵PD=PG,∴MG=MD,∵四边形ABCD为矩形,∴PCDM为矩形,∴PC=MD,∴DG=2PC=2;∵△ADF≌△MPG(ASA),∴DF=PG,而PD=PG,∴DF=PD,∵线段PG绕点P逆时针旋转90°得到线段PE,∴∠EPG=90°,PE=PG,∴PE=PD=DF,而DF⊥PG,∴DF∥PE,即DF∥PE,且DF=PE,∴四边形PEFD为平行四边形,在Rt△PCD中,PC=1,CD=3,∴PD==,∴DF=PG=PD=,∵四边形CDMP是矩形,∴PM=CD=3,MD=PC=1,∵PD=PG,PM⊥AD,∴MG=MD=1,DG=2,∵∠GDH=∠MPG,∠DHG=∠PMG=90°,∴△DHG∽△PMG,∴,∴GH ==,∴PH =PG ﹣GH =﹣=,∴四边形PEFD 的面积=DF•PH =×=1.【点睛】本题考查了平行四边形的面积、勾股定理、相似三角形判定、全等三角形性质,本题的关键是求边长和高的值20.()1一次函数解析式为22y x =+;反比例函数解析式为4y x =;()()22,0D . 【解析】【分析】(1)根据A (-1,0)代入y=kx+2,即可得到k 的值;(2)把C (1,n )代入y=2x+2,可得C (1,4),代入反比例函数m y x=得到m 的值; (3)先根据D (a,0),PD ∥y 轴,即可得出P (a,2a+2),Q(a ,4a),再根据PQ=2QD ,即可得44222a a a +-=⨯,进而求得D 点的坐标.【详解】(1)把A (﹣1,0)代入y=kx+2得﹣k+2=0,解得k=2,∴一次函数解析式为y=2x+2;把C (1,n )代入y=2x+2得n=4,∴C (1,4), 把C (1,4)代入y=m x得m=1×4=4, ∴反比例函数解析式为y=4x ; (2)∵PD ∥y 轴,而D (a ,0),∴P (a ,2a+2),Q (a ,4a), ∵PQ=2QD ,∴2a+2﹣4a=2×4a,整理得a2+a﹣6=0,解得a1=2,a2=﹣3(舍去),∴D(2,0).【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数的解析式.21.(1)△MEF是等腰三角形(2)见解析(3)证明见解析(4)16 3【解析】【分析】(1)由AD∥BC,可得∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,依据∠MFE=∠MEF,即可得到ME=MF,进而得出△MEF是等腰三角形;(2)作AC的垂直平分线,即可得到折痕EF,依据轴对称的性质,即可得到D'的位置;(3)依据△BEQ≌△D'FP,可得PF=QE,依据△NC'P≌△NAP,可得AN=C'N,依据Rt△MC'N≌Rt△MAN,可得∠AMN=∠C'MN,进而得到△MEF是等腰三角形,依据三线合一,即可得到MO⊥EF 且MO平分EF;(4)依据点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,即可得到点D'所经过的路径的长.【详解】(1)△MEF是等腰三角形.理由:∵四边形ABCD是矩形,∴AD∥BC,∴∠MFE=∠CEF,由折叠可得,∠MEF=∠CEF,∴∠MFE=∠MEF,∴ME=MF,∴△MEF是等腰三角形.(2)折痕EF和折叠后的图形如图所示:(3)如图,∵FD=BE ,由折叠可得,D'F=DF ,∴BE=D'F ,在△NC'Q 和△NAP 中,∠C'NQ=∠ANP ,∠NC'Q=∠NAP=90°,∴∠C'QN=∠APN ,∵∠C'QN=∠BQE ,∠APN=∠D'PF ,∴∠BQE=∠D'PF ,在△BEQ 和△D'FP 中,{BQE DPFBE D F AP C Q∠=∠='=',∴△BEQ ≌△D'FP (AAS ),∴PF=QE ,∵四边形ABCD 是矩形,∴AD=BC ,∴AD ﹣FD=BC ﹣BE ,∴AF=CE ,由折叠可得,C'E=EC ,∴AF=C'E ,∴AP=C'Q ,在△NC'Q 和△NAP 中,{C NQ ANPNC Q NAP AP C Q''∠∠=∠='∠=,∴△NC'P ≌△NAP (AAS ),∴AN=C'N ,在Rt △MC'N 和Rt △MAN 中,{MN MN AN C N==',∴Rt△MC'N≌Rt△MAN(HL),∴∠AMN=∠C'MN,由折叠可得,∠C'EF=∠CEF,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFE=∠FEC,∴∠C'EF=∠AFE,∴ME=MF,∴△MEF是等腰三角形,∴MO⊥EF 且MO平分EF;(4)在点E由点B运动到点C的过程中,点D'所经过的路径是以O为圆心,4为半径,圆心角为240°的扇形的弧,如图:故其长为L=2404161803ππ⨯⨯=.故答案为163π.【点睛】此题是四边形综合题,主要考查了折叠问题与菱形的判定与性质、弧长计算公式,等腰三角形的判定与性质以及全等三角形的判定与性质的综合应用,熟练掌握等腰三角形的判定定理和性质定理是解本题的关键.22.(1)购买A种花木40棵,B种花木60棵;(2)当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.【解析】【分析】(1)设购买A种花木x棵,B种花木y棵,根据“A,B两种花木共100棵、购进A,B两种花木刚好用去8000元”列方程组求解可得;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据“B花木的数量不少于A花木的数量”求得a的范围,再设购买总费用为W,列出W关于a的解析式,利用一次函数的性质求解可得.【详解】解析:(1)设购买A种花木x棵,B种花木y棵,根据题意,得:100501008000x yx y+=⎧⎨+=⎩,解得:4060xy=⎧⎨=⎩,答:购买A种花木40棵,B种花木60棵;(2)设购买A种花木a棵,则购买B种花木(100﹣a)棵,根据题意,得:100﹣a≥a,解得:a≤50,设购买总费用为W,则W=50a+100(100﹣a)=﹣50a+10000,∵W随a的增大而减小,∴当a=50时,W取得最小值,最小值为7500元,答:当购买A种花木50棵、B种花木50棵时,所需总费用最低,最低费用为7500元.考点:一元一次不等式的应用;二元一次方程组的应用.23.(1)500,12,32;(2)补图见解析;(3)该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.【解析】【分析】(1)根据项目B的人数以及百分比,即可得到这次调查的市民人数,据此可得项目A,C的百分比;(2)根据对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图;(3)根据全市总人数乘以A项目所占百分比,即可得到该市对“社会主义核心价值观”达到“A非常了解”的程度的人数.【详解】试题分析:试题解析:(1)280÷56%=500人,60÷500=12%,1﹣56%﹣12%=32%,(2)对“社会主义核心价值观”达到“A.非常了解”的人数为:32%×500=160,补全条形统计图如下:(3)100000×32%=32000(人),答:该市大约有32000人对“社会主义核心价值观”达到“A.非常了解”的程度.24.(1)AB长为5;(2)圆P与直线DC相切,理由详见解析.【解析】【分析】(1)过A作AE⊥BC于E,根据矩形的性质得到CE=AD=1,AE=CD=3,根据勾股定理即可得到结论;(2)过P作PF⊥BQ于F,根据相似三角形的性质得到PB=259,得到PA=AB-PB=209,过P作PG⊥CD于G交AE于M,根据相似三角形的性质得到PM=169,根据切线的判定定理即可得到结论.【详解】(1)过A作AE⊥BC于E,则四边形AECD是矩形,∴CE=AD=1,AE=CD=3,∵AB=BC,∴BE=AB-1,在Rt△ABE中,∵AB2=AE2+BE2,∴AB2=32+(AB-1)2,解得:AB=5;(2)过P作PF⊥BQ于F,∴BF=12BQ=209,∴△PBF∽△ABE,∴PB BF AB BE=,∴20954 PB=,∴PB=259,∴PA=AB-PB=209,过P作PG⊥CD于G交AE于M,∴GM=AD=1,∵DC⊥BC∴PG∥BC∴△APM∽△ABE,∴AP PM AB BE=,∴20954PM =, ∴PM=169, ∴PG=PM+MG=259=PB , ∴圆P 与直线DC 相切.【点睛】本题考查了直线与圆的位置关系,矩形的判定和性质,相似三角形的判定和性质,正确的作出辅助线是解题的关键.25.见解析【解析】【分析】根据条件可以得出AD=AB ,∠ABF=∠ADE=90°,从而可以得出△ABF ≌△ADE ,就可以得出∠FAB=∠EAD ,就可以得出结论.【详解】证明:∵四边形ABCD 是正方形,∴AB=AD ,∠ABC=∠D=∠BAD=90°,∴∠ABF=90°.∵在△BAF 和△DAE 中,AB AD ABF ADE BF DE ⎧⎪∠∠⎨⎪⎩=== ,∴△BAF ≌△DAE (SAS ),∴∠FAB=∠EAD ,∵∠EAD+∠BAE=90°,∴∠FAB+∠BAE=90°,∴∠FAE=90°,∴EA ⊥AF .26.不公平【解析】【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得. 【详解】根据题意列表如下:所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,∴P(甲获胜)=516,P(乙获胜)=1﹣516=1116,则该游戏不公平.【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.27.(1)68 ;(2)4倍;(3)4x,猜想正确,见解析;(4)M的值不能等于1,见解析.【解析】【分析】(1)直接相加即得到答案;(2)根据(1)猜想a+b+c+d=4x;(3)用x表示a、b、c、d,相加后即等于4x;(4)得到方程5x=1,求出的x不符合数表里数的特征,故不能等于1.【详解】(1)5+15+19+29=68,故答案为68;(2)根据(1)猜想a+b+c+d=4x,答案为:4倍;(3)a=x-12,b=x-2,c=x+2,d=x+12,∴a+b+c+d=x-12+x-2+x+2+x+12=4x,∴猜想正确;(4)M=a+b+c+d+x=4x+x=5x,若M=5x=1,解得:x=404,但整个数表所有的数都为奇数,故不成立,∴M的值不能等于1.【点睛】本题考查了一元一次方程的应用.当解得方程的解后,要观察是否满足题目和实际要求再进行取舍.。
山东省济宁市2020届高三第一次模拟考试数学(理)试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln 2f x x x x a =-+,若函数()y f x =与()()y ff x =有相同的值域,则a 的取值范围是( ) A .1,12⎛⎤ ⎥⎝⎦ B .(],1-∞ C .31,2⎡⎫⎪⎢⎣⎭ D .[)1,+∞ 2.已知幂函数()a f x x =的图象过点13,3⎛⎫ ⎪⎝⎭,则函数()()()21g x x f x =-在区间1,22⎡⎤⎢⎥⎣⎦上的最小值是( )A .1-B .0C .2-D .323.已知点()mod N n m ≡表示N 除以m 余n ,例如()71mod6≡,()133mod5≡,则如图所示的程序框图的功能是( )A .求被5除余1且被7除余3的最小正整数B .求被7除余1且被5除余3的最小正整数C .求被5除余1且被7除余3的最小正奇数D .求被7除余1且被5除余3的最小正奇数4.已知各项均为正数的等差数列{}n a 的公差为2,等比数列{}n b 的公比为-2,则( )A .14n n a a b b --=B .14n n a a b b -=C .14n n a a b b --=-D .14nn a a b b -=- 5.设函数()322ln f x x ex mx x =-+-,记()()f xg x x =,若函数()g x 至少存在一个零点,则实数m 的取值范围是( )A .21,e e ⎛⎤-∞+ ⎥⎝⎦ B .210,e e ⎛⎤+ ⎥⎝⎦C .21e ,e ⎛⎫++∞ ⎪⎝⎭ D .2211e ,e e e ⎛⎤--+ ⎥⎝⎦ 6.已知x ∈R,sin 3cos x x -=tan2x =( )A .43B .34C .34-D .43-7.设[]x 表示不超过x 的最大整数(如5[2]2,[]14==),对于给定的*n N ∈,定义(1)([]1)(1)([]1)x n n n n x C x x x x -⋅⋅⋅-+=-⋅⋅⋅-+,[1,)x ∈+∞,则当3[,3)2x ∈时,函数8x C 的值域是( ) A .16[,28]3 B .16[,56)3 C .28(4,)[28,56)3⋃ D .1628(4,](,28]33⋃8.若直线y=2x 上存在点(x ,y )满足约束条件30230x y x y x m +-≤⎧⎪--≤⎨⎪≥⎩,则实数m 的最大值为A .-1B .1C .32 D .29.将函数()2sin 6f x x π⎛⎫=- ⎪⎝⎭的图象上各点的纵坐标保持不变,横坐标扩大到原来的2倍,再把所得函数图象向右平移4π个单位,得到函数()g x 的图象,则函数()g x 图象的一条对称轴的方程为( ) A .4x π= B .1912x π= C .1312x π= D .6x π= 10.若正数,m n 满足21m n +=,则11m n +的最小值为 A.3+B.3C.2+ D .311.等比数列{a n }中,11,28aq ==,则4a 与8a 的等比中项是( ) A .±4 B .4 C .14±D .14 12.如图,四棱锥P ABCD -的底面为矩形,矩形的四个顶点A ,B ,C ,D 在球O 的同一个大圆上,且球的表面积为16π,点P 在球面上,则四棱锥P ABCD -体积的最大值为( )A .8B .83C .16D .163二、填空题:本题共4小题,每小题5分,共20分。
2020年中考数学一模试卷一、选择题1.的倒数是()A.﹣B.﹣C.D.2.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.03.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.4.医学研究发现某病毒直径约为0.000043毫米,这个数用科学记数法表示为()A.0.43×104B.4.3×10﹣5C.0.43×10﹣4D.0.43×105 5.如图所示,正三棱柱的左视图()A.B.C.D.6.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣27.下列计算正确的是()A.(a2)3=a5B.(﹣2a)2=﹣4a2C.m3m2=m6D.5﹣2=8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.B.C.D.9.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果. 11.若a=b+2,则代数式a2﹣2ab+b2的值为.12.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x的增大而减少,则这个函数的表达式为.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y 尺,可列方程组为.14.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.15.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n F n E n,其面积S n=.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.解方程:=1﹣.17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.240.1B 4.2≤x≤4.4120.3C 4.5≤x≤4.7aD 4.8≤x≤5.0bE 5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=,b=;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.18.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.19.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.20.综合实践问题情境在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD操作发现(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.拓展探究(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC的数量关系,并说明理由.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.22.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;(1)若P(1,),求点P的“等边对称点”的坐标.(2)若P点是双曲线y=(x>0)上一动点,当点P的“等边对称点”点C在第四象限时,①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.参考答案一、选择题:本大题共10道小题,每小题3分,共30分每小题给出的四个选项中,只有一项符合题目要求.1.的倒数是()A.﹣B.﹣C.D.【分析】根据倒数的定义求解即可.解:的倒数是,故选:D.2.已知代数式﹣3a m﹣1b6和ab2n是同类项,则m﹣n的值是()A.﹣1B.﹣2C.﹣3D.0【分析】由同类项的定义可先求得m和n的值,从而求出代数式的值.解:∵代数式﹣3a m﹣1b6和ab2n是同类项,∴m﹣1=1,2n=6,∴m=2,n=3,∴m﹣n=2﹣3=﹣1,故选:A.3.近几年我国国产汽车行业蓬勃发展,下列汽车标识中,是中心对称图形的是()A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.根据中心对称图形的概念求解.解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项符合题意.故选:D.4.医学研究发现某病毒直径约为0.000043毫米,这个数用科学记数法表示为()A.0.43×104B.4.3×10﹣5C.0.43×10﹣4D.0.43×105【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解:0.000043=4.3×10﹣5,故选:B.5.如图所示,正三棱柱的左视图()A.B.C.D.【分析】根据简单几何体的三视图,可得答案.解:主视图是一个矩形,俯视图是两个矩形,左视图是正三角形,故选:A.6.若有意义,则x的取值范围是()A.x≥2B.x≥﹣2C.x>2D.x>﹣2【分析】二次根式有意义,被开方数是非负数.解:依题意,得x﹣2≥0,解得,x≥2.故选:A.7.下列计算正确的是()A.(a2)3=a5B.(﹣2a)2=﹣4a2C.m3m2=m6D.5﹣2=【分析】先根据幂的乘方、积的乘方、同底数幂的乘法、负整数指数幂分别求出每个式子的值,再判断即可.解:A、结果是a6,故本选项不符合题意;B、结果是4a2,故本选项不符合题意;C、结果是m5,故本选项不符合题意;D、结果是,故本选项符合题意;故选:D.8.三名初三学生坐在仅有的三个座位上,起身后重新就坐,恰好有两名同学没有坐回原座位的概率为()A.B.C.D.【分析】画树状图为(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)展示所有6种等可能的结果数,再找出恰好有两名同学没有坐回原座位的结果数,然后根据概率公式求解.解:画树状图为:(用A、B、C表示三位同学,用a、b、c表示他们原来的座位)共有6种等可能的结果数,其中恰好有两名同学没有坐回原座位的结果数为3,所以恰好有两名同学没有坐回原座位的概率==.故选:D.9.如图,在△ABC中,∠BAC=90°,AB=AC=4,以点C为中心,把△ABC逆时针旋转45°,得到△A′B′C,则图中阴影部分的面积为()A.2B.2πC.4D.4π【分析】根据阴影部分的面积是(扇形CBB'的面积﹣△CA'B'的面积)+(△ABC的面积﹣扇形CAA'的面积),代入数值解答即可.解:∵在△ABC中,∠BAC=90°,AB=AC=4,∴BC=,∠ACB=∠A'CB'=45°,∴阴影部分的面积==2π,故选:B.10.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.B.2C.D.2【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=,应用两次勾股定理分别求BE和a.解:过点D作DE⊥BC于点E由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2.∴AD=a∴∴DE=2当点F从D到B时,用s∴BD=Rt△DBE中,BE===1∵ABCD是菱形∴EC=a﹣1,DC=aRt△DEC中,a2=22+(a﹣1)2解得a=故选:C.二、填空题:本大题共5道小题,每小题3分,满分共15分,要求只写出最后结果. 11.若a=b+2,则代数式a2﹣2ab+b2的值为4.【分析】由a=b+2,可得a﹣b=2,代入所求代数式即可.解:∵a=b+2,∴a﹣b=2,∴a2﹣2ab+b2=(a﹣b)2=22=4.故答案为:412.写出一个函数的表达式,使它满足:①图象经过点(1,1);②在第一象限内函数y 随自变量x的增大而减少,则这个函数的表达式为y=等.【分析】根据反比例函数、一次函数以及二次函数的性质作答.解:该题答案不唯一,可以为y=等.故答案是:y=.13.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为.【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得:y﹣x =4.5;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:;组成方程组即可.解:根据题意得:;故答案为:.14.如图,在Rt△ABC中,∠C=90°,以顶点B为圆心,适当长度为半径画弧,分别交AB,BC于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线BP交AC于点D.若∠A=30°,则=.【分析】利用基本作图得BD平分∠ABC,再计算出∠ABD=∠CBD=30°,所以DA=DB,利用BD=2CD得到AD=2CD,然后根据三角形面积公式可得到的值.解:由作法得BD平分∠ABC,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴∠ABD=∠CBD=30°,∴DA=DB,在Rt△BCD中,BD=2CD,∴AD=2CD,∴=.故答案为.15.设△ABC的面积为1.如图1,分别将AC,BC边2等分,D1,E1是其分点,连接AE1,BD1交于点F1,得到四边形CD1F1E1,其面积S1=.如图2,分别将AC,BC边3等分,D1,D2,E1,E2是其分点,连接AE2,BD2交于点F2,得到四边形CD2F2E2,其面积S2=;如图3,分别将AC,BC边4等分,D1,D2,D3,E1,E2,E3是其分点,连接AE3,BD3交于点F3,得到四边形CD3F3E3,其面积S3=;…按照这个规律进行下去,若分别将AC,BC边(n+1)等分,…,得到四边形CD n F n E n,其面积S n=.【分析】先连接D1E1,D2E2,D3E3,依据D1E1∥AB,D1E1=AB,可得△CD1E1∽△CBA,且==,根据相似三角形的面积之比等于相似比的平方,即可得到S△CD1E1=S△ABC=,依据E1是BC的中点,即可得出S△D1E1F1=S△BD1E1=×=,据此可得S1=;运用相同的方法,依次可得S2=,S2=;根据所得规律,即可得出四边形CD n E n F n,其面积S n=+×n×,最后化简即可.解:如图所示,连接D1E1,D2E2,D3E3,∵图1中,D1,E1是△ABC两边的中点,∴D1E1∥AB,D1E1=AB,∴△CD1E1∽△CBA,且==,∴S△CD1E1=S△ABC=,∵E1是BC的中点,∴S△BD1E1=S△CD1E1=,∴S△D1E1F1=S△BD1E1=×=,∴S1=S△CD1E1+S△D1E1F1=+=,同理可得:图2中,S2=S△CD2E2+S△D2E2F2=+=,图3中,S3=S△CD3E3+S△D3E3F3=+=,以此类推,将AC,BC边(n+1)等分,得到四边形CD n E n F n,其面积S n=+×n×=,故答案为:.三、解答题:本大题共7道小题,满分共55分,解答应写出文字说明和推理步骤.16.解方程:=1﹣.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.17.某学校八年级共400名学生,为了解该年级学生的视力情况,从中随机抽取40名学生的视力数据作为样本,数据统计如下:4.2 4.1 4.7 4.1 4.3 4.3 4.4 4.6 4.15.25.2 4.5 5.0 4.5 4.3 4.4 4.8 5.3 4.5 5.24.4 4.2 4.35.3 4.9 5.2 4.9 4.8 4.6 5.14.2 4.4 4.5 4.1 4.55.1 4.4 5.0 5.2 5.3根据数据绘制了如下的表格和统计图:等级视力(x)频数频率A x<4.240.1B 4.2≤x≤4.4120.3C 4.5≤x≤4.7aD 4.8≤x≤5.0bE 5.1≤x≤5.3100.25合计401根据上面提供的信息,回答下列问题:(1)统计表中的a=8,b=0.15;(2)请补全条形统计图;(3)根据抽样调查结果,请估计该校八年级学生视力为“E级”的有多少人?(4)该年级学生会宣传部有2名男生和2名女生,现从中随机挑选2名同学参加“防控近视,爱眼护眼”宣传活动,请用树状图法或列表法求出恰好选中“1男1女”的概率.【分析】(1)由所列数据得出a的值,继而求出C组对应的频率,再根据频率之和等于1求出b的值;(2)总人数乘以b的值求出D组对应的频数,从而补全图形;(3)利用样本估计总体思想求解可得;(4)列表得出所有等可能的情况数,找出刚好抽到一男一女的情况数,即可求出所求的概率.解:(1)由题意知C等级的频数a=8,则C组对应的频率为8÷40=0.2,∴b=1﹣(0.1+0.3+0.2+0.25)=0.15,故答案为:8、0.15;(2)D组对应的频数为40×0.15=6,补全图形如下:(3)估计该校八年级学生视力为“E级”的有400×0.25=100(人);(4)列表如下:男男女女男(男,男)(女,男)(女,男)男(男,男)(女,男)(女,男)女(男,女)(男,女)(女,女)女(男,女)(男,女)(女,女)得到所有等可能的情况有12种,其中恰好抽中一男一女的情况有8种,所以恰好选到1名男生和1名女生的概率=.18.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是40元/件;当售价是70元/件时,周销售利润最大,最大利润是1800元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【分析】(1)①依题意设y=kx+b,解方程组即可得到结论;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:解方程组即可得到结论;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣800﹣200m,把x=65,w=1400代入函数解析式,解方程即可得到结论.解:(1)①依题意设y=kx+b,则有解得:所以y关于x的函数解析式为y=﹣2x+200;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:则有,解得:,∴w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣8000﹣200m =﹣2(x﹣)2+m2﹣60m+1800,∵m>0,∴对称轴x=>70,∵﹣2<0,∴抛物线的开口向下,∵x≤65,∴w随x的增大而增大,当x=65时,w最大=1400,即1400=﹣2×652+(280+2m)×65﹣8000﹣200m,解得:m=5.19.如图,已知AB是⊙O的直径,点P是⊙O上一点,连接OP,点A关于OP的对称点C恰好落在⊙O上.(1)求证:OP∥BC;(2)过点C作⊙O的切线CD,交AP的延长线于点D.如果∠D=90°,DP=1,求⊙O 的直径.【分析】(1)由题意可知=,根据同弧所对的圆心角相等得到∠AOP=∠POC=∠AOC,再根据同弧所对的圆心角和圆周角的关系得出∠ABC=∠AOC,利用同位角相等两直线平行,可得出PO与BC平行;(2)利用切线的性质得到OC垂直于CD,从而得到OC∥AD,即可得到∠APO=∠COP,进一步得出∠APO=∠AOP,确定出△AOP为等边三角形,根据平行线的性质得出∠OBC =∠AOP=60°,从而得到△OBC为等边三角形,继而得出△POC为等边三角形,可求出∠PCD为30°,在直角三角形PCD中,利用30°所对的直角边等于斜边的一半可得出PD为PC的一半,可得出PD为AB的四分之一,即AB=4PD=4.【解答】(1)证明:∵A关于OP的对称点C恰好落在⊙O上.∴=∴∠AOP=∠COP,∴∠AOP=∠AOC,又∵∠ABC=∠AOC,∴∠AOP=∠ABC,∴PO∥BC;(2)解:连接PC,∵CD为圆O的切线,∴OC⊥CD,又AD⊥CD,∴OC∥AD,∴∠APO=∠COP,∵∠AOP=∠COP,∴∠APO=∠AOP,∴OA=AP,∵OA=OP,∴△APO为等边三角形,∴∠AOP=60°,又∵OP∥BC,∴∠OBC=∠AOP=60°,又OC=OB,∴△BCO为等边三角形,∴∠COB=60°,∴∠POC=180°﹣(∠AOP+∠COB)=60°,又OP=OC,∴△POC也为等边三角形,∴∠PCO=60°,PC=OP=OC,又∵∠OCD=90°,∴∠PCD=30°,在Rt△PCD中,PD=PC,又∵PC=OP=AB,∴PD=AB,∴AB=4PD=4.20.综合实践问题情境在综合实践课上,老师让同学们以“菱形纸片的剪拼”为主题开展数学活动,如图(1),将一张菱形纸片ABCD(∠BAD=60°)沿对角线AC剪开,得到△ABC和△ACD操作发现(1)将图(1)中的△ABC以A为旋转中心,顺时针方向旋转角α(0°<α<60°)得到如图(2)所示△ABC′,分别延长BC′和DC交于点E,发现CE=C′E.请你证明这个结论.(2)在问题(1)的基础上,当旋转角α等于多少度时,四边形ACEC′是菱形?请你利用图(3)说明理由.拓展探究(3)在满足问题(2)的基础上,过点C′作C′F⊥AC,与DC交于点F.试判断AD、DF与AC的数量关系,并说明理由.【分析】(1)先判断出∠ACC′=∠AC′C,进而判断出∠ECC′=∠EC′C,即可得出结论;(2)判断出四边形AC′EC是平行四边形,即可得出结论;(3)先判断出HAC′是等边三角形,得出AH=AC′,∠H=60°,再判断出△HDF是等边三角形,即可得出结论.【解答】(1)证明:如图2,连接CC′,∵四边形ABCD是菱形,∴∠ACD=∠AC′B=30°,AC=AC′,∴∠ACC′=∠AC′C,∴∠ECC′=∠EC′C,∴CE=C′E;(2)当α=30°时,四边形AC′EC是菱形,理由:∵∠DCA=∠CAC′=∠AC′B=30°,∴CE∥AC′,AC∥C′E,∴四边形AC′EC是平行四边形,又∵CE=C′E,∴四边形AC′EC是菱形;(3)AD+DF=AC.理由:如图4,分别延长CF与AD交于点H,∵∠DAC=∠C′AC=30°,C′F⊥AC,∴∠AC′H=∠DAC′=60°,∴△HAC′是等边三角形,∴AH=AC′,∠H=60°,又∵AD=DC,∴∠DAC=∠DCA=30°,∴∠HDC=∠DAC+∠DCA=60°,∴△HDF是等边三角形,∴DH=DF,∴AD+DF=AD+DH=AH.∵AC′=AC,∴AC=AD+DF.21.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A 在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P 是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P 的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N (点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.【分析】(1)将点D、E的坐标代入函数表达式,即可求解;(2)S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO,即可求解;(3)过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,即可求解.解:(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=﹣x2+x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=﹣x+1,设点P(x,﹣x2+x+2),则点H(x,﹣x+1),S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO=2+2(﹣x2+x+2+x﹣1)=7,解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线A″P的表达式为:y=﹣3x+9…③,联立①③并解得:x=,即点M(,),点M沿ED向下平移2个单位得:N(,﹣).22.定义:点P(a,b)关于原点的对称点为P',以PP'为边作等边△PP'C,则称点C为P 的“等边对称点”;(1)若P(1,),求点P的“等边对称点”的坐标.(2)若P点是双曲线y=(x>0)上一动点,当点P的“等边对称点”点C在第四象限时,①如图(1),请问点C是否也会在某一函数图象上运动?如果是,请求出此函数的解析式;如果不是,请说明理由.②如图(2),已知点A(1,2),B(2,1),点G是线段AB上的动点,点F在y轴上,若以A、G、F、C这四个点为顶点的四边形是平行四边形时,求点C的纵坐标y c的取值范围.【分析】(1)P(1,)则P'(﹣1,﹣),可求PP'=4;设C(m,n),有PC =P'C=24,通过解方程可得m=﹣3n,再进行运算即可;(2)①设P(c,)则P'(﹣c,﹣),可求PP'=2;设C(s,t),有PC =P'C=2,通过解方程可得s=﹣,t=c,令,消元c即可得xy=﹣6;②当AG为平行四边形的边时,G与B重合时,为一临界点通过平移可求得C(1,﹣6),y c≤﹣6;当AG为平行四边形的对角线时,G与B重合时,求得C(3,﹣2),G与A重合时,C(2,﹣3),此时﹣3<y c≤﹣2.解:(1)∵P(1,),∴P'(﹣1,﹣),∴PP'=4,设C(m,n),∴等边△PP′C,∴PC=P'C=4,∴==4,∴m=﹣n,∴(﹣n﹣1)2+(n﹣)2=16.解得n=或﹣,∴m=﹣3或m=3.如图1,观察点C位于第四象限,则C(﹣3,).即点P的“等边对称点”的坐标是(3,).(2)①设P(c,),∴P'(﹣c,﹣),∴PP'=2,设C(s,t),PC=P'C=2,∴==2,∴s=﹣,∴t2=3c2,∴t=c,∴C(﹣,c)或C(,﹣c),∴点C在第四象限,c>0,∴C(,﹣c),令,∴xy=﹣6,即y=﹣(x>0);②当AG为平行四边形的边时,G与B重合时,为一临界点通过平移可求得C(1,﹣6),∴y c≤﹣6;当AG为平行四边形的对角线时,G与B重合时,求得C(3,﹣2),G与A重合时,C(2,﹣3),此时﹣3<y c≤﹣2,综上所述:y c≤﹣6或﹣3<y c≤﹣2.。
最新山东省济宁市中考数学一模试卷一、选择题(每题3分)1.﹣2016的相反数是()A.﹣2016 B.2016 C.±2016 D.2.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×1093.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d4.当a>0时,下列关于幂的运算正确的是()A.a﹣1=﹣a B.a0=1 C.(﹣a)2=﹣a2D.(﹣ab)3=﹣ab35.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱C.三棱柱D.三棱锥6.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55° B.60° C.70°D.75°7.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.608.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣19.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.1010.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.二、填空题(每题3分)11.不等式组的解集是.12.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.14.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为.15.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2= ,a2016= ;若要将上述操作无限次地进行下去,则a1不可能取的值是.三、解答题16.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.17.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.18.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.21.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为,此时AE与BF的数量关系是;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.22.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.参考答案与试题解析一、选择题(每题3分)1.﹣2016的相反数是()A.﹣2016 B.2016 C.±2016 D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2016的相反数是2016.故选:B.2.移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G用户总数达到1.62亿,其中1.62亿用科学记数法表示为()A.1.62×104B.1.62×106C.1.62×108D.0.162×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将1.62亿用科学记数法表示为1.62×108.故选C.3.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A.a B.b C.c D.d【考点】实数大小比较.【分析】首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a,b,c,d的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可.【解答】解:根据图示,可得3<|a|<4,1<|b|<2,0<|c|<1,2<|d|<3,所以这四个数中,绝对值最大的是a.故选:A.4.当a>0时,下列关于幂的运算正确的是()A.a﹣1=﹣a B.a0=1 C.(﹣a)2=﹣a2D.(﹣ab)3=﹣ab3【考点】负整数指数幂;幂的乘方与积的乘方;零指数幂.【分析】直接利用负整数指数幂的性质以及零指数幂的性质和积的乘方运算法则求出答案.【解答】解:A、a﹣1=,故此选项错误;B、a0=1,正确;C、(﹣a)2=a2,故此选项错误;D、(﹣ab)3=﹣a3b3,故此选项错误;故选:B.5.某几何体的三视图如图所示,这个几何体是()A.圆锥 B.圆柱C.三棱柱D.三棱锥【考点】由三视图判断几何体.【分析】由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.【解答】解:由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥.故选:A.6.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55° B.60° C.70°D.75°【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.7.学校为了丰富学生课余活动开展了一次“爱我云南,唱我云南”的歌咏比赛,共有18名同学入围,他们的决赛成绩如下表:成绩(分)9.40 9.50 9.60 9.70 9.80 9.90人数 2 3 5 4 3 1则入围同学决赛成绩的中位数和众数分别是()A.9.70,9.60 B.9.60,9.60 C.9.60,9.70 D.9.65,9.60【考点】众数;中位数.【分析】根据中位数和众数的概念求解.【解答】解:∵共有18名同学,则中位数为第9名和第10名同学成绩的平均分,即中位数为:=9.60,众数为:9.60.故选:B.8.对于两个不相等的实数a、b,我们规定符号Max{a,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x}=的解为()A.1﹣B.2﹣C.1+或1﹣D.1+或﹣1【考点】解分式方程.【分析】根据x与﹣x的大小关系,取x与﹣x中的最大值化简所求方程,求出解即可.【解答】解:当x<﹣x,即x<0时,所求方程变形得:﹣x=,去分母得:x2+2x+1=0,即x=﹣1;当x>﹣x,即x>0时,所求方程变形得:x=,即x2﹣2x=1,解得:x=1+或x=1﹣(舍去),经检验x=﹣1与x=1+都为分式方程的解.故选D.9.如图,在▱ABCD中,用直尺和圆规作∠BAD的平分线AG交BC于点E.若BF=6,AB=5,则AE的长为()A.4 B.6 C.8 D.10【考点】平行四边形的性质;等腰三角形的判定与性质;勾股定理;作图—基本作图.【分析】由基本作图得到AB=AF,加上AO平分∠BAD,则根据等腰三角形的性质得到AO ⊥BF,BO=FO=BF=3,再根据平行四边形的性质得AF∥BE,所以∠1=∠3,于是得到∠2=∠3,根据等腰三角形的判定得AB=EB,然后再根据等腰三角形的性质得到AO=OE,最后利用勾股定理计算出AO,从而得到AE的长.【解答】解:连结EF,AE与BF交于点O,如图,∵AB=AF,AO平分∠BAD,∴AO⊥BF,BO=FO=BF=3,∵四边形ABCD为平行四边形,∴AF∥BE,∴∠1=∠3,∴∠2=∠3,∴AB=EB,而BO⊥AE,∴AO=OE,在Rt△AOB中,AO===4,∴AE=2AO=8.故选C.10.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b﹣1)x+c的图象可能是()A.B.C.D.【考点】二次函数的图象;正比例函数的图象.【分析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b﹣1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b﹣1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,即可进行判断.【解答】解:∵一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,∴方程ax2+(b﹣1)x+c=0有两个不相等的根,∴函数y=ax2+(b﹣1)x+c与x轴有两个交点,又∵﹣>0,a>0∴﹣=﹣+>0∴函数y=ax2+(b﹣1)x+c的对称轴x=﹣>0,∴A符合条件,故选A.二、填空题(每题3分)11.不等式组的解集是﹣3<x≤2 .【考点】解一元一次不等式组.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:,由①得:x≤2,由②得:x>﹣3,则不等式组的解集为﹣3<x≤2.故答案为:﹣3<x≤212.如图,圆O的直径AB垂直于弦CD,垂足是E,∠A=22.5°,OC=4,CD的长为4.【考点】垂径定理;等腰直角三角形;圆周角定理.【分析】根据圆周角定理得∠BOC=2∠A=45°,由于⊙O的直径AB垂直于弦CD,根据垂径定理得CE=DE,且可判断△OCE为等腰直角三角形,所以CE=OC=2,然后利用CD=2CE进行计算.【解答】解:∵∠A=22.5°,∴∠BOC=2∠A=45°,∵⊙O的直径AB垂直于弦CD,∴CE=DE,△OCE为等腰直角三角形,∴CE=OC=2,∴CD=2CE=4.故答案为4.13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问:牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为.【考点】由实际问题抽象出二元一次方程组.【分析】根据“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两”,得到等量关系,即可列出方程组.【解答】解:根据题意得:,故答案为:.14.如图,在等边△ABC内有一点D,AD=5,BD=6,CD=4,将△ABD绕A点逆时针旋转,使AB与AC重合,点D旋转至点E,则∠CDE的正切值为3.【考点】旋转的性质;等边三角形的性质;解直角三角形.【分析】先根据等边三角形的性质得AB=AC,∠BAC=60°,再根据旋转的性质得AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,于是可判断△ADE为等边三角形,得到DE=AD=5;过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,利用勾股定理得到52﹣x2=62﹣(4﹣x)2,解得x=,再计算出EH,然后根据正切的定义求解.【解答】解:∵△ABC为等边三角形,∴AB=AC,∠BAC=60°,∵△ABD绕A点逆时针旋转得△ACE,∴AD=AE=5,∠DAE=∠BAC=60°,CE=BD=6,∴△ADE为等边三角形,∴DE=AD=5,过E点作EH⊥CD于H,如图,设DH=x,则CH=4﹣x,在Rt△DHE中,EH2=52﹣x2,在Rt△CHE中,EH2=62﹣(4﹣x)2,∴52﹣x2=62﹣(4﹣x)2,解得x=,∴EH==,在Rt△EDH中,tan∠HDE===3,即∠CDE的正切值为3.故答案为:3.15.如图,在平面直角坐标系xOy中,已知直线l:y=﹣x﹣1,双曲线y=,在l上取一点A1,过A1作x轴的垂线交双曲线于点B1,过B1作y轴的垂线交l于点A2,请继续操作并探究:过A2作x轴的垂线交双曲线于点B2,过B2作y轴的垂线交l于点A3,…,这样依次得到l上的点A1,A2,A3,…,A n,…记点A n的横坐标为a n,若a1=2,则a2= ﹣,a2016= ﹣;若要将上述操作无限次地进行下去,则a1不可能取的值是0或﹣1 .【考点】反比例函数与一次函数的交点问题.【分析】根据点的寻找规律,列出部分a n值,可以发现规律“a3n+1=a1,a3n+2=﹣,a3n=﹣(n为正整数)”,根据该规律即可解决问题.【解答】解:当a1=2时,a2=﹣,a3=﹣,a4=2,…,∴a3n+1=2,a3n+2=﹣,a3n=﹣(n为正整数).∵2016=3×672,∴a2016=﹣.观察,发现:a1,a2=﹣1﹣=﹣,a3=﹣1﹣=﹣,a4=﹣1﹣=a1,…,∴a3n+1=a1,a3n+2=﹣,a3n=﹣(n为正整数).若要a n有意义,只需a1≠0,a1+1≠0.即a1≠0且a1≠﹣1.故答案为:﹣;﹣;0或﹣1.三、解答题16.先化简,再求值:÷(﹣),其中a=+1,b=﹣1.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=•=,当a=+1,b=﹣1时,原式=2.17.一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4.(1)随机摸取一个小球,直接写出“摸出的小球标号是3”的概率;(2)随机摸取一个小球然后放回,再随机摸出一个小球,直接写出下列结果:①两次取出的小球一个标号是1,另一个标号是2的概率;②第一次取出标号是1的小球且第二次取出标号是2的小球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4直接利用概率公式求解即可求得答案;(2)①首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次取出的小球一个标号是1,另一个标号是2的情况,再利用概率公式求解即可求得答案;②由树状图即可求得第一次取出标号是1的小球且第二次取出标号是2的小球的情况,再利用概率公式求解即可求得答案.【解答】解:(1)∵一个不透明的口袋中有四个完全相同的小球,它们分别标号为1,2,3,4,∴随机摸取一个小球,直接写出“摸出的小球标号是3”的概率为:;(2)画树状图得:则共有16种等可能的结果;①∵两次取出的小球一个标号是1,另一个标号是2的有2种情况,∴两次取出的小球一个标号是1,另一个标号是2的概率为:=;②∵第一次取出标号是1的小球且第二次取出标号是2的小球的只有1种情况,∴第一次取出标号是1的小球且第二次取出标号是2的小球的概率为:.18.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.19.如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.【考点】切线的性质;扇形面积的计算;平移的性质;相似三角形的判定与性质.【分析】(1)连接OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.【解答】解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC===5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴△ABC∽△DBH,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.20.某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B 型电脑的利润为3500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台,若商店保持同种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式组的应用.【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意列出方程组求解,(2)①据题意得,y=﹣50x+15000,②利用不等式求出x的范围,又因为y=﹣50x+15000是减函数,所以x取34,y取最大值,(3)据题意得,y=x﹣150,即y=(m﹣50)x+15000,分三种情况讨论,①当0<m<50时,y随x的增大而减小,②m=50时,m﹣50=0,y=15000,③当50<m<100时,m﹣50>0,y随x的增大而增大,分别进行求解.【解答】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得解得答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元.(2)①据题意得,y=100x+150,即y=﹣50x+15000,②据题意得,100﹣x≤2x,解得x≥33,∵y=﹣50x+15000,﹣50<0,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100﹣x=66,即商店购进34台A型电脑和66台B型电脑的销售利润最大.(3)据题意得,y=x+150,即y=(m﹣50)x+15000,33≤x≤70①当0<m<50时,y随x的增大而减小,∴当x=34时,y取最大值,即商店购进34台A型电脑和66台B型电脑的销售利润最大.②m=50时,m﹣50=0,y=15000,即商店购进A型电脑数量满足33≤x≤70的整数时,均获得最大利润;③当50<m<100时,m﹣50>0,y随x的增大而增大,∴当x=70时,y取得最大值.即商店购进70台A型电脑和30台B型电脑的销售利润最大.21.如图1,边长为4的正方形ABCD中,点E在AB边上(不与点A,B重合),点F在BC边上(不与点B、C重合).第一次操作:将线段EF绕点F顺时针旋转,当点E落在正方形上时,记为点G;第二次操作:将线段FG绕点G顺时针旋转,当点F落在正方形上时,记为点H;依此操作下去…(1)图2中的△EFD是经过两次操作后得到的,其形状为等边三角形,求此时线段EF 的长;(2)若经过三次操作可得到四边形EFGH.①请判断四边形EFGH的形状为正方形,此时AE与BF的数量关系是AE=BF ;②以①中的结论为前提,设AE的长为x,四边形EFGH的面积为y,求y与x的函数关系式及面积y的取值范围.【考点】几何变换综合题.【分析】(1)由旋转性质,易得△EFD是等边三角形;利用等边三角形的性质、勾股定理求出EF的长;(2)①四边形EFGH的四边长都相等,所以是正方形;利用三角形全等证明AE=BF;②求面积y的表达式,这是一个二次函数,利用二次函数性质求出最值及y的取值范围.【解答】解:(1)如题图2,由旋转性质可知EF=DF=DE,则△DEF为等边三角形.在Rt△ADE与Rt△CDF中,∴Rt△ADE≌Rt△CDF(HL)∴AE=CF.设AE=CF=x,则BE=BF=4﹣x∴△BEF为等腰直角三角形.∴EF=BF=(4﹣x).∴DE=DF=EF=(4﹣x).在Rt△ADE中,由勾股定理得:AE2+AD2=DE2,即:x2+42=[(4﹣x)]2,解得:x 1=8﹣4,x2=8+4(舍去)∴EF=(4﹣x)=4﹣4.DEF的形状为等边三角形,EF的长为4﹣4.(2)①四边形EFGH的形状为正方形,此时AE=BF.理由如下:依题意画出图形,如答图1所示:由旋转性质可知,EF=FG=GH=HE,∠EFG=90°,∴四边形EFGH的形状为正方形.∵∠1+∠2=90°,∠2+∠3=90°,∴∠1=∠3.∵∠3+∠4=90°,∠2+∠3=90°,∴∠2=∠4.在△AEH与△BFE中,∴△AEH≌△BFE(ASA)∴AE=BF.②利用①中结论,易证△AEH、△BFE、△CGF、△DHG均为全等三角形,∴BF=CG=DH=AE=x,AH=BE=CF=DG=4﹣x.∴y=S正方形ABCD﹣4S△AEH=4×4﹣4×x(4﹣x)=2x2﹣8x+16.∴y=2x2﹣8x+16(0<x<4)∵y=2x2﹣8x+16=2(x﹣2)2+8,∴当x=2时,y取得最小值8;当x=0时,y=16,∴y的取值范围为:8≤y<16.22.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.(1)求抛物线的解析式;(2)点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q 从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,当△PBQ存在时,求运动多少秒使△PBQ的面积最大,最大面积是多少?(3)当△PBQ的面积最大时,在BC下方的抛物线上存在点K,使S△CBK:S△PBQ=5:2,求K点坐标.【考点】二次函数综合题.【分析】方法一:(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=﹣(t﹣1)2+.利用二次函数的图象性质进行解答;(3)利用待定系数法求得直线BC的解析式为y=x﹣3.由二次函数图象上点的坐标特征可设点K的坐标为(m,m2﹣m﹣3).如图2,过点K作KE∥y轴,交BC于点E.结合已知条件和(2)中的结果求得S△CBK=.则根据图形得到:S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m),把相关线段的长度代入推知:﹣m2+3m=.易求得K1(1,﹣),K2(3,﹣).方法二:(1)略.(2)作QH⊥AB,并分别列出AP,BQ,PB的参数长度,利用三角函数得出HQ的参数长度,进而求出△PBQ的面积函数.(3)利用水平底与铅垂高乘积的一半求解.【解答】方法一:解:(1)把点A(﹣2,0)、B(4,0)分别代入y=ax2+bx﹣3(a≠0),得,解得,所以该抛物线的解析式为:y=x2﹣x﹣3;(2)设运动时间为t秒,则AP=3t,BQ=t.∴PB=6﹣3t.由题意得,点C的坐标为(0,﹣3).在Rt△BOC中,BC==5.如图1,过点Q作QH⊥AB于点H.∴QH∥CO,∴△BHQ∽△BOC,∴=,即=,∴HQ=t.∴S△PBQ=PB•HQ=(6﹣3t)•t=﹣t2+t=﹣(t﹣1)2+.当△PBQ存在时,0<t<2∴当t=1时,S△PBQ最大=.答:运动1秒使△PBQ的面积最大,最大面积是;(3)设直线BC的解析式为y=kx+c(k≠0).把B(4,0),C(0,﹣3)代入,得,解得,∴直线BC的解析式为y=x﹣3.∵点K在抛物线上.∴设点K的坐标为(m,m2﹣m﹣3).如图2,过点K作KE∥y轴,交BC于点E.则点E的坐标为(m,m﹣3).∴EK=m﹣3﹣(m2﹣m﹣3)=﹣m2+m.当△PBQ的面积最大时,∵S△CBK:S△PBQ=5:2,S△PBQ=.∴S△CBK=.S△CBK=S△CEK+S△BEK=EK•m+•EK•(4﹣m)=×4•EK=2(﹣m2+m)=﹣m2+3m.即:﹣m2+3m=.解得m1=1,m2=3.∴K1(1,﹣),K2(3,﹣).方法二:(1)略.(2)设运动时间为t秒,则AP=3t,BQ=t,PB=6﹣3t,∴点C的坐标为(0,﹣3),∵B(4,0),∴l BC:y=x﹣3,过点Q作QH⊥AB于点H,∴tan∠HBQ=,∴sin∠HBQ=,∵BQ=t,∴HQ=t,∴S△PBQ=PB•HQ==﹣,∴当t=1时,S△PBQ最大=.(3)过点K作KE⊥x轴交BC于点E,∵S△CBK:S△PBQ=5:2,S△PBQ=,∴S△CBK=,设E(m,m﹣3),K(m,),S△CBK===﹣,∴﹣=,∴m1=1,m2=3,∴K1(1,﹣),K2(3,﹣).2016年6月8日。
山东省中考数学一模试卷一、选择题(共10小题,每小题3分,满分30分)1.下列图案中,既是中心对称又是轴对称图形的个数有()A.1个B.2个C.3个D.4个2.下列事件中,属于必然事件的是()A.任意画一个三角形,其内角和是180°B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.掷一枚质地均匀的正方体骰子,向上的一面点数是33.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+64.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.86.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠07.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<08.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<09.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC., D.2,10.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16二、填空题(共5小题,每小题3分,满分15分)11.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为.12.已知方程x2+mx+3=0的一个根是1,则它的另一个根是,m的值是.13.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为.14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O 的半径为cm.15.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是(把正确的序号都填上).三、解答题(共7小题,满分55分)16.解方程:x2﹣6x+5=0 (配方法)17.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.18.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)19.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△=.ABO(1)求这两个函数的解析式;(2)求△AOC的面积.20.在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.21.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.22.如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列图案中,既是中心对称又是轴对称图形的个数有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念对各图形分析判断后利用排除法求解.【解答】解:第一个图形是轴对称图形,又是中心对称图形,第二个图形既是轴对称图形,不是中心对称图形,第三个图形是中心对称图形,不是轴对称图形,第四个图形是轴对称图形,又是中心对称图形,综上所述,既是轴对称图形又是中心对称图形的是第二个图形共2个.故选B.【点评】本题考查了中心对称图形与轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列事件中,属于必然事件的是()A.任意画一个三角形,其内角和是180°B.某射击运动员射击一次,命中靶心C.在只装了红球的袋子中摸到白球D.掷一枚质地均匀的正方体骰子,向上的一面点数是3【考点】随机事件.【分析】根据事件的分类判断,必然事件就是一定发生的事件,根据定义即可解决.【解答】解:A、任意画一个三角形,其内角和是180°是必然事件,故本选项正确;B、某射击运动员射击一次,命中靶心是随机事件,故本选项错误;C、在只装了红球的袋子中摸到白球是不可能事件,故本选项错误;D、掷一枚质地均匀的正方体骰子,向上的一面点数是3是随机事件,故本选项错误;故选:A.【点评】本题主要考查了必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下一定发生的事件,不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,难度适中.3.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A.y=(x﹣1)2+4 B.y=(x﹣4)2+4 C.y=(x+2)2+6 D.y=(x﹣4)2+6【考点】二次函数图象与几何变换.【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【解答】解:将y=x2﹣2x+3化为顶点式,得y=(x﹣1)2+2.将抛物线y=x2﹣2x+3向上平移2个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为y=(x﹣4)2+4,故选:B.【点评】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.4.如图,⊙O是△ABC的外接圆,∠ACO=45°,则∠B的度数为()A.30°B.35°C.40°D.45°【考点】圆周角定理.【分析】先根据OA=OC,∠ACO=45°可得出∠OAC=45°,故可得出∠AOC的度数,再由圆周角定理即可得出结论.【解答】解:∵OA=OC,∠ACO=45°,∴∠OAC=45°,∴∠AOC=180°﹣45°﹣45°=90°,∴∠B=∠AOC=45°.故选D.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.5.如图,△ABC和△A1B1C1是以点O为位似中心的位似三角形,若C1为OC的中点,AB=4,则A1B1的长为()A.1 B.2 C.4 D.8【考点】位似变换.【专题】计算题.【分析】根据位似变换的性质得到=,B1C1∥BC,再利用平行线分线段成比例定理得到=,所以=,然后把OC1=OC,AB=4代入计算即可.【解答】解:∵C1为OC的中点,=OC,∴OC1B1C1是以点O为位似中心的位似三角形,∵△ABC和△A1C1∥BC,∴=,B1∴=,∴=,即=B1=2.∴A1故选B.【点评】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.6.关于x的方程kx2+2x﹣1=0有实数根,则k的取值范围是()A.k≥﹣1 B.k≥﹣1且k≠0 C.k≤﹣1 D.k≤1且k≠0【考点】根的判别式.【分析】由于k的取值范围不能确定,故应分k=0和k≠0两种情况进行解答.【解答】解:(1)当k=0时,﹣6x+9=0,解得x=;(2)当k≠0时,此方程是一元二次方程,∵关于x的方程kx2+2x﹣1=0有实数根,∴△=22﹣4k×(﹣1)≥0,解得k≥﹣1,由(1)、(2)得,k的取值范围是k≥﹣1.故选:A.【点评】本题考查了根的判别式,解答此题时要注意分k=0和k≠0两种情况进行讨论.7.若抛物线y=(x﹣m)2+(m+1)的顶点在第一象限,则m的取值范围为()A.m>1 B.m>0 C.m>﹣1 D.﹣1<m<0【考点】二次函数的性质.【专题】压轴题.【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【解答】解:由y=(x﹣m)2+(m+1)=x2﹣2mx+(m2+m+1),根据题意,,解不等式(1),得m>0,解不等式(2),得m>﹣1;所以不等式组的解集为m>0.故选B.【点评】本题考查顶点坐标的公式和点所在象限的取值范围,同时考查了不等式组的解法,难度较大.8.已知点A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,若x1<0<x2,则下列结论正确的是()A.y1<0<y2B.y2<0<y1C.y1<y2<0 D.y2<y1<0【考点】反比例函数图象上点的坐标特征.【专题】计算题.【分析】根据反比例函数图象上点的坐标特征得到y1=﹣,y2=﹣,然后利用x1<0<x2即可得到y1与y2的大小.【解答】解:∵A(x1,y1),B(x2,y2)是反比例函数y=﹣的图象上的两点,=﹣,y2=﹣,∴y1<0<x2,∵x1<0<y1.∴y2故选B.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.9.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC., D.2,【考点】正多边形和圆;弧长的计算.【专题】压轴题.【分析】正六边形的边长与外接圆的半径相等,构建直角三角形,利用直角三角形的边角关系即可求出OM,再利用弧长公式求解即可.【解答】解:连接OB,∵OB=4,∴BM=2,∴OM=2,==π,故选D.【点评】本题考查了正多边形和圆以及弧长的计算,将扇形的弧长公式与多边形的性质相结合,构思巧妙,利用了正六边形的性质,是一道好题.10.如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点A的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线y=与正方形ABCD有公共点,则k的取值范围为()A.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16【考点】反比例函数与一次函数的交点问题.【专题】压轴题.【分析】先根据题意求出A点的坐标,再根据AB=BC=3,AB、BC分别平行于x轴、y轴求出B、C两点的坐标,再根据双曲线y=(k≠0)分别经过A、C两点时k的取值范围即可.【解答】解:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则A的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线y=经过点(1,1)时,k=1;当双曲线y=经过点(4,4)时,k=16,因而1≤k≤16.故选:C.【点评】本题主要考查了反比例函数,用待定系数法求一次函数的解析式,解此题的关键是理解题意进而求出k的值.二、填空题(共5小题,每小题3分,满分15分)11.如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为(1,﹣1).【考点】坐标与图形变化-旋转.【分析】连接AA′,CC′,线段AA′、CC′的垂直平分线的交点就是点P.【解答】解:连接AA′、CC′,作线段AA′的垂直平分线MN,作线段CC′的垂直平分线EF,直线MN和直线EF的交点为P,点P就是旋转中心.∵直线MN为:x=1,设直线CC′为y=kx+b,由题意:,∴,∴直线CC′为y=x+,∵直线EF⊥CC′,经过CC′中点(,),∴直线EF为y=﹣3x+2,由得,∴P(1,﹣1).故答案为(1,﹣1).【点评】本题考查旋转的性质,掌握对应点连线段的垂直平分线的交点就是旋转中心,是解题的关键.12.已知方程x2+mx+3=0的一个根是1,则它的另一个根是 3 ,m的值是﹣4 .【考点】根与系数的关系;一元二次方程的解.【分析】利用一元二次方程的根与系数的关系,两根的和是﹣m,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1+a=﹣m,1×a=3,解得:m=﹣4,a=3.故答案是:3,﹣4.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.13.某校学生小明每天骑自行车上学时都要经过一个十字路口,该十字路口有红、黄、绿三色交通信号灯,他在路口遇到红灯的概率为,遇到黄灯的概率为,那么他遇到绿灯的概率为.【考点】概率的意义.【分析】根据在路口遇到红灯、黄灯、绿灯的概率之和是1,再根据在路口遇到红灯的概率为,遇到黄灯的概率为,即可求出他遇到绿灯的概率.【解答】解:∵经过一个十字路口,共有红、黄、绿三色交通信号灯,∴在路口遇到红灯、黄灯、绿灯的概率之和是1,∵在路口遇到红灯的概率为,遇到黄灯的概率为,∴遇到绿灯的概率为1﹣=;故答案为:.【点评】此题考查了概率的意义,用到的知识点是概率公式,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.14.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,连接AC.若∠CAB=22.5°,CD=8cm,则⊙O 的半径为4cm.【考点】垂径定理;等腰直角三角形;圆周角定理.【专题】计算题.【分析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径.【解答】解:连接OC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE=CD=4cm,∵OA=OC,∴∠A=∠OCA=22.5°,∵∠COE为△AOC的外角,∴∠COE=45°,∴△COE为等腰直角三角形,∴OC=CE=4cm,故答案为:4【点评】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键.15.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④当﹣1<x<3时,y>0.其中正确的是①②③(把正确的序号都填上).【考点】二次函数图象与系数的关系.【专题】压轴题.【分析】首先根据二次函数图象开口方向可得a<0,根据图象与y轴交点可得c>0,再根据二次函数的对称轴x=﹣=1,结合a的取值可判定出b>0,根据a、b、c的正负即可判断出①的正误;把x=﹣1代入函数关系式y=ax2+bx+c中得y=a﹣b+c,再结合图象判断出②的正误;把b=﹣2a代入a﹣b+c中即可判断出③的正误;利用图象可以直接看出④的正误.【解答】解:根据图象可得:a<0,c>0,对称轴:x=﹣=1,=﹣1,b=﹣2a,∵a<0,∴b>0,∴abc<0,故①正确;把x=﹣1代入函数关系式y=ax2+bx+c中得:y=a﹣b+c,由图象可以看出当x=﹣1时,y<0,∴a﹣b+c<0,故②正确;∵b=﹣2a,∴a﹣(﹣2a)+c<0,即:3a+c<0,故③正确;由图形可以直接看出④错误.故答案为:①②③.【点评】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a 与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).三、解答题(共7小题,满分55分)16.解方程:x2﹣6x+5=0 (配方法)【考点】解一元二次方程-配方法.【专题】配方法.【分析】利用配方法解方程.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【解答】解:由原方程移项,得x2﹣6x=﹣5,等式两边同时加上一次项系数一半的平方32.得x2﹣6x+32=﹣5+32,即(x﹣3)2=4,∴x=3±2,=5,x2=1.∴原方程的解是:x1【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.17.如图,AB是⊙O的直径,弦CD⊥AB于点E,且CD=24,点M在⊙O上,MD经过圆心O,联结MB.(1)若BE=8,求⊙O的半径;(2)若∠DMB=∠D,求线段OE的长.【考点】垂径定理;勾股定理;圆周角定理.【分析】(1)根据垂径定理求出DE的长,设出半径,根据勾股定理,列出方程求出半径;(2)根据OM=OB,证出∠M=∠B,根据∠M=∠D,求出∠D的度数,根据锐角三角函数求出OE 的长.【解答】解:(1)设⊙O的半径为x,则OE=x﹣8,∵CD=24,由垂径定理得,DE=12,在Rt△ODE中,OD2=DE2+OE2,x2=(x﹣8)2+122,解得:x=13.(2)∵OM=OB,∴∠M=∠B,∴∠DOE=2∠M,又∠M=∠D,∴∠D=30°,在Rt△OED中,∵DE=12,∠D=30°,∴OE=4.【点评】本题考查的是垂径定理、勾股定理和圆周角定理的综合运用,灵活运用定理求出线段的长度、列出方程是解题的关键,本题综合性较强,锻炼学生的思维能力.18.2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设平均每年下调的百分率为x,根据题意列出方程,求出方程的解即可得到结果;(2)如果下调的百分率相同,求出2016年的房价,进而确定出100平方米的总房款,即可做出判断.【解答】解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为5265×(1﹣10%)=4738.5(元/米2),则100平方米的住房总房款为100×4738.5=473850=47.385(万元),∵20+30>47.385,∴张强的愿望可以实现.【点评】此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.19.如图,Rt△ABO的顶点A是双曲线y=与直线y=﹣x﹣(k+1)在第二象限的交点.AB⊥x轴于B,且S△ABO=.(1)求这两个函数的解析式;(2)求△AOC的面积.【考点】反比例函数与一次函数的交点问题.【分析】(1)欲求这两个函数的解析式,关键求k值.根据反比例函数性质,k绝对值为3且为负数,由此即可求出k;(2)由函数的解析式组成方程组,解之求得A、C的坐标,然后根据S△AOC =S△ODA+S△ODC即可求出.【解答】解:(1)设A点坐标为(x,y),且x<0,y>0,则S△ABO=•|BO|•|BA|=•(﹣x)•y=,∴xy=﹣3,又∵y=,即xy=k,∴k=﹣3.∴所求的两个函数的解析式分别为y=﹣,y=﹣x+2;(2)由y=﹣x+2,令x=0,得y=2.∴直线y=﹣x+2与y轴的交点D的坐标为(0,2),∵A、C在反比例函数的图象上,∴,解得,,∴交点A为(﹣1,3),C为(3,﹣1),∴S△AOC =S△ODA+S△ODC=OD•(|x1|+|x2|)=×2×(3+1)=4.【点评】此题首先利用待定系数法确定函数解析式,然后利用解方程组来确定图象的交点坐标,及利用坐标求出线段和图形的面积.20.在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.【考点】列表法与树状图法;一次函数图象上点的坐标特征;切线的性质.【专题】计算题.【分析】(1)用树状图法展示所有9种等可能的结果数;(2)根据一次函数图象上点的坐标特征,从9个点中找出满足条件的点,然后根据概率公式计算;(3)利用点与圆的位置关系找出圆上的点和圆外的点,由于过这些点可作⊙O的切线,则可计算出过点M(x,y)能作⊙O的切线的概率.【解答】解:(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.【点评】本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了一次函数图象上点的坐标特征和切线的性质.21.如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,= ;②当α=180°时,= .(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD﹣DE=8﹣2=6,由(2),可得,∴BD==.综上所述,BD的长为4或.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了相似三角形、全等三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了线段长度的求法,以及矩形的判定和性质的应用,要熟练掌握.22.如图,抛物线y=ax2﹣5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C 在y轴上,且AC=BC.(1)求抛物线的对称轴;(2)写出A,B,C三点的坐标并求抛物线的解析式;(3)探究:若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形?若存在,求出所有符合条件的点P坐标;不存在,请说明理由.【考点】二次函数综合题.【分析】(1)根据抛物线的解析式,利用对称轴公式,可直接求出其对称轴.(2)令x=0,可求出C点坐标,由BC∥x轴可知B,C关于抛物线的对称轴对称,可求出B点坐标,根据AC=BC可求出A点坐标.(3)分三种情况讨论:N的①以AB为腰且顶角为∠A,先求出AB的值,再利用等腰三角形的性质结合勾股定理求出P1长,即可求出P1的坐标;的长,求出P2的纵坐标,已知其横坐标,可得②以AB为腰且顶角为角B,根据MN的长和MP2其坐标;CK∽Rt△BAQ即可求出OK和P3K的长,可得P3坐标.③以AB为底,顶角为角P时,依据Rt△P3【解答】解:(1)抛物线的对称轴x=﹣=;(2)由抛物线y=ax2﹣5ax+4可知C(0,4),对称轴x=﹣=,∴BC=5,B(5,4),又AC=BC=5,OC=4,在Rt△AOC中,由勾股定理,得AO=3,∴A(﹣3,0)B(5,4)C(0,4)把点A坐标代入y=ax2﹣5ax+4中,解得a=﹣,(6)∴y=x2+x+4.(3)存在符合条件的点P共有3个.以下分三类情形探索.设抛物线对称轴与x轴交于N,与CB交于M.过点B作BQ⊥x轴于Q,易得BQ=4,AQ=8,AN=5.5,BM=.AB.①以AB为腰且顶角为角A的△PAB有1个:△P1∴AB2=AQ2+BQ2=82+42=80在Rt△ANP1中,P1N====,(,﹣).∴P1AB.②以AB为腰且顶角为角B的△PAB有1个:△P2在Rt△BMP2中MP2====,=(,).∴P2AB.③以AB为底,顶角为角P的△PAB有1个,即△P3画AB的垂直平分线交抛物线对称轴于P3,此时平分线必过等腰△ABC的顶点C.过点P3作P3K垂直y轴,垂足为K,∵∠CJF=∠AOF,∠CFJ=∠AFO,CK=∠BAQ,∠CKP3=∠AQB,∴∠P3CK∽Rt△BAQ.∴Rt△P3∴==.K=2.5∵P3∴CK=5于是OK=1,(2.5,﹣1).∴P3【点评】此题考查了用对称轴公式求函数对称轴方程,用待定系数法求函数解析式等基础知识,还结合等腰三角形的性质考查了点的存在性问题,有一定的开放性.。