智能材料论文1
- 格式:doc
- 大小:29.50 KB
- 文档页数:4
材料结合人工智能技术论文在当今快速发展的科技时代,人工智能(Artificial Intelligence, AI)已经成为推动各行各业创新和进步的关键技术之一。
本文旨在探讨材料科学与人工智能技术的结合,分析其在材料研究、开发和应用中的重要作用,并展望未来发展趋势。
引言材料科学是研究材料的组成、结构、性能及其应用的学科。
随着科技的进步,新材料的开发和应用对于推动社会经济发展具有重要意义。
然而,材料的研究和开发过程往往耗时耗力,且存在许多不确定性。
人工智能技术的出现,为材料科学带来了新的研究方法和工具,使得材料的研究更加高效、精确。
人工智能在材料研究中的应用1. 材料设计人工智能技术可以通过机器学习和数据挖掘的方法,分析大量的材料数据,预测材料的性质和行为。
这不仅加快了新材料的设计过程,还提高了设计的准确性。
2. 材料合成在材料合成过程中,人工智能可以优化实验条件,预测合成过程中可能出现的问题,从而提高合成效率和成功率。
3. 性能预测与优化通过深度学习等技术,人工智能能够对材料的力学性能、热学性能、电学性能等进行预测,为材料的应用提供科学依据。
4. 材料缺陷检测利用图像识别和模式识别技术,人工智能可以快速准确地检测材料中的微观缺陷,为材料的质量控制提供支持。
人工智能技术在材料领域的具体应用案例1. 智能材料智能材料能够感知环境变化并做出响应,人工智能技术在智能材料的设计和制造中发挥着重要作用。
例如,通过机器学习算法优化智能材料的响应速度和灵敏度。
2. 纳米材料纳米材料因其独特的尺寸效应而具有优异的性能。
人工智能技术可以帮助科学家更高效地设计和合成纳米材料,预测其在不同应用场景下的性能。
3. 生物材料生物材料在医疗领域有着广泛的应用。
人工智能技术可以辅助设计具有生物相容性和生物活性的新型生物材料,提高治疗效果。
4. 能源材料在能源领域,人工智能技术被用于开发和优化太阳能电池、燃料电池等能源转换材料,以提高能源转换效率和降低成本。
智能材料摘要:材料的智能化代表了材料科学发展的最新方向,智能材料的研究主要是依照仿生学方法,采用各种先进复合技术,实现复杂材料体系的多功能复合,并最终实现材料智能能化和器件集成化,文章在简要介绍有关材料概念的基础上,又介绍了智能材料的出现、特征、功能和成果及其对社会的重要性。
关键词:智能材料;应用智能材材料是一种能通过系统协调材料内部各种功能并对时间、地点和环境作出反应和发挥功能作用的材料。
智能材材料是不同于传统的结构材料和功能材料的全新材料概念,它模糊了两者的界限,实现结构功能化,功能多样化,是一个逐渐兴起的并很快会成为主流的材料学分枝。
对于智能材料我结合自己听课的内容及网上资料的查阅写下对智能材料的认识。
(一)智能材料的出现。
智能材料的构想来源于仿生学,它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。
因此智能材料必须具备感知、驱动和控制这三个基本要素。
但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。
这就使得智能材料的设计、制造、加共和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。
(二)智能材料的特征。
因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:(1)传感功能。
能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。
(2)反馈功能。
可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。
(3)信息识别与积累功能。
能够识别传感网络得到的各类信息并将其积累起来。
(4)响应功能。
能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。
(5)自诊断能力。
能通过分析比较系统目前的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。
高分子智能材料摘要:从合成、加工、新产品开发及其应用诸方面综述了智能高分子材料,如智能高分子凝胶、形状记忆高分子材料、智能织物、智能高分子膜和智能高分子复合材料等的研究进展,展望了其发展前景,并阐述了智能高分子材料的潜在应用领域。
关键词:高分子材料;智能材料;智能化一引言材料的发展经历着结构材料→功能材料→智能材料→模糊材料的过程[1]。
智能化是指材料的作用和功能可随外界条件的变化而有意识地调节、修饰和修复[2]。
智能材料的构想来源于仿生学,它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。
因此智能材料必须具备感知、驱动和控制这三个基本要素。
但是现有的材料一般比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两种以上的材料复合构成一个智能材料系统。
这就使得智能材料的设计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使智能材料代表了材料科学的最活跃方面和最先进的发展方向。
纵观材料发展,经历了单一型、复合型和杂化型,进而发展为异种材料间不分界的整体式融合型材料,最近几年兴起的智能材料是受集成电路技术的启迪而构思的三维组件式融合性材料。
它是通过在原子、分子及其团簇等微观、亚微观水平上进行材料结构设计和控制,赋予材料自感知(传感功能)判断、自结构(处理功能)和自指令(相应功能)等智能性。
由此可知,智能材料不同于以往的传统材料,它模仿生命系统,具有传感、处理和响应功能,而且较机敏材料(只能进行简单线性响应)更近于生命系统,它能根据环境条件的变化程度实现非线性响应已达到最佳适应效果。
早在1970年代,田中丰一就发现了智能高分子现象,即当冷却聚丙烯酰胺凝胶时,此凝胶由透明逐渐变得浑浊,最终呈不透明状,加热时,它又转为透明[3]。
1980年代,出现了用来制造高分子传感器、分离膜、人工器官的智能高分子材料。
1990年代,智能高分子材料进入了高速发展阶段。
智能化概念实际上是把信息科学里德软件功能引入到材料、系统和新材料的产生,本文将就有关科学问题进行研讨,以期对这门必将在21世纪大放异彩的智能材料科学的发展有所裨益。
智能高分子材料发展及应用目录:一.论文摘要二.正文1. 高分子材料研究与发展1.1智能高分子材料概论1.2智能高分子特性1.3智能高分子材料研究与发展2. 能高分子材料与其他科学联合2.1智能高分子涉及学科2.2智能高分子材料在一些领域的具体应用3. 智能高分子材料产业领域3.1高分子材料工业应用3.2高分子材料制药方面的应用三.总结智能高分子材料研究与发展应用摘要: 智能高分子材料的研究和发展,是材料学的发展有了突破性的发展。
20世纪90年代之后的研究更是深入,智能高分子的研究涉及的众多方面如信息、电子、宇宙、海洋科学、生命科学等领域,另高分子在一些高科技产业中得到应用,已成为高分子材料的发展方向之一。
关键词:智能材料发展涉及应用一.智能高分子材料的研究与发展1.1智能高分子材料概论智能高分子材料又称智能聚合物、机敏性聚合物、刺激响应型聚合物、环境敏感型聚合物,所以被定义为“能感知环境变化并随外部条件的变化,通过自我判断和结论,进行相应动作的高分子材料”。
为了实现这样的高分子材料的合成,高分子材料必须具备感知特定的外界刺激和自身内部状态变化并坐车响应的功能以及响应速度快,外界刺激撤除后恢复自我的能力,其特性决定于分子结果的复杂性与多样性,以此决定了智能化。
1.2智能高分子材料具体标出的特性具有应用价值的智能高分子材料具有变形量大、复性容易、形状响应温度抑郁调整、保温、绝缘性能好,而且还具有不腐蚀,易着色、可印刷、质轻价廉等诸多有点,因此在各个领域广泛应用。
1.3智能高分子材料的研究与发展从1949年Kuhn . Breithenbach 和Katchalsky 发现丙烯酸大分子上的羧基在交替更换酸碱溶液时,聚合物发生溶胀和收缩开始,对于大分子材料的研究就渐渐进入科学家的眼球,1968年和1978年对于分子材料学的研究更是更近一步.从80年代研究单一且非特异性的智能高分子型到90年代研究对象发展成为微小的具有特异性的智能高分子材料,也就是说感应到多个刺激条件后,进行信息处理而动作的智能型高分子。
智能材料论文智能材料是一种具有自主感知、自适应、自修复和自组装等功能的新型材料,它能够对外界环境做出响应并产生相应的变化。
智能材料的研究和应用已经成为当前材料科学领域的热点之一,其在航空航天、医疗保健、智能机器人等领域具有广阔的应用前景。
智能材料的种类繁多,其中形状记忆合金是一种应用较为广泛的智能材料之一。
形状记忆合金具有记忆形状的特性,可以在外界作用下发生相变,恢复到其记忆形状,因此在医疗器械、航空航天等领域有着重要的应用价值。
除了形状记忆合金,智能聚合物也是一种备受关注的智能材料。
智能聚合物具有响应外界刺激而改变其形态、性能的特点,可以被广泛应用于智能传感器、智能涂料等领域。
另外,碳纳米管也是一种研究热点的智能材料。
碳纳米管具有优异的导电性和力学性能,可以被应用于柔性电子器件、纳米传感器等领域。
在智能材料的研究中,仿生材料也是一个备受关注的方向。
仿生材料以生物体的结构和功能为蓝本,具有优异的生物相容性和生物相似性,可以被应用于人工器官、组织修复等领域。
总的来说,智能材料的研究和应用已经取得了一系列的重要进展,但与传统材料相比,智能材料的研究仍面临着诸多挑战。
例如,智能材料的制备工艺需要更高的精密度和稳定性;智能材料的性能测试和评价方法亟需标准化和规范化;智能材料的环境适应性和耐久性需要进一步提高等。
因此,未来在智能材料领域的研究中,需要加强跨学科交叉合作,推动智能材料的基础理论研究和应用技术创新,为智能材料的发展开辟新的道路。
综上所述,智能材料作为一种新型材料,在材料科学领域具有重要的研究和应用价值。
随着科技的不断进步和创新,相信智能材料必将在未来取得更大的突破和发展,为人类社会的进步和发展做出更大的贡献。
智能材料论文:智能无机非金属材料摘要结构材料所处的环境极为复杂,材料损坏引起事故的危险性不断增加,研究与开发对损坏能自行诊断并具有自修复能力的结构材料是十分重要而急迫的任务。
本文对智能材料的发展、构思、无机非金属智能材料进行了综述,对智能材料进一步研究进行了展望。
关键词智能;无机非金属;材料智能材料是指对环境具有可感知、可响应并具有功能发现能力的新材料。
日本高木俊宜教授[]将信息科学融于材料的物性和功能,于年提出了智能材料()概念。
至此智能材料与结构的研究也开始由航空航天及军事部门[]逐渐扩展到土木工程[]、医药、体育和日常用品[]等其他领域。
同时,美国的··教授围绕具有传感和执行功能的材料提出了灵巧材料()概念,又有人称之为机敏材料。
他将灵巧材料分为三类:被动灵巧材料——仅能响应外界变化的材料;主动灵巧材料——不仅能识别外界的变化,经执行线路能诱发反馈回路,而且响应环境变化的材料;很灵巧材料——有感知、执行功能,并能响应环境变化,从而改变性能系数的材料。
··的灵巧材料和高木俊宜的智能材料概念的共同之处是:材料对环境的响应性。
自年以来,先是在日本、美国,尔后是西欧,进而世界各国的材料界均开始研究智能材料。
科学家们研究将必要的仿生()功能引入材料,使材料和系统达到更高的层次,成为具有自检测、自判断、自结论、自指令和执行功能的新材料。
智能结构常常把高技术传感器或敏感元件与传统结构材料和功能材料结合在一起,赋予材料崭新的性能,使无生命的材料变得有了“感觉”和“知觉”,能适应环境的变化,不仅能发现问题,而且还能自行解决问题。
由于智能材料和系统的性能可随环境而变化,其应用前景十分广泛[]。
例如飞机的机翼引入智能系统后,能响应空气压力和飞行速度而改变其形状;进入太空的灵巧结构上设置了消震系统,能补偿失重,防止金属疲劳;潜水艇能改变形状,消除湍流,使流动的噪声不易被测出而便于隐蔽;金属智能结构材料能自行检测损伤和抑制裂缝扩展,具有自修复功能,确保了结构物的可靠性;高技术汽车中采用了许多灵巧系统,如空气燃料氧传感器和压电雨滴传感器等,增加了使用功能。
智能材料与智能机器人的智能化的论文随着科技的开展与进步,一些人类不愿意甚至不能够做的事情(如工作环境差、劳动强度大、危险程度高等的工种或工序)已经开始利用机器人去实现,例如汽车制造工业中应用的焊接机器人,完成减速器壳体、汽车座椅、汽车燃油箱、汽车车身等的焊接工作[1]。
生产力的开展使机器人得到快速的开展,智能科技化程度也越来越高,不仅局部解放了人类的双手,而且提高了生产效率,降低生产本钱。
智能机器人除在工业生产中的广泛应用外,在一些效劳行业也越来越受到人类的青睐。
xx年5月媒体报道,河北保定一家餐厅引进智能送餐机器人当“跑堂”,机器人“效劳员”每次充电后可持续工作约8h,具备自动送餐、空盘回收、菜品介绍等功能[2]。
机器人甚至可以深入到深海地区探测海底情况,完成人类根本做不到的事情。
据新华社报道,我国自主研发的水下机器人“潜龙二号”成功地对西南印度洋脊上的热液活动区开展了试验性应用探测。
在这种被称为“海底黑烟囱”的复杂地带,“潜龙二号”获得了热液区的地形地貌数据、发现多处热液异常点,拍摄到硫化物、玄武岩和海洋生物等大量照片,取得了大洋热液探测的突破[3]。
由此,机器人从最初的仅仅可以完成一些简单动作开展到能够感知环境的变化,并根据外部环境做出反响,完成相应动作,即人们所说的智能机器人。
而智能材料可以通过自身表层或内部构造获取关于环境条件及其变化的信息,随后进展分析、判断、处理,通过组织构造的改变实现功能的更新,实现与外部环境相适应的目标,所以其具有类似于生物智慧的系统或构造。
故这类材料可以为机器人智能化的实现提供更多的可能。
自从1959年世界上第1台工业机器人由美国人英格伯格和德沃尔制造成功以后,机器人经历了由完成简单操作功能的机械手到智能机器人的变革。
目前的智能机器人已经具有了类似人的思维、判断能力,拥有强大的感知系统,并可以根据外部环境的变化实现自主学习和自我调整,并根据经历的积累进展自我安排,完全独立的工作[4]。
仿生智能材料论文仿生智能材料现在仿生智能材料的发展和研究是一个非常好的前景,人们所用的许多东西,所研究需要的性能都离不开动物机能的启发。
然而在这次选修课上我也学到了许多平时学不到的知识,如今我的专业课就是材料科学与工程,更让我解到了仿生智能材料对各种物件和科研的重要性了。
上课时间老师也让我们观看了许多视频资料,让我们也了解到,学到了许多东西。
比如,蜘蛛丝的仿生材料研究,也是人们最早开始研究并取得成功的仿生材料之一,就是模仿天然纤维和人的皮肤的接触感而制造的人造纤维。
蜘蛛吐出的丝,人类很早以前就对其在研究,然而在最近几十年才知道,这些丝全部是由蛋白质构成的,具有温暖的触感和美丽的光泽。
二十世纪以来,人们模仿蜘蛛吐丝和蚕吐丝的过程研制了各种化学纤维的纺丝方法。
以后又模仿生物纤维的吸湿性、透气性等服用性能研制了许多新型纤维材料。
这些产品的出现显示了人类仿造生物纤维表面细微形态与内部构造取得了成功。
另外人们对蜘蛛丝进行的研究,一直以来研究者们都很期待着有朝一日能够制造出与蚕丝完全一样的人造丝。
因此,生体高分子纤维因其固有的生体功能而被广泛应用于纺织、医学、生物等多个领域中,自二十世纪九十年代以来,又出现了许多仿生和超生高分子纤维材料,并将开发的热点转向高强轻质的新型纤维。
蜘蛛因而具有许多天然纤维甚至高性能合成纤维无法比拟的优异力学性能,而成了国内外许多研究机构和学者关注的焦点。
近年来,许多国外的学者在研究蜘蛛丝结构和性能的同时,借助于日益发展的生物技术,采用基因移植的方法研制了人工合成蜘蛛丝蛋白,并采用化学纤维纺丝的方法将其制成类蜘蛛丝,但由于性能上的缺陷、加工过程复杂、成本高等一些因素,仿蜘蛛丝尚未实现工业化生产。
从材料科学的角度来看,纤维的性能取决于其大分子链结构和聚集态结构,探明纤维性能形成机理的根本在于:掌握其结构和性能间的本构关系。
因此,要使蜘蛛丝的力学性能在人造生体高分子纤维上得到表达,研究其性能的结构机理和形成这种结构的方法原理是至关要的。
智能材料——形状记忆高分子材料摘要高分子形状记忆材料近年来吸引了许多研究者的目光,因其低廉的成本、优异的加工性能、良好的回复性、多变的力学和物理性能等优势迅速地发展起来。
按形状记忆的方式,它可分为热致感应型、光致感应型和化学物质感应型等,能满足不同的应用需求。
AbstractShape memory polymer materials have attracted many researchers attention in recent years, due to its low cost, excellent processing performance, good recovery, and the mechanical and physical properties of the advantages of developing rapidly. According to the way of shape memory, it can be divided into thermal induced type, light induced type and chemical induction type, can meet different application requirements.关键词:形状记忆高分子形状记忆树脂热致感应性一、形状记忆高分子材料定义形状记忆高分子(Shape Memory Polymer)SMP材料是指具有初始形状的制品,在一定的条件下改变其初始形状并固定后,通过外界条件(如热、光、电、化学感应)等的刺激,又可恢复其初始形状的高分子材料。
二、形状记忆高分子必备条件1.聚合物材料本身应具有结晶和无定形的两相结构,且两相结构的比例应适当。
2.在玻璃化温度或熔点以上的较宽温度范围内呈现高弹态,并具有一定的强度,以利于实施变形。
3.在较宽的环境温度条件下具有玻璃态,保证在贮存状态下冻结应力不会释放。
大家好!今天,我非常荣幸能在这里为大家介绍一个令人兴奋的话题——智能材料。
随着科技的飞速发展,智能材料作为一种新型材料,已经在各个领域得到了广泛应用。
今天,我将从智能材料的定义、特点、应用领域以及未来发展趋势等方面为大家作一简要介绍。
一、智能材料的定义智能材料,顾名思义,是指具有感知、响应、自修复等智能特性的材料。
它们能够在特定条件下,根据外部刺激或内部状态的变化,自动调整自身的物理、化学、力学等性质,以适应环境变化或完成特定功能。
二、智能材料的特点1. 智能性:智能材料具有感知、响应、自修复等智能特性,能够对外部环境或内部状态的变化做出响应。
2. 自适应性:智能材料能够根据环境变化或需求,自动调整自身的物理、化学、力学等性质。
3. 多功能性:智能材料可以同时具备多种功能,如力学性能、传感性能、自修复性能等。
4. 环保性:智能材料在生产和使用过程中,具有较低的能耗和污染。
三、智能材料的应用领域1. 生物医学领域:智能材料在生物医学领域具有广泛的应用,如人工器官、药物载体、组织工程等。
2. 航空航天领域:智能材料在航空航天领域具有重要作用,如隐身材料、智能结构件、自修复涂层等。
3. 能源领域:智能材料在能源领域具有广泛应用,如太阳能电池、燃料电池、储氢材料等。
4. 环保领域:智能材料在环保领域具有重要作用,如废水处理、空气净化、土壤修复等。
5. 电子产品领域:智能材料在电子产品领域具有广泛应用,如柔性电路板、智能传感器、自修复显示屏等。
四、智能材料的未来发展趋势1. 功能多样化:未来智能材料将具备更多功能,以满足不同领域的需求。
2. 结构一体化:智能材料将实现结构与功能的集成,提高材料性能。
3. 智能化程度提高:智能材料的智能化程度将不断提高,实现更加精准的控制。
4. 环保性能增强:智能材料将具有更高的环保性能,降低生产和使用过程中的能耗和污染。
5. 成本降低:随着技术的不断发展,智能材料的制造成本将逐步降低,使其在更多领域得到应用。
智能材料
—材科0903 黎先鸿学号:
1609102309
当原本无“生命”无“感知”的材料被赋予了“生命”那又会是怎样呢?智能材料将会给你答复!
(一)智能材料的出现。
智能材料的构想来源于仿生学,它的目标就是想研制出一种材料,使它成为具有类似于生物的各种功能的“活”的材料。
因此智能材
料必须具备感知、驱动和控制这三个基本要素。
但是现有的材料一般
比较单一,难以满足智能材料的要求,所以智能材料一般由两种或两
种以上的材料复合构成一个智能材料系统。
这就使得智能材料的设
计、制造、加工和性能结构特征均涉及到了材料学的最前沿领域,使
智能材料代表了材料科学的最活跃方面和最先进的发展方向。
(二)智能材料的特征。
因为设计智能材料的两个指导思想是材料的多功能复合和材料的仿生设计,所以智能材料系统具有或部分具有如下的智能功能和生命特征:(1)传感功能
能够感知外界或自身所处的环境条件,如负载、应力、应变、振动、热、光、电、磁、化学、核辐射等的强度及其变化。
(2)反馈功能
可通过传感网络,对系统输入与输出信息进行对比,并将其结果提供给控制系统。
(3)信息识别与积累功能
能够识别传感网络得到的各类信息并将其积累起来。
(4)响应功能
能够根据外界环境和内部条件变化,适时动态地作出相应的反应,并采取必要行动。
(5)自诊断能力
能通过分析比较系统目前的状况与过去的情况,对诸如系统故障与判断失误等问题进行自诊断并予以校正。
(6)自修复能力
能通过自繁殖、自生长、原位复合等再生机制,来修补某些局部损伤或破坏。
(7)自调节能力
对不断变化的外部环境和条件,能及时地自动调整自身结构和功能,并相应地改变自己的状态和行为,从而使材料系统始终以一种优化方式对外界变化作出恰如其分的响应。
(三)智能材里的功能。
(1)具有感知功能,能够检测并且可以识别外界(或者内部)的刺激强度,如电、光、热、应力、应变、化学、核辐射等;
(2)具有驱动功能,能够响应外界变化;
(3)能够按照设定的方式选择和控制响应;
(4)反应比较灵敏、及时和恰当。
(5)当外部刺激消除后,能够迅速恢复到原始状态。
(四)生物医用智能材料。
对智能材料医学的应用这节课印象比较深刻,面对现在疾病的流行,现有的医学技术已经不能满主医学的需求,因该出现一种突破传统的新的医学方式,生物医用智能材料可能会实现这种方式。
生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。
现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。
生物材料应用广泛,品种很多,有不同的分类方法。
通常是按材料属性分为:合成高分子材料(聚氨醋、聚醋、聚乳酸、聚乙醇酸、乳酸乙醇酸共聚物及其他医用合成塑料和橡胶等)、天然高分子材料(如胶原、丝蛋白、纤维素、壳聚糖等)、金属与合金材料(如钦金属及其合金等)、无机材料(生物活性陶瓷,羟基磷灰石等)、复合材料(碳纤维/聚合物、玻璃纤维/聚合物等)。
根据材料的用途,这些材料又可以分为生物惰性、生物活性或生物降解材料。
这些材料通过长期植入、短期植入、表面修复分别用于硬组织和软组织修复与替换。
生物医用材料由于直接用于人体或与人体健康密切相关,对其使用有严格要求。
首先,生物医用材料应具有良好的血液相容性和组织相容性。
其次,要求耐生物老化。
即对长期植入的材料,其生物稳定性要好;对于暂时植入的材料,耍求在确定时间内降解为可被人体吸收或代谢的无毒单体或片断。
还要求物理和力学性质稳定、易于加工成型、价格适当。
便于消毒灭茵、无毒无热源、不致癌
不致畸也是必须考虑的。
对于不同用途的材料,其要求各有侧重。
生物医学材料得以迅猛发展的主要动力来自人口老龄化、中青年创伤的增多、疑难疾病患者的增加和高新技术的发展。
人口老龄化进程的加速和人类对健康与长寿的追求,激发了对生物材料的需求。
作为世界人口最多的国家,中国已进入老龄化国家行列,生物材料的市场潜力将更加巨大。
随着生物技术的发展,不同学科的科学家进行了广泛合作,从而使制造具有完全生物功能的人工器官展示出美好的前景。
人体组织和器宫的修复,将从简单的利用器械机械固定发展到再生和重建有生命的人体组织和器宫;从短寿命的组织和器官的修复发展至永久性的修复和替换。
这一医学革命,对生命利学和材料等相关学科的发展提出了诸多需求,对生物医学材料的发展产生了重要的促进作用。
生物医用材料是材料科学与工程的重要分支,其最大特点是学科交叉广泛、应用潜力巨大、挑战性强。
随着新材料、新技术、新应用的不断涌现,吸引了许多科学家投人这一领域的研究,成为当今材料学研究最活跃的领域之一。
在我国,生物医学材料的研究虽然取得一些令人瞩目的成果,但整体水平不高,跟踪研究多,源头创新少。