安徽省皖中名校联盟2019届高三10月联考数学(文)试题+Word版含答案
- 格式:doc
- 大小:637.50 KB
- 文档页数:10
皖中名校联盟2019届高三第一次联考(阜阳一中、六安一中)化学试题卷考试说明:1.考查范围:金属及其化合物,非金属及其化合物。
2.试卷结构:分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题);试卷分值:100分,考试时间:90分钟。
3.所有答案均要答在答题卷上,否则无效。
考试结束后只交答题卷。
可能用到的相对原子质量:H 1 C 12 O 16 Na 23 Al 27 Cr 52 Ca 40 Si 28第Ⅰ卷(选择题共48分)本卷共16小题,每小题3分。
每小题只有一个选项符合题意。
答案填涂到答题卡上。
1.下列对有关文献的理解错误的是()A. “所在山洋,冬月地上有霜,扫取以水淋汁后,乃煎炼而成”过程包括了溶解、蒸发、结晶等操作。
B.《物理小识》记载“青矾(绿矾)厂气熏人,衣服当之易烂,栽木不没,“气”凝即得“矾油”。
青矾厂气是NO 和NO2。
C.《开宝本草》中记载了中药材铁华粉的制作方法:“取钢煅作时如笏或团,平面磨错令光净,以盐水洒之,于醋瓮中阴处埋之一百日,铁上衣生,铁华成矣。
”中药材铁华粉是醋酸亚铁。
D.唐代《真元妙道要略》中有云“以硫磺、雄黄合硝石并蜜烧之,焰起烧手、面及屋舍者”,描述了黑火药制作过程。
2.下列说法正确的是()A.液态HCl、固态AgCl均不导电,所以HCl、AgCl是非电解质B. NH3、CO2的水溶液均能导电,所以NH3、CO2均是电解质C.非金属氧化物不一定是酸性氧化物,酸性氧化物不一定都是非金属氧化物D.碱性氧化物一定是金属氧化物,金属氧化物一定是碱性氧化物3.设N A表示阿伏加德罗常数的值,下列说法正确的是( )A.6g SiO2晶体中含有Si-O键的数目为0.2N AB.1mol乙酸与足量的乙醇发生酯化反应,生成乙酸乙酯分子数为N A个C.某温度下, pH=2的H2SO4溶液中,硫酸和水电离的H+总数为0.01N AD.常温下,1L 0.1mol·L-1醋酸钠溶液中加入醋酸至溶液为中性,则溶液含醋酸根离子数0.1N A个4.下列离子方程式书写正确的是( ) A. Na2S2O3溶液与稀H2SO4反应的离子方程式:S2O32- + 6H+ =2S↓ +3H2OB.向饱和Na2CO3溶液中通入过量CO2,CO32-+CO2+H2O═2HCO3-C.CuSO4与过量浓氨水反应的离子方程式:Cu2++2NH3·H2O= Cu(OH)2↓+2NH4+D. Fe与稀硝酸反应,当n(Fe)∶n(HNO3)=1∶2时,3Fe+2NO3-+8H+═3Fe2++2NO↑+4H2O5.室温下,下列各组离子在指定溶液中一定能大量共存的是( )①pH=0的溶液:Na+、I-、NO3-、SO42-②pH=12的溶液中:CO32-、Na+、NO3-、S2-、SO32-③水电离的H+浓度c(H+)=10-12 mol·L-1的溶液中:Cl-、CO、NO、NH、SO④加入Mg能放出H2的溶液中:Mg2+、NH、Cl-、K+、SO⑤使石蕊变红的溶液中:Fe2+、MnO、NO、Na+、SO⑥中性溶液中:Fe3+、Al3+、NO、Cl-、A.②④ B.只有② C.①②⑤ D.①②⑥6.现有下列三个氧化还原反应:① 2B- + Z2 = B2+2 Z -② 2A2+ + B2 = 2A3+ + 2B-③2XO4- + 10Z - + 16H+ = 2X2+ + 5Z2 + 8H2O,根据上述反应,判断下列结论中正确的是()A.要除去含有 A2+、Z-和B-混合溶液中的A2+,而不氧化Z-和B-,应加入B2B.氧化性强弱顺序为:XO4-﹥Z2﹥A3+﹥B2C. X2+是 XO4-的氧化产物, B2 是 B-的还原产物D.在溶液中不可能发生反应: XO4- +5A2++ 8H+ = X2+ + 5A3+ + 4H2O7.下表所列各组物质中,物质之间通过一步反应就能实现如图所示转化的是( )选项a b cA Al AlCl3Al(OH)3B CO2Na2CO3NaHCO3C Si SiO2H2SiO3D S SO3H2SO48.下列依据实验操作及现象得出的结论正确的是 ( )选项实验操作现象结论A向亚硫酸钠试样中滴入盐酸酸化的Ba(ClO)2溶液生成白色沉淀试样已氧化变质B 向AgCl的悬浊液中加入NaBr溶液白色沉淀转化为淡黄色沉淀相同温度下,K SP(AgCl)>K SP(AgBr)C向待测液中依次滴入氯水和KSCN溶液溶液变为红色待测溶液中含有Fe2+D 向NaHCO3溶液中滴加NaAlO2溶液有白色沉淀和气体产生AlO2-与HCO3-发生了双水解反应9.用下列实验装置进行相应实验,能达到实验目的的是()A.用甲装置实验室制取乙炔 B.盛有水的乙装置,吸收HCl气体C.用丙装置测量气体可以减少误差 D.用丁装置蒸发MgCl2溶液10.下列化合物中不能由化合反应直接得到的是 ( )A.SO3 B. Fe(OH)3 C. FeCl2 D. Al(OH)311.检验溶液中是否含有某种离子,下列操作方法正确的是 ( )A.向某溶液中先加入Ba(NO3)2溶液无明显现象,再加入硝酸酸化的AgNO3溶液产生白色沉淀,证明有Cl-B.向某溶液中加稀BaCl2,产生白色沉淀,再加入HCl溶液,沉淀不溶解,证明有SO42-C.向某溶液中加入稀 HCl,放出能使澄清的石灰水变浑浊的气体,证明有CO32-D.向某溶液中加入浓氢氧化钠溶液后加热,产生使湿润蓝色石蕊试纸变红的气体,证明含有NH4+12.常温下,二氯化二硫(S2Cl2)为橙黄色液体,遇水易水解,工业上用于橡胶的硫化。
2019届安徽省重点高中高三大联考数学(文)试题学校:___________姓名:___________班级:___________考号:___________1.已知集合{}12A x Z x =∈-≤<,则满足条件A B B =I 的集合B 的个数为( ) A .4 B .7C .3D .8 2.已知复数1i z =-,则22z z +,在复平面上对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限 3.国庆节期间,滕州市实验小学举行了一次科普知识竞赛活动,设置了一等奖、二等奖、三等奖、四等奖及纪念奖,获奖人数的分配情况如图所示,各个奖品的单价分别为:一等奖50元、二等奖20元、三等奖10元,四等奖5元,纪念奖2元,则以下说法中不正确...的是( )A .获纪念奖的人数最多B .各个奖项中二等奖的总费用最高C .购买奖品的费用平均数为6.65元D .购买奖品的费用中位数为5元 4.给出下列四个结论:①若p q ∧是真命题,则p ⌝可能是真命题;②命题“若p 则q ”与命题“若q ⌝,则p ⌝”互为逆否命题;③若“p ⌝或q ”是假命题,则“p 且q ⌝”是真命题;④若p 是q 的充分条件,q 是r 的充分条件,则p 是r 的充分条件.其中正确的个数为( )A .1B .2C .3D .45.已知函数()1,01,0x e x f x x -⎧>=⎨-≤⎩,函数()()g x f x x =-的一个零点为m ,令()23m h x x -=,则函数()h x 是( )A .奇函数且在()0,∞+上单调递增B .偶函数且在()0,∞+上单调递减C .奇函数且在()0,∞+上单调递减D .偶函数且在()0,∞+上单调递增 6.已知双曲线()222210,0x y a b a b-=>>的左、右顶点为A ,B ,点P 为双曲线上异于A ,B 的任意一点,设直线PA ,PB 的斜率分别为1k ,2k ,若1212k k =,则双曲线的离心率为( )A B .2 C .2D .327.如图,是某几何体的三视图,该几何体的轴截面的面积为8,则该几何体的外接球的表面积为( )A .12512π B .25π C .252π D .100π8.若函数()()23sin2cos 2f x x x x ωωω=π-++,且()3f α=,()2f β=,若αβ-的最小值是2π,则下列结论正确的是( ) A .1ω=,函数()f x 的最大值为1B .12ω=,函数()f x 的最大值为3 C .2ω=,函数()f x 的最大值为3 D .12ω=,函数()f x 的最大值为1 9.如图,在平行四边形ABCD 中,E,F 分别为BC,CD 上的一点,且1,23BE BC DF FC ==u u u v u u u v u u u v u u u v ,则AF DE +=u u u v u u u v ( )A .5133AB AD -u u u v u u u v B .5533AB AD +u u u v u u u vC .4233AB AD -u u u v u u u v D .5133AB AD +u u u v u u u v 10.执行如图所示的程序框图,输出的结果为( )A .1B .2C .3D .411.设G 是ABC V 的重心,且()()()sin sin sin 0A GA B GB C GC ++=u u u r u u u r u u u r ,若ABCV 外接圆的半径为1,则ABC V 的面积为( )ABC .34D .91612.各项均为正数的等比数列{}n a 满足:634a a a =,18128a a =,函数()2201220f x a x a x a x =++⋅⋅⋅+,若曲线()y f x =在点11,22f ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线垂直于直线1050kx y m -+=,则k =( )A .12-B .12C .2D .2-13.已知x ,y 满足不等式组230y x x y y ≤⎧⎪+≤⎨⎪≥⎩,则11y z x -=+的取值范围是________. 14.如图,在长方体1111ABCD A B C D -中,对角线1DB 与平面11ADD A ,ABCD ,11DCC D 的夹角分别为α,β,θ,且111118A B BB C B ++=,2221111124A B BB C B ++=,则sin sin sin αβθ++=________.15.已知函数()cos ,01,01x x x f x x x x -≤⎧⎪=-⎨>⎪+⎩,()()23log 3g x x =-,则不等式()()1f g x ⎡⎤<⎣⎦的解集为________.16.已知圆1C :()()22224x y -+-=,2C :()()22212x y +++=,点P 是圆1C 上的一个动点,AB 是圆2C 的一条动弦,且2AB =,则PA PB +u u u r u u u r 的最大值是________.17.已知数列{}n a 的前n 项和为n S ,且()2*23n S n n n N =+∈,数列{}nb 满足:()2*4n n a b n n n N =+∈.(1)求数列{}n b 的通项公式;(2)设数列{}n b 的前n 项和为n T ,当45n T >时,求n 的最小值.18.如图,四边形ABCD 是矩形,2AB =π,4=AD ,E ,F 分别为DC ,AB 上的一点,且23DE DC =,23AF AB =,将矩形ABCD 卷成以AD ,BC 为母线的圆柱的半个侧面,且AB ,CD 分别为圆柱的上、下底面的直径.(1)求证:平面ADEF ⊥平面BCEF ;(2)求四棱锥D BCEF -的体积.19.滕州市公交公司一切为了市民着想,为方便市区学生的上下学,专门开通了学生公交专线,在学生上学、放学的时间段运行,为了更好地掌握发车间隔时间,公司工作人员对滕州二中车站发车间隔时间与侯车人数之间的关系进行了调查研究,现得到如下数据:调查小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据不相邻的概率;(2)若选取的是前两组数据,请根据后四组数据,求出y 关于x 的线性回归方程ˆˆˆybx a =+; (3)若由线性回归方程得到的估计数据与所选出的检验数据的差均不超过1人,则称为最佳回归方程,在(2)中求出的回归方程是否是最佳回归方程?若规定一辆公交车的载客人数不超过35人,则间隔时间设置为18分钟,是否合适? 参考公式:()()()1122211ˆn n i i i ii i n n i i i i x y nx y x x y y b xnx x x ====---==--∑∑∑∑,ˆˆay bx =-. 20.已知椭圆C :()222210x y a b a b+=>>的左、右焦点为1F ,2F ,上、下顶点为1B ,2B ,四边形1221B F B F 是面积为2的正方形.(1)求椭圆的标准方程;(2)已知点()2,0P ,过点2F 的直线l 与椭圆交于M ,N 两点,求证:22MPF NPF ∠=∠.21.已知函数()()21202f x ax x a =+≠,()lng x x =. (1)令()()()h x f x g x =-,若曲线()y h x =在点()()1,1h 处的切线的纵截距为2-,求a 的值;(2)设0a >,若方程()()()21g x xf x a x '=-+在区间1e e ⎛⎫ ⎪⎝⎭,内有且只有两个不相等的实数根,求实数a 的取值范围.22.在平面直角坐标系xOy 中,直线l 的参数方程为2cos sin x t y t αα=-+⎧⎨=⎩(t 为参数),以坐标原点O 为极点x ,轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为1ρ=. (1)若直线l 与圆C 相切,求α的值;(2)直线l 与圆C 相交于不同两点A ,B ,线段AB 的中点为Q ,求点Q 的轨迹的参数方程.23.已知不等式32x a b c +≥++,a ,b ,R c ∈.(1)当22a b +=,1c x =+时,解不等式32x a b c +≥++;(2)当2226a b c ++=时,不等式32x a b c +≥++对所有实数a ,b ,c 都成立,求实数x 的取值范围.参考答案1.D【解析】【分析】先求得集合A 的元素,根据A B B =I 得到B A ⊆,由328=求得集合A 子集的个数,也即集合B 的个数.【详解】{}{}121,0,1A x Z x =∈-≤<=-,∵A B B =I ,∴B A ⊆,∵集合A 有3个元素,∴其子集有328=个.故选:D.【点睛】本小题主要考查根据交集的结果求集合,考查子集个数的计算,属于基础题.2.D【解析】【分析】 利用复数的乘方运算、复数的模运算化简2222i z z +=-,由此判断出其对应点所在象限.【详解】∵1i z =-,∴()22221i 22i z z +=-+=-,则22z z +在复平面上对应的点在第四象限.故选:D.【点睛】本小题主要考查复数的乘方运算、复数的模运算,考查复数对应点的坐标所在象限,属于基础题.3.B【解析】【分析】根据扇形统计图判断出纪念奖占的比例,由此判断A 选项的正确性.计算出各奖项的费用,由此判断B 选项的正确性.计算出平均费用,由此判断C 选项的正确性.计算出中位数,由此判断D 选项的正确性.【详解】设参加竞赛的人数为a 人,由扇形统计图可知,一等奖占2%,二等奖占8%,三等奖占15%,四等奖占35%,获得纪念奖的人数占40%,最多,A 正确;各奖项的费用:一等奖2%a 50a ⨯=,二等奖8%20 1.6a a ⨯=,三等奖15%10 1.5a a ⨯=,四等奖35%5 1.75a a ⨯=,纪念奖40%20.8a a ⨯=,B 错误;平均费用为502%208%1015%535%240% 6.65⨯+⨯+⨯+⨯+⨯=元,C 正确;由各个获奖的人数的比例知,购买奖品的费用的中位数为5元,D 正确.故选:B.【点睛】本小题主要考查根据扇形统计图进行分析,属于基础题.4.C【解析】【分析】根据含有逻辑联结词命题真假性的判断,判断①的正确性.利用逆否命题的知识判断②的正确性. 根据含有逻辑联结词命题真假性的判断,判断③的正确性.根据充分条件的概念判断④的正确性.【详解】若p q ∧是真命题,则p ,q 都是真命题,∴p ⌝是假命题,①错误;由逆否命题的定义可得,②正确;若“p ⌝或q ”是假命题,则p ⌝,q 都是假命题,∴p ,q ⌝都是真命题,③正确;④由于p 是q 的充分条件,q 是r 的充分条件,即,p q q r ⇒⇒,则p r ⇒,所以p 是r 的充分条件,故④正确故选:C.【点睛】本小题主要考查含有逻辑联结词命题真假性的判断,考查逆否命题,考查充分条件,属于基础题.5.B【解析】【分析】根据()f x x =,求得x 的值,由此求得m 的值,进而求得()h x 的解析式,由此判断出()h x 的奇偶性和在()0,∞+上的单调性.【详解】函数()()g x f x x =-的零点,即为()f x x =的根,由10x x e x ->⎧⎨=⎩或01x x ≤⎧⎨-=⎩解得,1x =或1x =-,即1m =±,则()2h x x -=,∴函数()h x 是偶函数且在()0,∞+上单调递减.故选:B.【点睛】本小题主要考查幂函数的单调性和奇偶性,考查函数零点的求法,属于基础题.6.C【解析】【分析】设出P 点坐标,求得12,k k 的表达式,利用1212k k =列方程,结合P 在双曲线上,化简求得222b a =,进而求得双曲线的离心率.【详解】由题设知,(),0A a -,(),0B a ,设(),P x y ,则1y k x a =+,2y k x a=-, ∴2122212y y y k k x a x a x a =⨯==+--,∴(),P x y 点在双曲线上,∴()22222b y x a a=-,则()22222212b x a a x a -=-,化简得,222b a =,又222bc a =-,∴2223c a =,则e =. 故选:C.【点睛】本小题主要考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于基础题. 7.B【解析】【分析】根据三视图判断出几何体为圆锥,利用轴截面的面积列方程求得圆锥的高.利用勾股定理列方程求得外接球的半径,进而求得外接球的表面积.【详解】由三视图知,该几何体是一个圆锥,底面半径为2r =,设圆锥的高为h ,则轴截面的面积为1482S h =⨯=,∴4h =,设圆锥的外接球的半径为R ,则由题意得,222h R r R -+=,即22242R R -+=,解得,52R =,∴外接球的表面积为2425S R ππ==. 故选:B.【点睛】本小题主要考查根据三视图还原原图,考查几何体外接球有关的计算,属于基础题. 8.B【解析】【分析】利用诱导公式、降次公式和辅助角公式,化简()f x 解析式,根据()3f α=,()2f β=以及αβ-的最小值(四分之一周期),求得()f x 的最小正周期,由此求得ω的值,以及()f x 的最大值.【详解】()()2233sin 2cos sin 222f x x x x x x ωωωωω=π-++=++12cos 22sin 22226x x x ωωωπ⎛⎫=-+=-+ ⎪⎝⎭, ∵()3f α=,()2f β=,且αβ-的最小值是2π,∴周期为422ππ⨯=,则222ππω=, ∴12ω=,则()sin 26f x x π⎛⎫=-+ ⎪⎝⎭,∴()f x 的最大值为3. 故选:B.【点睛】本小题主要考查三角恒等变换,考查三角函数的周期性和最值,属于中档题.9.D【解析】【分析】把,AF DE u u u r u u u r 分别用,AB AD u u u r u u u r 表示出来再相加即得.【详解】∵四边形ABCD 是平行四边形,且2DF FC =u u u r u u u r , 2233AF AD DF AD DC AD AB ∴=+=+=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r 又13BE BC =u u u r u u u r ,∴2233DE DC CE AB CB AB AD =+=+=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 则22513333AF DE AD AB AB AD AB AD +=++-=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 故选:D.【点睛】本题考查向量的线性运算,掌握向量加法减法和数乘运算法则是解题基础.10.D【解析】【分析】运行程序,当k 不是偶数时,退出循环,输出x 的值.【详解】由程序框图知,1k =,21log 0x x =⇒=,否112x ⇒=+=,2log 10x =>,是213x ⇒=+=,31log 32k =+=,是21log 0x x ⇒=⇒=, 否112x ⇒=+=,2log 10x =>,是224x ⇒=+=,32log 4k =+,否,输出4x =.故选:D.【点睛】本小题主要考查根据循环结构程序框图计算输出的结果,属于基础题.11.B【解析】【分析】根据G 是三角形ABC 的重心得到0GA GB GC ++=u u u r u u u r u u u r ,结合已知条件进行化简,求得sin sin sin A B C ==,由此判断出三角形ABC 是等边三角形,再结合三角形ABC 外接圆半径以及正弦定理,求得三角形ABC 的边长,由此求得三角形ABC 的面积.【详解】∵G 是ABC V 的重心,∴0GA GB GC ++=u u u r u u u r u u u r, 则GA GB GC =--u u u r u u u r u u u r ,代入()()()sin sin sin 0A GA B GB C GC ++=u u u r u u u r u u u r 得,()()sin sin sin sin 0A B GB A C GC -+-=u u u r u u u r ,∵GB GC ⋅u u u r u u u r 不共线,∴sin sin 0A B -=且sin sin 0A C -=,即sin sin sin A B C ==,∴ABC V 是等边三角形,又ABC V 外接圆的半径为1,∴由正弦定理得,22sin 60a R ==︒,则a =∴244ABC S a ==△. 故选:B.【点睛】 本小题主要考查三角形重心的向量表示,考查正弦定理的运用,考查化归与转化的数学思想方法,属于中档题.12.A【解析】【分析】将已知条件转化为1,a q 的的形式列方程组,解方程组求得1,a q ,进而求得n a .利用12f ⎛⎫' ⎪⎝⎭求得切线的斜率,根据两条直线垂直的条件列方程,解方程求得k 的值.【详解】设数列{}n a 的公比为q ,由634a a a =,18128a a =得,523111711128a q a q a q a a q ⎧=⋅⎨⋅=⎩, 解得,11a =,2q =,∴12n n a -=,∵()2201220f x a x a x a x =++⋅⋅⋅+,∴()191220220f x a a x a x '=++⋅⋅⋅+,则191220111220222f a a a ⎛⎫⎛⎫'=+⋅+⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭, ∵111112122n n n n a ---⎛⎫⎛⎫⋅=⨯= ⎪ ⎪⎝⎭⎝⎭,∴()1912202012011122012202102222f a a a +⎛⎫⎛⎫'=+⋅+⋅⋅⋅+=++⋅⋅⋅+== ⎪ ⎪⎝⎭⎝⎭, 由题设知,2101105k ⨯=-,∴12k =-. 故选:A.【点睛】 本小题主要考查等比数列通项公式的基本量计算,考查导数与切线方程,考查两条直线垂直的条件,属于中档题.13.11,2⎡⎤-⎢⎥⎣⎦【解析】【分析】 画出可行域,11y z x -=+表示的是可行域内的点和()1,1B -连线的斜率,结合图像求得斜率的取值范围,也即求得z 的取值范围.【详解】作出不等式组230y x x y y ≤⎧⎪+≤⎨⎪≥⎩所表示的平面区域,如图所示,11y z x -=+的最大值即为直线BA 的斜率12,最小值为直线BO 的斜率1-,故取值范围是11,2⎡⎤-⎢⎥⎣⎦. 故答案为:11,2⎡⎤-⎢⎥⎣⎦【点睛】本小题主要考查斜率型目标函数的取值范围的求法,属于基础题.14【解析】【分析】作出线面角α,β,θ,解直角三角形求得sin ,sin ,sin αβθ的表达式,由此求得sin sin sin αβθ++的值.【详解】连结1DA ,DB ,1DC ,由长方体的性质知,11A DB α∠=,1BDB β∠=,11C DB θ∠=,∵2221111124A B BB C B ++=,∴长方体的对角线1DB =∴11111111111111sin sin sin 3A B BB C B A B BB C B DB DB DB DB αβθ++++=++===.故答案为:3【点睛】本小题主要考查线面角的概念,考查运算求解能力,属于基础题.15.()(),22,-∞-+∞U【解析】【分析】利用导数判断出()f x 在R 上递减,且()01f =,由此化简不等式()()1f g x ⎡⎤<⎣⎦得到()0g x >,列对数不等式求得x 的取值范围,也即求得不等式()()1f g x ⎡⎤<⎣⎦的解集.【详解】∵()cos ,01,01x x x f x x x x -≤⎧⎪=-⎨>⎪+⎩,∴()()2sin 1,02,01x x f x x x --≤⎧⎪->+'=⎨⎪⎩, 则()0f x '≤,∴()f x 在R 上单调递减,又()01f =,∴不等式()1f g x <⎡⎤⎣⎦即为()()0f g x f <⎡⎤⎣⎦,则()0g x >,即()23log 30x ->, ∴231x ->,解得,2x >或2x <-,∴不等式()1f g x <⎡⎤⎣⎦的解集为()(),22,-∞-+∞U .故答案为:()(),22,-∞-+∞U【点睛】本小题主要考查分段函数的性质,考查利用导数研究函数的单调性,考查复合函数不等式的解法,考查对数不等式的解法,属于中档题.16.16【解析】【分析】求得AB 中点D 的轨迹方程,将PA PB +u u u r u u u r 转化为2PD u u u r ,根据圆与圆的位置关系,求得PDu u u r 的最大值,也即求得PA PB +u u u r u u u r 的最大值.【详解】由题设知,圆1C 的圆心为()12,2C ,半径为2,圆2C 的圆心为()22,1C --,,过2C 作2C D AB ⊥交AB 于D ,则D 为AB 的中点, 且21C D ==,∴点D 的轨迹为圆3C :()()22211x y +++=, 其圆心为()32,1C --,半径为1,由向量的平行四边形法则知,2PA PB PD +=u u u r u u u r u u u r ,∵135213C C ==>+=,∴圆1C 与圆3C 外离,则PD u u u r 的最大值为5218++=,PA PB +u u u r u u u r 的最大值是16.故答案为:16【点睛】本小题主要考查动点轨迹方程的求法,考查向量运算,考查圆与圆的位置关系,属于中档题.17.(1)n b n =;(2)10【解析】【分析】(1)利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩求得数列{}n a 的通项公式,结合24n n a b n n =+求得数列{}n b 的通项公式.(2)根据等差数列前n 项和公式求得n T ,由此解不等式45n T >,求得n 的最小值.【详解】(1)∵223n S n n =+,∴当1n =时,115a S ==,当2n ≥时,()()22123213141n n n a S S n n n n n -=-=+----=+, 15a =也满足,∴41n a n =+;∵24n n a b n n =+,∴224441n n n n n n b n a n ++===+, 故数列{}n b 的通项公式为n b n =;(2)由(1)知,n b n =,∴12n n T b b b =++⋅⋅⋅+()11232n n n +=+++⋅⋅⋅+=, 由45n T >得,()1453n n +>,即2900n n +->, ∴9n >或10n <-(舍去),故当45n T >时,n 的最小值为10.【点睛】本小题主要考查已知n S 求n a ,考查等差数列前n 项和,属于基础题.18.(1)证明见解析;(2)3【解析】【分析】(1)根据直径所对圆周角是直角,证得AF BF ⊥,根据圆柱侧棱和底面垂直,证得EF BF ⊥,由此证得BF ⊥平面ADEF ,进而证得平面ADEF ⊥平面BCEF .(2)首先证得DE ⊥平面BCEF ,即DE 是四棱锥D BCEF -的高,再根据锥体体积公式,计算出四棱锥D BCEF -的体积.【详解】(1)证明:∵F 在下底面圆周上,且AB 为下底面半圆的直径,∴AF BF ⊥,由题设知,EF AD ∥,又AD 为圆柱的母线,∴EF 垂直于圆柱的底面,则EF BF ⊥,又AF EF F =I ,∴BF ⊥平面ADEF ,∵BF ⊂平面BCEF ,∴平面ADEF ⊥平面BCEF ;(2)解:设圆柱的底面半径为r ,由题设知,2r π=π,∴2r =,则4CD =, ∵23DE DC =,23AF AB =,∴30∠=︒CDE ,又DE CE ⊥,∴122CE CD ==,DE = 由(1)知,DE ⊥平面BCEF ,∴DE 为四棱锥D BCEF -的高,又4AD BC ==, ∴1133D BCEF BCEF V S DE BC CE DE -=⋅=⋅⋅⋅1423=⨯⨯⨯=. 【点睛】本小题主要考查面面垂直的证明,考查锥体体积的计算,考查空间想象能力和逻辑推理能力,属于中档题.19.(1)23;(2)ˆ 1.49.6y x =+;(3)是,合适 【解析】【分析】(1)利用列举法,结合古典概型概率计算公式,计算出所求概率.(2)根据回归直线方程计算公式,计算出回归直线方程.(3)通过验证估计数据与所选出的检验数据的差均不超过1人,判断出所求回归直线方程为最佳回归方程.令18x =代入回归直线方程,求得$34.835y =<,由此判断合适.【详解】(1)设抽到不相邻两组的数据为事件A ,设这6组数据分别为1,2,3,4,5,6,从中选取2组数据共有:12,13,14,15,16,23,24,25,26,34,35,36,45,46,56共15种情况,其中,抽到相邻数据的情况有:12,23,34,45,56共5种情况,∴()521153P A =-=; (2)后四组数据是:∴1312151413.54x +++== 2926312828.54y +++==, 又4113291226153114281546i i i x y ==⨯+⨯+⨯+⨯=∑, 22222113121514734n i i x==+++=∑,∴122211546413.528.5ˆ 1.4734413.5ni ii n i i x y nx y b xnx ==--⨯⨯===-⨯-∑∑, 则ˆˆ28.5 1.413.59.6ay bx =-=-⨯=, ∴y 关于x 的线性回归方程为ˆ 1.49.6yx =+;(3)由(2)知,当10x =时,ˆ23.6y=, ∴23.6231-<,当11x =时,ˆ25y=,∴25251-<, ∴求出的回归方程是最佳回归方程;当18x =时,ˆ 1.4189.634.8y=⨯+=, ∵34.835<,∴间隔时间设置为18分钟合适.【点睛】本小题主要考查古典概型的概率计算,考查回归直线方程的计算,考查利用回归直线方程进行预测,属于中档题.20.(1)2212x y +=;(2)证明见解析 【解析】【分析】(1)利用正方形的面积和边长关系列方程组,结合222a b c =+解方程组求得2,,a b c 的值,进而求得椭圆的标准方程.(2)当直线l 斜率不存在时,根据对称性判断出22MPF NPF ∠=∠;当直线l 斜率存在时,设出直线l 的方程,联立直线的方程和椭圆方程,化简后写出韦达定理,计算0MP NP k k +=,由此证得22MPF NPF ∠=∠.【详解】(1)解:∵四边形1221B F B F 是面积为2的正方形,∴2222a b c ⎧=⎨=⎩, 又222a b c =+,∴1b c ==,则椭圆C 的标准方程是2212x y +=; (2)证明:由(1)知,()21,0F ,当直线l 的斜率不存在时,l x ⊥轴,则点M ,N 关于x 轴对称,此时有,22MPF NPF ∠=∠;当直线l 的斜率存在时,设直线l 的方程为()1y k x =-,联立()22112y k x x y ⎧=-⎪⎨+=⎪⎩消去y 得, ()2222214220k x k x k +-+-=,设()11,M x y ,()22,N x y , 则2122421k x x k +=+,21222221k x x k -=+, ∵()2,0P ,∴121222MP NP y y k k x x +=+-- ()()()()()()122112121222k x x k x x x x --+--=-- ()()1212121223424kx x k x x k x x x x -++=-++ 2222222222423421210224242121k k k k k k k k k k k -⨯-⨯+++==--⨯+++, 即MP NP k k =-,∴22MPF NPF ∠=∠.【点睛】本小题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查运算求解能力,属于中档题.21.(1)6;(2)21,21e e e ⎛⎫+ ⎪-⎝⎭【解析】【分析】(1)求得()h x 在点()()1,1h 处的切线方程,根据切线的截距为2-列方程,解方程求得a 的值.(2)将方程()()()21g x xf x a x '=-+转化为()212ln 0ax a x x +--=,构造函数()()212ln H x ax a x x =+--,利用()'H x 研究函数()H x 在1e e ⎛⎫ ⎪⎝⎭,内的零点,结合零点存在性定理列不等式组,解不等式组求得a 的取值范围.【详解】(1)由题设知,()212ln 2h x ax x x =+-,0x >, 则()21212ax x h x ax x x+-'=+-=; ∴()11h a '=+,又()1122h a =+, ∴切点为()11,22a +, 则切线方程为()()12112y a a x --=+-, 令0x =,则112y a =-+, 由题设知,1122a -+=-, ∴6a =;(2)∵()2122f x ax x =+,∴()2f x ax '=+, 则方程()()()21g x xf x a x '=-+,即为()2ln 221x ax x a x =+-+, 即为()212ln 0ax a x x +--=; 令()()212ln H x ax a x x =+--,于是原方程在区间1e e ⎛⎫ ⎪⎝⎭,内根的问题, 转化为函数()H x 在1e e ⎛⎫ ⎪⎝⎭,内的零点问题;∵()()1212H x ax a x'=+-- ()()()22121211ax a x ax x x x+--+-==; ∵0a >,∴当()0,1x ∈时,()0H x '<,()H x 是减函数,当()1,x ∈+∞时,()0H x '>,()H x 是增函数,若使()H x 在1e e ⎛⎫ ⎪⎝⎭,内有且只有两个不相等的零点, 只需()()()()()()()()222min 22121121011210121210e a e e a a H e e e e H x H a a a H e ae a e e e a e ⎧-++-⎛⎫=++=>⎪ ⎪⎝⎭⎪⎪==+-=-<⎨⎪=+--=-+->⎪⎪⎩即可, 解得,2121e e a e +<<-, 即a 的取值范围是21,21e e e ⎛⎫+ ⎪-⎝⎭. 【点睛】本小题主要考查利用导数与切线方程求参数,考查利用导数研究方程的根,考查化归与转化的数学思想方法,属于中档题.22.(1)π6α=或5π6α=;(2)1cos 2sin 2x y αα=-+⎧⎨=⎩(α为参数,π5π0,,π66α⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭U ) 【解析】【分析】(1)将圆C 的极坐标方程转化为直角坐标方程,求得直线l 的直角坐标方程,根据圆心到直线的距离等于半径列方程,解方程求得直线l 的斜率,从而求得直线l 的倾斜角.(2)根据直线l 的参数方程,求得,,A B Q 三点对应参数的关系,结合韦达定理,求得点Q 的轨迹的参数方程.【详解】(1)∵圆C 的极坐标方程为1ρ=,∴C 的直角坐标方程为221x y +=,圆心为()0,0,半径为1r =;∵直线l 过点()2,0P -,倾斜角为α,∴当π2α=时,不合题意, 当π2α≠时,斜率为tan k α=, 则直线的方程为()2y k x =+,即20kx y k -+=,∵直线l 与圆C 相切,1=,解得,3k =±,即tan α=,∴π6α=或5π6α=; (2)∵直线l 与圆C 相交于不同两点A ,B ,∴由(1)知,π5π0,,π66α⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭U , 设A ,B ,Q 对应的参数分别为A t ,B t ,Q t , 则2A B Q t t t +=, 将2cos sin x t y t αα=-+⎧⎨=⎩代入221x y +=得, 24cos 30t t α-+=,则4cos A B t t α+=,∴2cos Q t α=,又点Q 的坐标(),x y 满足2cos sin Q Q x t y t αα=-+⎧⎨=⎩, 即222sin 2cos sin x y ααα⎧=-+⎨=⎩,故点Q 的轨迹的参数方程是1cos 2sin 2x y αα=-+⎧⎨=⎩(α为参数,π5π0,,π66α⎡⎫⎛⎫∈⎪ ⎪⎢⎣⎭⎝⎭U ). 【点睛】本小题主要考查极坐标方程转化为直角坐标方程,考查直线参数方程中参数的运用,属于中档题.23.(1){}1x x ≥-;(2)(][),93,-∞-+∞U【解析】【分析】(1)利用零点分段法去绝对值,由此求得不等式的解集.(2)利用柯西不等式证得26a b c ++≤,由36x +≥求得实数x 的取值范围.【详解】(1)当22a b +=,1c x =+时, 不等式32x a b c +≥++为321x x +≥++,当3x ≤-时,321x x --≥--,31-≥,无解;当31x -<<-时,321x x +≥--,1x ≥-,无解;当1x ≥-时,321x x +≥++,33≥,∴1x ≥-; 综上,不等式的解集为{}1x x ≥-;(2)由柯西不等式得, ()()()22222222211a b c a b c ++≤++++,∵2226a b c ++=,∴()2236a b c ++≤,则26a b c ++≤;∵不等式32x a b c +≥++对所有实数a ,b ,c 都成立, ∴36x +≥,∴36x +≥或36x +≤-,则3x ≥或9x ≤-,故实数x 的取值范围是:(][),93,-∞-+∞U .【点睛】本小题主要考查绝对值不等式的解法,考查柯西不等式的运用,属于中档题.。
安徽省皖中名校联盟2019届高三10月第一次联考语文试题1、我会阅读。
人工智能安全性问题的根本问题,并不在于它能否真正超越人类,而在于它是否是一种安全可靠的工具和人类是否对其拥有充分的控制权。
就像高铁、飞机等交通工具那样,虽然它们的速度远远超过了人类,但人类拥有绝对控制权,所以人们相信它们是安全的。
为了实现对其控制的目标,首先需要对人工智能的自主程度进行限定。
虽然人工智能发展迅速,但人类智能也有自己的优势,比如目前人工智能的认知能力还远不如人类智能。
我们可以充分发挥人工智能在信息存储、处理等方面的优势,让它在一些重大事件上做人类的高级智囊,但最终的决定权仍在人类。
比如,当我们把人工智能应用于军事领域时,我们可以利用人工智能来评估危险程度,以及可以采取的措施,但是否应该发动战争、如何作战等重大决策,还是需要掌握在人类自己手里。
正如霍金斯所说的那样:“对于智能机器我们也要谨慎,不要太过于依赖它们。
”与限定人工智能的自主程度类似,我们也需要对人工智能的智能水平进行某种程度的限定。
从长远来看,人工智能是有可能全面超越人类智能的。
从人工智能的发展历程来看,尽管它的发展并非一帆风顺,但短短六十年取得的巨大进步让我们完全有理由相信将来它会取得更大的突破。
从世界各国对人工智能高度重视的现实情况来看,想要阻止人工智能的发展步伐是不现实的,但为了安全起见,限定人工智能的智能程度却是完全可以做到的。
我们应当还需要成立“人工智能安全工程”学科,建立人工智能安全标准与规范,确保人工智能不能自我复制,以及在人工智能出现错误时能够有相应的保护措施以保证安全。
人们对人工智能安全问题的担忧的另一主要根源在于,人工智能的复制能力远胜于人类的繁衍速度,如果人工智能不断地复制自身,人类根本无法与其抗衡。
因此,在人工智能的安全标准中,对人工智能的复制权必须掌握在人类手中。
同时,建立人工智能安全控制许可制度,只有人工智能产品达到安全标准,才允许进行商业推广和使用。
2019届高三年级十月份联考文科历届数学试卷一、单选题(共12题;共60分)1.已知全集,集合,集合,则集合A. B. C.D.2.已知函数错误!未找到引用源。
定义域是[﹣1,0],则错误!未找到引用源。
的定义域是()A. [﹣1,1]B. [0,2] C. [﹣2,0] D. [﹣2,2]3.已知函数错误!未找到引用源。
在[2,+∞)上是增函数,则错误!未找到引用源。
的取值范围是()A. (﹣∞,4]B. (﹣∞,2]C. (﹣4,4]D. (﹣4,2]4.如图,设a,b,c,d>0,且都不等于1,y=a x, y=b x, y=c x, y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序()A. a<b<c<dB. a<b<d<cC. b<a<d<cD. b<a<c<d5.函数在处取得极值,则等于()A. B. C. D.6.若函数是上的单调函数,则实数的取值范围是()A. B.C. D.7.曲线上的点到直线的最短距离是()A. B.C. D.8.若,则()A.-3B.-12C.-9D.-69.若曲线的所有切线中,只有一条与直线垂直,则实数m 的值等于()A. 0B. 2C. 0或2D. 310.函数f(x)=sin(4x+ 错误!未找到引用源。
)是()A. 最小正周期为π的奇函数B. 最小正周期为π的偶函数C. 最小正周期为错误!未找到引用源。
的奇函数D. 最小正周期为错误!未找到引用源。
的偶函数11.等于()A. B. C. D.12.定义在上的偶函数满足,且在上是减函数,若是锐角三角形的两个内角,则下列各式一定成立的是( )A. B.C. D.二、填空题(共4题;共20分)13已知,则________14.函数的定义域为________.15.已知,则=________.16.下列命题正确的是________⑴若,则;⑵若,,则是的必要非充分条件;⑶函数的值域是;⑷若奇函数满足,则函数图象关于直线对称.三、解答题(共6题;共70分)17.已知命题p:关于x的方程x2﹣ax+4=0有实根;命题q:关于x的函数y=2x2+ax+4在[3,+∞)上是增函数,若“p或q”是真命题,“p且q”是假命题,求实数a的取值范围.18.已知错误!未找到引用源。
皖中名校联盟2019届高三10月联考数学试卷(文科)考试说明:1.考查范围:集合与逻辑,函数与基本初等函数,导数,三角函数,解三角形,平面向量,复数,数列(少量),立体几何,不等式。
2.试卷结构:分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题);试卷分值:150分,考试时间:120分钟。
3.所有答案均要答在答题卷上,否则无效。
考试结束后只交答题卷。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只有一项是符合题目要求的.1.已知全集U R =,集合1{|30},{|2}4xA x xB x =-<=>,则=)(BC A U ( )A .{|23}x x -≤≤B .{|23}x x -<<C .{|2}x x ≤-D .{|3}x x <2.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( ) A .3 B .3i - C .3i D .3- 3.已知54sin -=α,且α是第四象限角,则)4sin(απ-的值为( ) A .1025B .523 C .1027 D .524 4.已知命题:p 函数tan()6y x π=-+在定义域上为减函数,命题:q 在ABC ∆中,若30A >,则1sin 2A >,则下列命题为真命题的是( ) A .q p ∧⌝)( B .()()p q ⌝∧⌝ C .()p q ∧⌝ D .q p ∨5.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥-≤+,0,1,33y y x y x 则y x z +=2的最小值为( )A .0B .1C .2D .36.已知2.05.1=a ,5.1log 2.0=b ,5.12.0=c ,则( )A .a b c >>B .b c a >>C .c a b >>D .a c b >>7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,3π=A ,2=b ,33=∆ABC S ,则=-+-+CB A cb a sin 2sin sin 2( )A .372 B .3214 C .4 D .426+8.如图,网格纸上小正方形的边长为1,粗实线画出的 是某几何体的三视图,则该几何体的体积为( ) A .8 B .16 C .24 D .489.在ABC ∆中,点D 是AC 上一点,且4=,P 为BD 上一点,向量)0,0(>>+=μλμλ,则μλ14+的最小值为( )A .16B .8C .4D .210.已知函数)cos 1(sin )(x x x g -=,则|)(|x g 在],[ππ-的图像大致为( )11.已知直线21y x =+与曲线x y ae x =+相切,其中e 为自然对数的底数,则实数a 的值为( ) A .1B .2C .eD .2e12.已知函数⎪⎩⎪⎨⎧≥+-<=0,1640,)(23x x x x e x f x,则函数2)(3)]([2)(2--=x f x f x g 的零点个数为( )A .2B .3C .4D .5第П卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.请将答案填写在答题卷相应位置上.. 13.命题“1,000+>∈∃x eR x x ”的否定是 ;14.已知数列}{n a 满足:111+-=n n a a ,且21=a ,则=2019a _____________; 15.已知向量,a b 满足||=5a ,||6a b -=,||4a b +=,则向量b 在向量a 上的投影为 ;16.函数)(x f y =的图象和函数0(log >=a x y a 且)1≠a 的图象关于直线x y -=对称,且函数3)1()(--=x f x g ,则函数)(x g y =图象必过定点___________。
一. 选择题:(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中, 只有一项是符合题目要求的)1•已知集合A={0, 1,2},则集合B={x-y|xeA,yEA}中元素的个数是(2.命题 3x ()eR, sin的否定为()4. 一个扇形的面积为2,周长为6则扇形的圆屮角的弧度数为(是奇函数7T 17T6. 已知 sin(cr-—)=-,贝!|cos(a + —)的值是(A. 1B. -1C.空3337. sin 7° cos37° - sin 83° cos307 =(1 B. -2A. (-1,0) U (2, +8)B. (一8, -2) U (0, 2)9. 为了得到函数y=sin (2兀一申)的图象,只需把函数y=cos 加的图象上所有的点()5 77S TTA.向左平行移动莎个单位长度B.向右平行移动石个单位长度且在(_8,0)上是减函数,若f ( —2)=0,则 xf{x ) <0的解集为)•C. (―°°, —2) U (2, +°°)D. (-2,0) U (0, 2)A.1B.3C.5D.9A. 3%oR, sinxo=£()B. D.17T3.已知sin(^-S) = log 8—,且Qw(■—,0),则tan (2^-5)的值为(A.-M5C•普D.752B.1 或 4 5.设fd )是R 上的任意函数,则下列叙述正确的是A.1C.4D.2 或 4c. gn 是偶函数 D. f{x)+f{-x)是偶函数D.V32、兀Syr C. 向左平行移动「个单位长度 D.向右平行移动「个单位长度66T[7T10. 函数…沖(巧―逅)的图象是()(A) (B) (C) (D)11・某工厂要围建一个面积为512平方米的矩形堆料场,一边可以利用原有的墙壁,其它三边需要砌新的墙壁,当砌新的墙壁所用的材料最省时,堆料场的长和宽分别为(JA. 40 米,20 米B. 30 米,15 米C. 32 米,16 米D. 36 米,18 米 12.若函数/W 二log 2(tz-2v )+x-2有零点,则d 的取值范围为( )A. (-oc, -2]B. (-co, 4]C. [2, +oo)D. [4, +oo)二、填空题(木大题共4小题,每小题5分,共20分.)13. 函数/(兀)=J2cosx-1的定义域是 _____________ ・14. 已知函数夬力=x(x~m)2在兀=1处取得极小值,则实数加 _____________ 15. 曲线y=xe+2x~l 在点(0, —1)处的切线方程为 _______________ ..16. 已知函数 沧)=¥—1+111 x,若存在x 0>0,使得/(AO )<0有解,则实数a 的取值范围•/V是 _______ .三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤”)17. (本小题满分10分)己知角u 终边上一点卩(一4, 3),⑴求sin 2a 的值; ⑵求tan 書―的值.19. (本小题满分12分).己知aWR,函数/(x)=(-?+ar)e x (xeR,e 为自然对数的底数).⑴当a=2时,求函数fg 的•单调递增区间…18.cos (号+«jsin( ~71~a) cos (■导- Jsin 伴 + J的值(本小题满分12分)已知cos (彳+a)cos(^—幺丿=—£ «e.| Z3, 2/⑵函数/U)是否为R上的单调递减函数,若是,求出a的取值范围;若不是,请说明理由.20.(本小题满分12分)已知函数fix)=x3— 3ax—}, dHO.(1)求/U)的单调区间;(2)若/(兀)在兀=—1处収得极值,直线y=m与y=/U)的图象有三个不同的交点,求加的収值范围.若人兀)的极大值为1,求a的值.21.(本小题满分12分) 已知函数几v) =(X2—Zv)ln x+ax1+2.(1)当G=—1时,求7W在点(1,川))处的切线方程;⑵若°=1,证明:当x$l时,g(x)=/U)—x—2M0成立22.(本小题满分12分)已知函数几。
安徽省皖中名校联盟2019届高三10月联考数学试题(文)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只有一 项是符合题目要求的.1.已知全集U R =,集合1{|30},{|2}4xA x xB x =-<=>,则=)(BC A U ( )A .{|23}x x -≤≤B .{|23}x x -<<C .{|2}x x ≤-D .{|3}x x <2.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( ) A .3 B .3i - C .3i D .3-3.已知54sin -=α,且α是第四象限角,则)4sin(απ-的值为( ) A .1025B .523 C .1027 D .524 4.已知命题:p 函数tan()6y x π=-+在定义域上为减函数,命题:q 在ABC ∆中,若30A >,则1sin 2A >,则下列命题为真命题的是( ) A .q p ∧⌝)( B .()()p q ⌝∧⌝ C .()p q ∧⌝ D .q p ∨5.设y x ,满足约束条件⎪⎩⎪⎨⎧≥≥-≤+,0,1,33y y x y x 则y x z +=2的最小值为( )A .0B .1C .2D .36.已知2.05.1=a ,5.1log 2.0=b ,5.12.0=c ,则( ) A .a b c >>B .b c a >>C .c a b >>D .a c b >>7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,3π=A ,2=b ,33=∆ABC S ,则=-+-+CB A cb a sin 2sin sin 2( )A .372 B .3214 C .4 D .426+8.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为( )A .8B .16C .24D .489.在ABC ∆中,点D 是AC 上一点,且4=,P 为BD 上一点,向量)0,0(>>+=μλμλ,则μλ14+的最小值为( )A .16B .8C .4D .210.已知函数)cos 1(sin )(x x x g -=,则|)(|x g 在],[ππ-的图像大致为( )11.已知直线21y x =+与曲线xy ae x =+相切,其中e 为自然对数的底数,则实数a 的 值为( ) A .1B .2C .eD .2e12.已知函数⎪⎩⎪⎨⎧≥+-<=0,1640,)(23x x x x e x f x ,则函数2)(3)]([2)(2--=x f x f x g 的零点个数为( )A .2B .3C .4D .5第П卷(非选择题)二、填空题:本大题共4小题,每小题5分,共20分. 13.命题“1,000+>∈∃x e R x x ”的否定是 ; 14.已知数列}{n a 满足:111+-=n n a a ,且21=a ,则=2019a _____________; 15.已知向量,a b 满足||=5a ,||6a b -=,||4a b +=,则向量b 在向量a 上的投影 为 ;16.函数)(x f y =的图象和函数0(log >=a x y a 且)1≠a 的图象关于直线x y -=对称, 且函数3)1()(--=x f x g ,则函数)(x g y =图象必过定点___________。
数学(文科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.第I 卷第1至第2页,第Ⅱ卷第2至第4页.全卷满分150分,考试时间120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}725A x x =-<,{}230B x x x =-≥,则A B =( )A .[]0,3B .(]1,3C .[)0,+∞D .()1,+∞2.设z 是复数z 的共轭复数,且()12i 5i z -=,则z =( )A .3B .5CD 3.已知两个非零单位向量1e ,2e 的夹角为θ,则下列结论不正确的是( )A .1e 在2e 方向上的投影为sin θB .2212=e eC .θ∀∈R ,()()1212+⊥-e e e eD .不存在θ,使12⋅e e4.安徽黄山景区,每半小时会有一趟缆车从山上发车到山下,某人下午在山上,准备乘坐缆车下山,则他等待时间不多于5分钟的概率为( )A .13B .16C .19D .112 5.若e πe πa b b a --+-≥,则有( )A .0a b +≤B .0a b -≥C .0a b -≤D .0a b +≥6.过抛物线C :24x y =的焦点F 的直线l 交C 于A ,B ,点A 处的切线与x ,y ,轴分别交于点M ,N ,若△MON 的面积为12,则AF =( ) A .1B .2C .3D .47.《孙子算经》是中国古代重要的数学著作,书中有一问题:“今有方物一束,外周一匝有十二枚,问积几何?”该著作中提出了一种解决此问题的方法:“重置二位,左位减八,余加右位,至尽虚减一,即得.”通过对该题的研究发现,若一束方物外周一匝的枚数n 是8的整数倍时,均可采用此方法求解.如图是解决这类问题的程序框图,若输入n= 24,则输出的结果为( )A .47B .48C .39D .408.某几何体的三视图如图所示,图中每一个小方格均为正方形,且边长为l ,则该几何体的体积为( )A .8πB .32π3C .28π3D .12π 9.已知双曲线C :221124x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为P ,Q .若△POQ 为直角三角形,则PQ =( )A .2B .4C .6D .810.若关于x 的方程sin 10x ω+=在区间π0,2⎛⎫ ⎪⎝⎭上有且只有一解,则正数ω的最大值是( )A .8B .7C .6D .511.已知奇函数()21ax b f x x +=+的图象经过点(1,1),若矩形ABCD 的顶点A ,B 在x 轴上,顶点C ,D 在函数f (x )的图象上,则矩形ABCD 绕x 轴旋转而成的几何体的体积的最大值为( )A .π2B .πC .3π2D .2π 12.正三棱锥P-ABC 中,已知点E 在PA 上,PA ,PB ,PC 两两垂直,PA=4,PE=3EA ,正。
皖中名校联盟2019届10月第一次联考化学本试卷共16页,38题(含选考题)。
全卷满分300分。
考试用时150分钟。
★祝考试顺利★注意事项:1、考试范围:高考范围。
2、答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B铅笔将答题卡上试卷类型A后的方框涂黑。
3、选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4、非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。
答案写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
6、考试结束后,请将本试题卷、答题卡、草稿纸一并上交。
一、单选题(本大题共16小题,共16.0分)1.下列对有关文献的理解错误的是A. “所在山洋,冬月地上有霜,扫取以水淋汁后,乃煎炼而成”过程包括了溶解、蒸发、结晶等操作。
B. 《物理小识》记载“青矾(绿矾)厂气熏人,衣服当之易烂,栽木不没,“气”凝即得“矾油”。
青矾厂气是NO和NO2。
C. 《开宝本草》中记载了中药材铁华粉的制作方法:“取钢煅作时如笏或团,平面磨错令光净,以盐水洒之,于醋瓮中阴处埋之一百日,铁上衣生,铁华成矣。
”中药材铁华粉是醋酸亚铁。
D. 唐代《真元妙道要略》中有云“以硫磺、雄黄合硝石并蜜烧之,焰起烧手、面及屋舍者”,描述了黑火药制作过程。
【答案】B【解析】【分析】本题依据古代文献所记录的化学知识,主要考查了物质的分离与提纯方法,理解文中意思是前提,然后结合化学知识再解答,因涉及文言文阅读,难度较大。
【解答】A.以水淋汁即为溶解,煎炼过程包括了蒸发、结晶,故A正确;B.青矾(绿矾)成分是FeSO4⋅7H2O,青矾厂气是SO2和SO3,SO2和SO3遇水凝结成亚硫酸和硫酸,故B错误;C.取钢煅作时如笏或团,平面磨错令光净,以盐水洒之,即除去铁表面的氧化膜,与醋反应,生成产物即为醋酸亚铁,故C正确;D.蜜烧之,焰起烧手、面及屋舍者记录的就是剧烈燃烧爆炸的描述,再结合黑火药成分,即可判断为黑火药制作过程,故D正确。
安徽示范高中2019高三10月第一次联考-数学(文)word 版数学〔文〕试题本试卷分第一卷(选择题)和第二卷(非选择题)两部分:全卷总分值150分,考试时间120分钟。
考生本卷须知1、答题前,务必在试题卷、答题规定的地方填写自己的姓名、座位号。
2、答第I 卷时,每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、答第II 卷时,必须使用0、5毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹清晰:作图题可先用铅笔在答题卡规定的位置绘出,确认后再用 0、5毫米的黑色墨水签字笔描清楚:必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。
4、考试结束、务必将试题卷和答题卡一并上交。
第一卷(选择题 共50分)【一】选择题:本大题共10小题,每题5分,共50分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1、设全集U=R ,集合M={|U x y C M ==则A 、{|11}x x -<<B 、{|11}x x -≤≤C 、{|1}x x <-或x>1D 、{|1}x x ≤-≥或x 1 2、函数()lg f x x =+A 、〔0,2〕B 、[0,2]C 、[0,2)D 、 (0,2]3、设函数211(),(())ln 1x x f x f f e x x ⎧+≤=⎨>⎩则=A 、0B 、1C 、2D 、2ln(1)e +4、“函数2()21f x ax x =+-只有一个零点”是"1"a =-的A 、必要不充分条件B 、充分不必要条件C 、充分必要条件D 、既不充分也不必要条件5、函数1()11f x x=+-的图象是6、以下函数中既是偶函数,又在区间〔0,1〕上是减函数的是A 、||y x =B 、2y x =-C 、x x y e e -=+D 、cos y x =7、假设函数2()2(1)2(,4)f x x a x =+-+-∞在区间上是减函数,那么实数a 的取值范围是A 、3a ≤-B 、3a ≥-C 、3a <-D 、3a >-8、集合A={0,1,2,3},集合B={〔x,y 〕|,,,x A y A x y x y A ∈∈≠+∈},那么B 中所含元素的个数为A 、3B 、6C 、8D 、109、假设抛物线2y x=在点〔a,a 2〕处的切线与两坐标轴围成的三角形的面积为16,那么a=A 、4B 、±4C 、8D 、±810、函数131()2xf x x =-的零点所在区间是A 、1(0,)6B 、11(,)63C 、11(,)32D 、1(,1)2第二卷〔非选择题,共100分〕考生本卷须知请用0.5毫米黑色墨水签字笔在答题卡上作答,在试卷上作答无效。
安徽省皖中名校联盟2019届高三10月联考
数学试卷(文科)
考试说明:1.考查范围:集合与逻辑,函数与基本初等函数,导数,三角函数,解三角形,
平面向量,复数,数列(少量),立体几何,不等式。
2.试卷结构:分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题);试卷分值:150分,考试时
间:120分钟。
3.所有答案均要答在答题卷上,否则无效。
考试结束后只交答题卷。
第Ⅰ卷(选择题 共60分)
一、选择题:本大题共12小题,每小题5分,共60分.每一小题给出的四个选项中只
有一项
是符合题目要求的.
1.已知全集U R =,集合1{|30},{|2}4
x A x x B x =-<=>,则=)(B C A U ( )
A .{|23}x x -≤≤
B .{|23}x x -<<
C .{|2}x x ≤-
D .{|3}x x < 2.复数z 满足(2)36z i i +=-(i 为虚数单位),则复数z 的虚部为( )
A .3
B .3i -
C .3i
D .3-
3.已知54sin -=α,且α是第四象限角,则)4
sin(απ-的值为( ) A .1025 B .523 C .1027 D .5
24 4.已知命题:p 函数tan()6y x π
=-+在定义域上为减函数,命题:q 在ABC ∆中,若
30A >,则1sin 2
A >,则下列命题为真命题的是( ) A .q p ∧⌝)(
B .()()p q ⌝∧⌝
C .()p q ∧⌝
D .q p ∨
5.设y x ,满足约束条件⎪⎩
⎪⎨⎧≥≥-≤+,0,1,33y y x y x 则y x z +=2的最小值为( )
A .0
B .1
C .2
D .3
6.已知2.05.1=a ,5.1log 2.0=b ,5.12.0=c ,则( )
A .a b c >>
B .b c a >>
C .c a b >>
D .a c b >>
7.在ABC ∆中,内角,,A B C 的对边分别为,,a b c ,3π
=A ,2=b ,33=∆ABC S ,则
=-+-+C
B A c b a sin 2sin sin 2( ) A .372 B .3214
C .4
D .4
26+ 8.如图,网格纸上小正方形的边长为1,粗实线画出的
是某几何体的三视图,则该几何体的体积为( )
A .8
B .16
C .24
D .48
9.在ABC ∆中,点D 是AC 上一点,且4=,
P 为BD 上一点,向量)0,0(>>+=μλμλAC AB AP ,则
μλ14+的最小值为
( ) A .16 B .8 C .4 D .2
10.已知函数)cos 1(sin )(x x x g -=,则|)(|x g 在],[ππ-的图像大致为( )
11.已知直线21y x =+与曲线x y ae x =+相切,其中e 为自然对数的底数,则实数a 的值为( )。