2017年上海市普陀区高考数学一模试卷
- 格式:doc
- 大小:852.50 KB
- 文档页数:10
2(2017徐汇一模). 已知抛物线C 的顶点在平面直角坐标系原点,焦点在x 轴上,若C 经过点(1,3)M ,则其焦点到准线的距离为4(2017青浦一模). 等轴双曲线222x y a -=与抛物线216y x =的准线交于A 、B 两点,且||AB =,则该双曲线的实轴长等于4(2017崇明一模). 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为4(2017宝山一模). 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5(2017普陀一模). 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是6(2017浦东一模). 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6, 则b =6(2017金山一模). 点(1,0)到双曲线2214x y -=的渐近线的距离是 6(2017奉贤一模). 若抛物线22y px =的焦点与椭圆2215x y +=的右焦点重合,则p =7(2017虹口一模). 若双曲线2221y x b-=的一个焦点到其渐近线距离为线焦距等于8(2017普陀一模). 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直线与圆C 相切,则k 的取值范围是9(2017浦东一模). 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交 双曲线C 的两条渐近线于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为9(2017金山一模). 方程22242340x y tx ty t +--+-=(t 为参数)所表示的圆的圆心轨迹方程是 (结果化为普通方程)9(2017杨浦一模). 已知直线l 经过点(且方向向量为(2,1)-,则原点O 到直线l 的距离为10(2017松江一模). 设(,)P x y 是曲线1C =上的点,1(4,0)F -,2(4,0)F , 则12||||PF PF +的最大值为10(2017闵行一模). 已知x 、y 满足曲线方程2212x y +=,则22x y +的取值范围是10(2017杨浦一模). 若双曲线的一条渐近线为20x y +=,且双曲线与抛物线2y x =的准线仅有一个公共点,则此双曲线的标准方程为11(2017虹口一模). 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于 抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于11(2017杨浦一模).平面直角坐标系中,给出点(1,0)A 、(4,0)B ,若直线10x my +-=上存在点P ,使得||2||PA PB =,则实数m 的取值范围是12(2017虹口一模). 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取 值与x 、y 均无关,则实数a 的取值范围是12(2017金山一模). 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称;③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ;其中,所有正确结论的序号是13(2017奉贤一模). 对于常数m 、n ,“0mn <”是“方程221mx ny +=表示的曲线 是双曲线”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件14(2017静安一模). 已知椭圆1C ,抛物线2C 焦点均在x 轴上,1C 的中心和2C 顶点均 为原点O ,从每条曲线上各取两个点,将其坐标记录于表中,则1C 的左焦点到2C 的准线之 间的距离为( )A.1 B. 1 C. 1 D. 215(2017崇明一模). 如图,已知椭圆C 的中心为原点O ,(F -为C 的左焦点,P 为C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y +=16(2017杨浦一模). 若直线1x ya b+=通过点(cos ,sin )P θθ,则下列不等式正确的是( ) A. 221a b +≤ B. 221a b +≥ C. 22111a b +≤ D. 22111a b+≥16(2017闵行一模). 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过201716(2017徐汇一模). 如图,两个椭圆221259y x +=、221259y x+=内部重叠区域的边界记为曲线C ,P 是曲线C 上的任意一点,给出下列三个判断:(1)P 到1(4,0)F -、2(4,0)F 、1(0,4)E -、2(0,4)E 四点的距离之和为定值(2)曲线C 关于直线y x =、y x =-均对称 (3)曲线C 所围区域面积必小于36 上述判断中正确命题的个数为( )A. 0个B. 1个C. 2个D. 3个17(20172017静安一模). 设双曲线22:123x y C -=,1F 、2F 为其左右两个焦点; (1)设O 为坐标原点,M 为双曲线C 右支上任意一点,求1OM F M ⋅的取值范围; (2)若动点P 与双曲线C 的两个焦点1F 、2F 的距离之和为定值,且12cos F PF ∠的最小值 为19-,求动点P 的轨迹方程; 18(2017普陀一模). 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12arccos 9PF F ∠=,12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值, 并求出||MQ 取得最大值时M 的坐标;18(2017宝山一模). 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-;(1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||AB =试求直线l 的倾斜角;18(2017杨浦一模). 如图所示,1l 、2l 是互相垂直的异面直线,MN 是它们的公垂线段,点A 、B 在1l 上,且位于M 点的两侧,C 在2l 上,AM BM NM CN ===; (1)求证:异面直线AC 与BN 垂直;(2)若四面体ABCN 的体积9ABCN V =,求异面直线1l 、2l 之间的距离;19(2017青浦一模). 如图,1F 、2F 分别是椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,且焦距为AB 平行于x 轴,且11||||4F A F B +=; (1)求椭圆C 的方程;(2)若点P 是椭圆C 上异于点A 、B 的任意一点,且直线PA 、PB 分别与y 轴交于点M 、N ,若2MF 、2NF 的斜率分别为1k 、2k ,求证:12k k ⋅是定值;19(2017浦东一模). 已知椭圆2222:1x y C a b+=(0)a b >>的左、右焦点分别为1F 、2F ,过2F 的一条直线交椭圆于P 、Q 两点,若△12PF F 的周长为4+,且长轴长与短轴长; (1)求椭圆C 的方程;(2)若12||||F P F Q PQ +=,求直线PQ 的方程;19(2017金山一模). 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短倍,直线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;19(2017崇明一模). 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;19(2017杨浦一模). 如图所示,椭圆22:14x C y +=,左右焦点分别记作1F 、2F ,过1F 、2F 分别作直线1l 、2l 交椭圆于AB 、CD ,且1l ∥2l ;(1)当直线1l 的斜率1k 与直线BC 的斜率2k 都存在时,求证:12k k ⋅为定值; (2)求四边形ABCD 面积的最大值;20(2017闵行一模). 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距为P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围;(3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;20(2017奉贤一模). 过双曲线2214y x -=的右支上的一点P 作一直线l 与两渐近线交于A 、B 两点,其中P 是AB 的中点;(1)求双曲线的渐近线方程;(2)当P 坐标为0(,2)x 时,求直线l 的方程; (3)求证:||||OA OB ⋅是一个定值;20(2017虹口一模). 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;20(2017松江一模). 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;20(2017徐汇一模). 如图,双曲线22:13x y Γ-=的左、右焦点1F 、2F ,过2F 作直线l 交y 轴于点Q ;(1)当直线l 平行于Γ的一条渐近线时,求点1F 到直线l 的距离;(2)当直线l 的斜率为1时,在Γ的右支上是否存在点P ,满足110F P FQ ⋅=?,若存在, 求点P 的坐标,若不存在,说明理由;(3)若直线l 与Γ交于不同两点A 、B ,且Γ上存在一点M ,满足40OA OB OM ++= (其中O 为坐标原点),求直线l 的方程;。
上海市普陀区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 若集合2{|,}A x y x y R ==∈,{|sin ,}B y y x x R ==∈,则A B =I 2. 若22ππα-<<,3sin 5α=,则cot 2α= 3. 函数2()1log f x x =+(1x ≥)的反函数1()fx -=4. 若550125(1)x a a x a x a x +=+++⋅⋅⋅+,则125a a a ++⋅⋅⋅+=5. 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是 6. 设m R ∈,若23()(1)1f x m x mx =+++是偶函数,则()f x 的单调递增区间是7. 方程22log (95)2log (32)x x-=+-的解x =8. 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直 线与圆C 相切,则k 的取值范围是9. 如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,若1A C 与平面11B BCC 所成的角为6π, 则三棱锥1A ABC -的体积为10. 掷两颗骰子得两个数,若两数的差为d ,则{2,1,0,1,2}d ∈--出现的概率的最大值 为 (结果用最简分数表示)11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示) 12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-,函数()F x 零点的个数是二. 选择题(本大题共4题,每题5分,共20分)13. 若0a b <<,则下列不等关系中,不能成立的是( )A. 11a b> B.11a b a >- C. 1133a b < D. 22a b >14. 设无穷等比数列{}n a 的首项为1a ,公比为q ,前n 项和为n S ,则“11a q +=”是 “lim 1n n S →∞=”成立的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要15. 设l αβ--是直二面角,直线a 在平面α内,直线b 在平面β内,且a 、b 与l 均不垂 直,则( )A. a 与b 可能垂直,但不可能平行B. a 与b 可能垂直,也可能平行C. a 与b 不可能垂直,但可能平行D. a 与b 不可能垂直,也不可能平行16. 设θ是两个非零向量a r 、b r 的夹角,若对任意实数t ,||a tb +r r的最小值为1,则下列判断正确的是( )A. 若||a r 确定,则θ唯一确定B. 若||b r确定,则θ唯一确定C. 若θ确定,则||b r 唯一确定D. 若θ确定,则||a r唯一确定三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 已知a R ∈,函数1()||f x a x =+; (1)当1a =时,解不等式()2f x x ≤;(2)若关于x 的方程()20f x x -=在区间[2,1]--上有解,求实数a 的取值范围;18. 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12PF F ∠=12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值, 并求出||MQ 取得最大值时M 的坐标;19. 现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为7.83/g cm ,总重量为 5.8kg ,其中一个螺帽的三视图如下图所示(单位:毫米); (1)这堆螺帽至少有多少个;(2)对上述螺帽作防腐处理,每平方米需要 耗材0.11千克,共需要多少千克防腐材料? (结果精确到0.01)20. 已知数列{}n a 的各项均为正数,且11a =,对任意的*n N ∈,均有 2114(1)n n n a a a +-=⋅+,22log (1)1n n b a =+-;(1)求证:{1}n a +是等比数列,并求出{}n a 的通项公式;(2)若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求12100c c c ++⋅⋅⋅+; (3)设11n n n d b b +=⋅,数列{}n d 的前n 项和为n T ,是否存在正整数m (1m n <<),使得1T 、m T 、n T 成等比数列,若存在,求出m 的值,若不存在,请说明理由;21. 已知函数()y f x =,若存在实数m 、k (0m ≠),使得对于定义域内的任意实数x , 均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(,)m k 称为函数()f x 的“平衡”数对;(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化,求证:2()f x x =与()2xg x a =+的“平衡”数对相同; (3)若1m 、2m R ∈,且1(,)2m π、2(,)4m π均为函数2()cos f x x =(04x π<≤)的“平衡”数对,求2212m m +的取值范围;上海市普陀区2017届高三一模数学试卷参考答案一. 填空题1. [0,1]2.7243. 12x -(1)x ≥4. 315. )+∞6. [0,)+∞7. 1x =8. 2k <-或0k >9. 6 10. 2311. 3R π12. 15二. 选择题13. B 14. B 15. C 16. D三. 解答题17.(1)[1,)+∞;(2)9[,3]2--;18.(1)221123x y +=;(2)(M -,max ||2MQ =+ 19.(1)252个;(2)0.05千克;20.(1)21nn a =-;(2)11202;(3)2m =,12n =;21.(1)是;(2)平衡数对(2,0);(3)(1,8]。
上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市宝山区2017届高三一模数学试卷一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 23lim1n n n →∞+=+2. 设全集U R =,集合{1,0,1,2,3}A =-,{|2}B x x =≥,则U AC B =3. 不等式102x x +<+的解集为 4. 椭圆5cos 4sin x y θθ=⎧⎨=⎩(θ为参数)的焦距为5. 设复数z 满足23z z i +=-(i 为虚数单位),则z =6. 若函数cos sin sin cos x xy x x=的最小正周期为a π,则实数a 的值为7. 若点(8,4)在函数()1log a f x x =+图像上,则()f x 的反函数为 8. 已知向量(1,2)a =,(0,3)b =,则b 在a 的方向上的投影为9. 已知一个底面置于水平面上的圆锥,其左视图是边长为6的正三角形,则该圆锥的侧面 积为10. 某班级要从5名男生和2名女生中选出3人参加公益活动,则在选出的3人中男、女生 均有的概率为 (结果用最简分数表示)11. 设常数0a >,若9()a x x+的二项展开式中5x 的系数为144,则a =12. 如果一个数列由有限个连续的正整数组成(数列的项数大于2),且所有项之和为N , 那么称该数列为N 型标准数列,例如,数列2,3,4,5,6为20型标准数列,则2668型 标准数列的个数为二. 选择题(本大题共4题,每题5分,共20分)13. 设a R ∈,则“1a =”是“复数(1)(2)(3)a a a i -+++为纯虚数”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 某中学的高一、高二、高三共有学生1350人,其中高一500人,高三比高二少50人, 为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生120 人,则该样本中的高二学生人数为( )A. 80B. 96C. 108D. 110 15. 设M 、N 为两个随机事件,给出以下命题:(1)若M 、N 为互斥事件,且1()5P M =,1()4P N =,则9()20P M N =; (2)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (3)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (4)若1()2P M =,1()3P N =,1()6P MN =,则M 、N 为相互独立事件; (5)若1()2P M =,1()3P N =,5()6P MN =,则M 、N 为相互独立事件;其中正确命题的个数为( )A. 1B. 2C. 3D. 416. 在平面直角坐标系中,把位于直线y k =与直线y l =(k 、l 均为常数,且k l <)之 间的点所组成区域(含直线y k =,直线y l =)称为“k l ⊕型带状区域”,设()f x 为二次 函数,三点(2,(2)2)f --+、(0,(0)2)f +、(2,(2)2)f +均位于“04⊕型带状区域”,如 果点(,1)t t +位于“13-⊕型带状区域”,那么,函数|()|y f t =的最大值为( ) A. 72 B. 3 C. 52D. 2三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,已知正三棱柱111ABC A B C -的底面积为934,侧面积为36;(1)求正三棱柱111ABC A B C -的体积;(2)求异面直线1AC 与AB 所成的角的大小;18. 已知椭圆C 的长轴长为26,左焦点的坐标为(2,0)-; (1)求C 的标准方程;(2)设与x 轴不垂直的直线l 过C 的右焦点,并与C 交于A 、B 两点,且||6AB =, 试求直线l 的倾斜角;19. 设数列{}n x 的前n 项和为n S ,且430n n x S --=(*n N ∈); (1)求数列{}n x 的通项公式;(2)若数列{}n y 满足1n n n y y x +-=(*n N ∈),且12y =,求满足不等式559n y >的最小 正整数n 的值;20. 设函数()lg()f x x m =+(m R ∈); (1)当2m =时,解不等式1()1f x >; (2)若(0)1f =,且1()()2x f x λ=+在闭区间[2,3]上有实数解,求实数λ的范围;(3)如果函数()f x 的图像过点(98,2),且不等式[cos(2)]lg2n f x <对任意n N ∈均成立, 求实数x 的取值集合;21. 设集合A 、B 均为实数集R 的子集,记:{|,}A B a b a A b B +=+∈∈; (1)已知{0,1,2}A =,{1,3}B =-,试用列举法表示A B +;(2)设123a =,当*n N ∈,且2n ≥时,曲线2221119x y n n n +=-+-的焦距为n a ,如果 12{,,,}n A a a a =⋅⋅⋅,122{,,}993B =---,设A B +中的所有元素之和为n S ,对于满足3m n k +=,且m n ≠的任意正整数m 、n 、k ,不等式0m n k S S S λ+->恒成立,求实数λ的最大值;(3)若整数集合111A A A ⊆+,则称1A 为“自生集”,若任意一个正整数均为整数集合2A 的 某个非空有限子集中所有元素的和,则称2A 为“*N 的基底集”,问:是否存在一个整数集 合既是自生集又是*N 的基底集?请说明理由;上海市崇明县2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 复数(2)i i +的虚部为 2. 设函数2log ,0()4,0xx x f x x >⎧=⎨≤⎩,则((1))f f -=3. 已知{||1|2,}M x x x R =-≤∈,1{|0,}2xP x x R x -=≥∈+,则M P =4. 抛物线2y x =上一点M 到焦点的距离为1,则点M 的纵坐标为5. 已知无穷数列{}n a 满足112n n a a +=*()n N ∈,且21a =,记n S 为数列{}n a 的前n 项和, 则lim n n S →∞=6. 已知,x y R +∈,且21x y +=,则xy 的最大值为7. 已知圆锥的母线10l =,母线与旋转轴的夹角30α︒=,则圆锥的表面积为8. 若21(2)nx x+*()n N ∈的二项展开式中的第9项是常数项,则n =9. 已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一 个最低点,且2AOB π∠=,则该函数的最小正周期是10. 将序号分别为1、2、3、4、5的5张参观券全部分给4人,每人至少一张,如果分给同 一人的2张参观券连号,那么不同的分法种数是11. 在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =;③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)12. 已知AB 为单位圆O 的一条弦,P 为单位圆O 上的点,若()||f AP AB λλ=-()R λ∈ 的最小值为m ,当点P 在单位圆上运动时,m 的最大值为43,则线段AB 长度为二. 选择题(本大题共4题,每题5分,共20分)13. 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =14. 设,a b R ∈,则“21a b ab +>⎧⎨>⎩”是“1a >且1b >”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要 15. 如图,已知椭圆C 的中心为原点O ,(25,0)F -为C 的左焦点,P 为C 上一点,满 足||||OP OF =且||4PF =,则椭圆C 的方程为( )A.221255x y += B. 2213010x y += C.2213616x y += D. 2214525x y += 16. 实数a 、b 满足0ab >且a b ≠,由a 、b 、2a b+、ab 按一定顺序构成的数列( ) A. 可能是等差数列,也可能是等比数列 B. 可能是等差数列,但不可能是等比数列 C. 不可能是等差数列,但可能是等比数列 D. 不可能是等差数列,也不可能是等比数列三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱柱111ABC A B C -中,1AB =,12BB =,求: (1)异面直线11B C 与1AC 所成角的大小; (2)四棱锥111A B BCC -的体积;18. 在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E 正北55海 里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与 点A 相距402海里的位置B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+ (其中26sin 26θ=,090θ︒︒<<)且与点A 相距1013海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时)(2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;19. 已知点1F 、2F 为双曲线222:1y C x b-=(0)b >的左、右焦点,过2F 作垂直于x 轴的直线,在x 轴上方交双曲线C 于点M ,且1230MF F ︒∠=;(1)求双曲线C 的方程;(2)过双曲线C 上任意一点P 作该双曲线两条渐近线的垂线,垂足分别为1P 、2P ,求12PP PP ⋅的值;20. 设12()2x x a f x b+-+=+,,a b 为实常数;(1)当1a b ==时,证明:()f x 不是奇函数; (2)若()f x 是奇函数,求a 与b 的值;(3)当()f x 是奇函数时,研究是否存在这样的实数集的子集D ,对任何属于D 的x 、c , 都有2()33f x c c <-+成立?若存在,试找出所有这样的D ;若不存在,说明理由;21. 已知数列{}n a 、{}n b 满足2(2)n n n S a b =+,其中n S 是数列{}n a 的前n 项和; (1)若数列{}n a 是首项为23,公比为13-的等比数列,求数列{}n b 的通项公式; (2)若n b n =,23a =,求证:数列{}n a 满足212n n n a a a +++=,并写出{}n a 通项公式; (3)在(2)的条件下,设nn na cb =,求证:数列{}nc 中的任意一项总可以表示成该数列 其他两项之积;参考答案一. 填空题1. 22. 2-3. [1,1]-4.34 5. 4 6. 187. 75π 8. 12 9. 833 10. 96 11. ②③ 12. 423二. 选择题13. C 14. B 15. C 16. D三. 解答题 17.(1)5arccos10;(2)33;18.(1)155;(2)357d =<,会进入警戒水域;19.(1)2212y x -=;(2)29;20.(1)(1)(1)f f -≠-;(2)12a b =⎧⎨=⎩,12a b =-⎧⎨=-⎩;(3)当121()22x x f x +-+=+,D R =;当121()22x x f x +--=-,(0,)D =+∞,25(,log ]7D =-∞;21.(1)12n b =;(2)1n a n =+;(3)略;上海市金山区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 若集合2{|20}M x x x =-<,{|||1}N x x =>,则MN =2. 若复数z 满足232z z i +=-,其中i 为虚数单位,则z =3. 如果5sin 13α=-,且α为第四象限角,则tan α的值是 4. 函数cos sin ()sin cos x xf x x x=的最小正周期是5. 函数()2x f x m =+的反函数为1()y f x -=,且1()y f x -=的图像过点(5,2)Q ,那么m =6. 点(1,0)到双曲线2214x y -=的渐近线的距离是 7. 如果实数x 、y 满足2030x y x y x -≤⎧⎪+≤⎨⎪≥⎩,则2x y +的最大值是8. 从5名学生中任选3人分别担任语文、数学、英语课代表,其中学生甲不能担任数学课 代表,共有 种不同的选法(结果用数值表示) 9. 方程22242340x y tx ty t +--+-=(t 为参数)所表示 的圆的圆心轨迹方程是 (结果化为普通方程) 10. 若n a 是(2)nx +(*n N ∈,2n ≥,x R ∈)展开式中2x 项的二项式系数,则23111lim()n na a a →∞++⋅⋅⋅+= 11. 设数列{}n a 是集合{|33,stx x s t =+<且,}s t N ∈中所有的数从小到大排列成的数列, 即14a =,210a =,312a =,428a =,530a =,636a =,,将数列{}n a 中各项按 照上小下大,左小右大的原则排成如图的等腰直角三角形数表,则15a 的值为12. 曲线C 是平面内到直线1:1l x =-和直线2:1l y =的距离之积等于常数2k (0k >)的点的轨迹,下列四个结论:① 曲线C 过点(1,1)-;② 曲线C 关于点(1,1)-成中心对称; ③ 若点P 在曲线C 上,点A 、B 分别在直线1l 、2l 上,则||||PA PB +不小于2k ;④ 设0P 为曲线C 上任意一点,则点0P 关于直线1:1l x =-,点(1,1)-及直线2:1l y =对称的点分别为1P 、2P 、3P ,则四边形0123P PP P 的面积为定值24k ; 其中,所有正确结论的序号是41012283036⋅⋅⋅二. 选择题(本大题共4题,每题5分,共20分)13. 给定空间中的直线l 与平面α,则“直线l 与平面α垂直”是“直线l 垂直于平面α上 无数条直线”的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既不充分也不必要 14. 已知x 、y R ∈,且0x y >>,则( ) A.110x y-> B. 11()()022x y -<C. 22log log 0x y +>D. sin sin 0x y -> 15. 某几何体的三视图如图所示,则它的体积是( )A. 283π-B. 83π- C. 82π- D. 23π16. 已知函数2(43)30()log (1)10a x a x a x f x x x ⎧+-+<=⎨++≥⎩(0a >且1a ≠)在R 上单调递减,且关于x 的方程|()|2f x x =-恰好有两个不相等的实数解,则a 的取值范围是( )A. 2(0,]3B. 23[,]34C. 123[,]{}334D. 123[,){}334三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,PB 、PD 与 平面ABCD 所成的角依次是4π和1arctan 2,2AP =,E 、F 依次是PB 、PC 的中点;(1)求异面直线EC 与PD 所成角的大小;(结果用反三角函数值表示) (2)求三棱锥P AFD -的体积;18. 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;19. 已知椭圆C 以原点为中心,左焦点F 的坐标是(1,0)-,长轴长是短轴长的2倍,直 线l 与椭圆C 交于点A 与B ,且A 、B 都在x 轴上方,满足180OFA OFB ︒∠+∠=; (1)求椭圆C 的标准方程;(2)对于动直线l ,是否存在一个定点,无论OFA ∠如何变化,直线l 总经过此定点?若 存在,求出该定点的坐标;若不存在,请说明理由;20. 已知函数2()21g x ax ax b =-++(0)a >在区间[2,3]上的最大值为4,最小值为1, 记()(||)f x g x =,x R ∈; (1)求实数a 、b 的值;(2)若不等式222()()log 2log 3f x g x k k +≥--对任意x R ∈恒成立,求实数k 的范围; (3)对于定义在[,]p q 上的函数()m x ,设0x p =,n x q =,用任意i x (1,2,,1)i n =⋅⋅⋅- 将[,]p q 划分成n 个小区间,其中11i i i x x x -+<<,若存在一个常数0M >,使得不等式01121|()()||()()||()()|n n m x m x m x m x m x m x M --+-+⋅⋅⋅+-≤恒成立,则称函数()m x为在[,]p q 上的有界变差函数,试证明函数()f x 是在[1,3]上的有界变差函数,并求出M 的最小值;21. 数列{}n b 的前n 项和为n S ,且对任意正整数n ,都有(1)2n n n S +=; (1)试证明数列{}n b 是等差数列,并求其通项公式;(2)如果等比数列{}n a 共有2017项,其首项与公比均为2,在数列{}n a 的每相邻两项i a 与1i a +之间插入i 个(1)i i b -*()i N ∈后,得到一个新数列{}n c ,求数列{}n c 中所有项的和; (3)如果存在*n N ∈,使不等式11820(1)()(1)n n n n n b n b b b λ++++≤+≤+成立,若存在, 求实数λ的范围,若不存在,请说明理由;参考答案一. 填空题1. (1,2)2. 12i -3. 512-4. π5. 16. 557. 4 8. 48 9. 20x y -= 10. 2 11. 324 12. ②③④二. 选择题13. A 14. B 15. A 16. C三. 解答题 17.(1)310arccos 10;(2)43;18.(1)2211()sin sin()sin(2)33366f x x x x ππ=+=+-,(0,)3x π∈; (2)递增区间(0,]6π,6x π=;19.(1)2212x y +=;(2)(2,0)-; 20.(1)0b =,1a =;(2)1[,8]2;(3)min 4M =;21.(1)n b n =;(2)201822033134+;(3)不存在;上海市虹口区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知集合{1,2,4,6,8}A =,{|2,}B x x k k A ==∈,则A B =2. 已知21zi i=+-,则复数z 的虚部为 3. 设函数()sin cos f x x x =-,且()1f a =,则sin 2a =4. 已知二元一次方程111222a xb yc a x b y c +=⎧⎨+=⎩的增广矩阵是111113-⎛⎫⎪⎝⎭,则此方程组的解是5. 数列{}n a 是首项为1,公差为2的等差数列,n S 是它前n 项和,则2lim n n nSa →∞=6. 已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin 2A =”的 条件(填“充 分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一)7. 若双曲线2221y x b-=的一个焦点到其渐近线距离为22,则该双曲线焦距等于8. 若正项等比数列{}n a 满足:354a a +=,则4a 的最大值为 9. 一个底面半径为2的圆柱被与其底面所成角是60°的平 面所截,截面是一个椭圆,则该椭圆的焦距等于10. 设函数61()211x x f x x x ⎧≥=⎨--≤-⎩,则当1x ≤-时,则[()]f f x 表达式的展开式中含2x 项的系数是11. 点(20,40)M ,抛物线22y px =(0p >)的焦点为F ,若对于抛物线上的任意点P ,||||PM PF +的最小值为41,则p 的值等于12. 当实数x 、y 满足221x y +=时,|2||32|x y a x y +++--的取值与x 、y 均无关, 则实数a 的取值范围是二. 选择题(本大题共4题,每题5分,共20分)13. 在空间,α表示平面,m 、n 表示二条直线,则下列命题中错误的是( ) A. 若m ∥α,m 、n 不平行,则n 与α不平行 B. 若m ∥α,m 、n 不垂直,则n 与α不垂直 C. 若m α⊥,m 、n 不平行,则n 与α不垂直 D. 若m α⊥,m 、n 不垂直,则n 与α不平行14. 已知函数()sin(2)3f x x π=+在区间[0,]a (其中0a >)上单调递增,则实数a 的取值范围是( ) A. 02a π<≤B. 012a π<≤C. 12a k ππ=+,*k N ∈ D. 2212k a k πππ<≤+,k N ∈15. 如图,在圆C 中,点A 、B 在圆上,则AB AC ⋅的值( )A. 只与圆C 的半径有关B. 既与圆C 的半径有关,又与弦AB 的长度有关C. 只与弦AB 的长度有关D. 是与圆C 的半径和弦AB 的长度均无关的定值16. 定义(){}f x x =(其中{}x 表示不小于x 的最小整数)为“取上整函数”,例如{2.1}3=,{4}4=,以下关于“取上整函数”性质的描述,正确的是( )①(2)2()f x f x =;② 若12()()f x f x =,则121x x -<;③ 任意1x 、2x R ∈,1212()()()f x x f x f x +≤+;④1()()(2)2f x f x f x ++=; A. ①② B. ①③ C. ②③ D. ②④三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在正三棱锥P ABC -中,已知底面等边三角形的边长为6,侧棱长为4; (1)求证:PA BC ⊥;(2)求此三棱锥的全面积和体积;18. 如图,我海蓝船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30° 方向与它相距20海里的B 处有一外国船只,且D 岛位于海蓝船正东18海里处; (1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行,为了将该船拦截在 离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定 海蓝船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时);19. 已知二次函数2()4f x ax x c =-+的值域为[0,)+∞; (1)判断此函数的奇偶性,并说明理由;(2)判断此函数在2[,)a+∞的单调性,并用单调性的定义证明你的结论;(3)求出()f x 在[1,)+∞上的最小值()g a ,并求()g a 的值域;20. 椭圆2222:1x y C a b+=(0a b >>)过点(2,0)M ,且右焦点为(1,0)F ,过F 的直线l 与椭圆C 相交于A 、B 两点,设点(4,3)P ,记PA 、PB 的斜率分别为1k 和2k ;(1)求椭圆C 的方程;(2)如果直线l 的斜率等于1-,求出12k k ⋅的值; (3)探讨12k k +是否为定值?如果是,求出该定 值,如果不是,求出12k k +的取值范围;21. 已知函数()2|2||1|f x x x =+-+,无穷数列{}n a 的首项1a a =; (1)若()n a f n =(*n N ∈),写出数列{}n a 的通项公式;(2)若1()n n a f a -=(*n N ∈且2n ≥),要使数列{}n a 是等差数列,求首项a 取值范围; (3)如果1()n n a f a -=(*n N ∈且2n ≥),求出数列{}n a 的前n 项和n S ;参考答案一. 填空题1. {2,4,8}2. 13. 04. 21x y =⎧⎨=⎩ 5. 146. 充分非必要7. 68. 29. 43 10. 6011. 22或42 12. [5,)+∞二. 选择题13. A 14. B 15. C 16. C三. 解答题17.(1)略;(2)9793S =+,63V =; 18.(1)291;(2)东偏北41.8︒, 6.4v =海里/小时; 19.(1)非奇非偶函数;(2)单调递增;(3)当02a <<,()0g a =;当2a ≥,4()4g a a a=+-;值域[0,)+∞; 20.(1)22143x y +=;(2)12;(3)2;21.(1)3n a n =+;(2){3}[1,)a ∈--+∞;(3)当2a ≤-,3(1)(2)(1)(3)2n n n S a n a --=+---+;当21a -<≤-,3(1)(2)(1)(35)2n n n S a n a --=+-++;当1a >-,3(1)2n n n S na -=+;上海市闵行区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 方程lg(34)1x +=的解x = 2. 若关于x 的不等式0x ax b->-(,a b R ∈)的解集为(,1)(4,)-∞+∞,则a b += 3. 已知数列{}n a 的前n 项和为21n n S =-,则此数列的通项公式为4. 函数()1f x x =+的反函数是5. 6(12)x +展开式中3x 项的系数为 (用数字作答)6. 如图,已知正方形1111ABCD A BC D -,12AA =,E 为 棱1CC 的中点,则三棱锥1D ADE -的体积为 7. 从单词“shadow ”中任意选取4个不同的字母排成一排, 则其中含有“a ”的共有 种排法(用数字作答)8. 集合{|cos(cos )0,[0,]}x x x ππ=∈= (用列举法表示) 9. 如图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅取值范围是 10. 已知x 、y 满足曲线方程2212x y+=,则22x y +的 取值范围是11. 已知两个不相等的非零向量a 和b ,向量组1234(,,,)x x x x 和1234(,,,)y y y y 均由2个a 和2个b 排列而成,记11223344S x y x y x y x y =⋅+⋅+⋅+⋅,那么S 的所有可能取值中的最 小值是 (用向量a 、b 表示)12. 已知无穷数列{}n a ,11a =,22a =,对任意*n N ∈,有2n n a a +=,数列{}n b 满足 1n n n b b a +-=(*n N ∈),若数列2{}nnb a 中的任意一项都在该数列中重复出现无数次,则满 足要求的1b 的值为二. 选择题(本大题共4题,每题5分,共20分) 13. 若a 、b 为实数,则“1a <”是“11a>”的( )条件 A. 充要 B. 充分不必要 C. 必要不充分 D. 既不充分也不必要 14. 若a 为实数,(2)(2)4ai a i i +-=-(i 是虚数单位),则a =( )A. 1-B. 0C. 1D. 215. 函数2()||f x x a =-在区间[1,1]-上的最大值是a ,那么实数a 的取值范围是( ) A. [0,)+∞ B. 1[,1]2 C. 1[,)2+∞ D. [1,)+∞16. 曲线1:sin C y x =,曲线22221:()2C x y r r ++-=(0r >),它们交点的个数( )A. 恒为偶数B. 恒为奇数C. 不超过2017D. 可超过2017三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图,在Rt AOB ∆中,6OAB π∠=,斜边4AB =,D 是AB 中点,现将Rt AOB ∆以直角边AO 为轴旋转一周得到一个圆锥,点C 为圆锥底面圆周上一点,且90BOC ∠=︒, (1)求圆锥的侧面积;(2)求直线CD 与平面BOC 所成的角的大小; (用反三角函数表示)18. 已知(23,1)m =,2(cos ,sin )2An A =,A 、B 、C 是ABC ∆的内角; (1)当2A π=时,求||n 的值;(2)若23C π=,||3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长;19. 如图所示,沿河有A 、B 两城镇,它们相距20千米,以前,两城镇的污水直接排入河 里,现为保护环境,污水需经处理才能排放,两城镇可以单独建污水处理厂,或者联合建污 水处理厂(在两城镇之间或其中一城镇建厂,用管道将污水从各城镇向污水处理厂输送), 依据经验公式,建厂的费用为0.7()25f m m=⋅(万元),m 表示污水流量,铺设管道的费用(包括管道费)() 3.2g x x =(万元),x 表示输送污水管道的长度(千米);已知城镇A 和城镇B 的污水流量分别为13m =、25m =,A 、B 两城镇连接污水处理 厂的管道总长为20千米;假定:经管道运输的污水流量不发生改变,污水经处理后直接排 入河中;请解答下列问题(结果精确到0.1)(1)若在城镇A 和城镇B 单独建厂,共需多少总费用? (2)考虑联合建厂可能节约总投资,设城镇A 到拟建厂 的距离为x 千米,求联合建厂的总费用y 与x 的函数关系 式,并求y 的取值范围;20. 如图,椭圆2214y x +=的左、右顶点分别为A 、B ,双曲线Γ以A 、B 为顶点,焦距 为25,点P 是Γ上在第一象限内的动点,直线AP 与椭圆相交于另一点Q ,线段AQ 的中点为M ,记直线AP 的斜率为k ,O 为坐标原点; (1)求双曲线Γ的方程;(2)求点M 的纵坐标M y 的取值范围; (3)是否存在定直线l ,使得直线BP 与直线OM 关于直线l 对称?若存在,求直线l 方程,若不存在,请说明理由;21. 在平面直角坐标系上,有一点列01231,,,,,,n n P P P P P P -⋅⋅⋅,设点k P 的坐标(,)k k x y (k N ∈,k n ≤),其中k x 、k y Z ∈,记1k k k x x x -∆=-,1k k k y y y -∆=-,且满足 ||||2k k x y ∆⋅∆=(*k N ∈,k n ≤); (1)已知点0(0,1)P ,点1P 满足110y x ∆>∆>,求1P 的坐标;(2)已知点0(0,1)P ,1k x ∆=(*k N ∈,k n ≤),且{}k y (k N ∈,k n ≤)是递增数列, 点n P 在直线:38l y x =-上,求n ;(3)若点0P 的坐标为(0,0),2016100y =,求0122016x x x x +++⋅⋅⋅+的最大值;上海市松江区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 设集合2{|}M x x x ==,{|lg 0}N x x =≤,则MN =2. 已知a 、b R ∈,i 是虚数单位,若2a i bi +=-,则2()a bi +=3. 已知函数()1x f x a =-的图像经过(1,1)点,则1(3)f -=4. 不等式|1|0x x ->的解集为5. 已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为6. 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道,在由2名中国运动员和6 名外国运动员组成的小组中,2名中国运动员恰好抽在相邻泳道的概率为 7. 按下图所示的程序框图运算:若输入17x =,则输出的x 值是8. 设230123(1)n n n x a a x a x a x a x +=++++⋅⋅⋅+,若2313a a =,则n = 9. 已知圆锥底面半径与球的半径都是1cm ,如果圆锥的体积与球的体积恰好也相等,那么 这个圆锥的侧面积是 2cm10. 设(,)P x y 是曲线22:1259x y C +=上的点,1(4,0)F -,2(4,0)F ,则12||||PF PF +的最大值为11. 已知函数243,13()28,3xx x x f x x ⎧-+-≤≤⎪=⎨->⎪⎩,若()()F x f x kx =-在其定义域内有3个零点,则实数k ∈12. 已知数列{}n a 满足11a =,23a =,若1||2n n n a a +-=*()n N ∈,且21{}n a -是递增数 列,2{}n a 是递减数列,则212lim n n na a -→∞=二. 选择题(本大题共4题,每题5分,共20分) 13. 已知a 、b R ∈,则“0ab >”是“2b aa b+>”的( ) A. 充分非必要条件 B. 必要非充分条件 C. 充要条件 D. 既非充分又非必要条件14. 如图,在棱长为1的正方体1111ABCD A BC D -中,点P 在截面1A DB 上,则线段AP 的最小值为( ) A.13 B. 12 C. 33 D. 2215. 若矩阵11122122a a a a ⎛⎫⎪⎝⎭满足:11a 、12a 、21a 、22{0,1}a ∈,且111221220a a a a =,则这样的互不相等的矩阵共有( )A. 2个B. 6个C. 8个D. 10个 16. 解不等式11()022xx -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数 及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++> 的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 如图,在正四棱锥P ABCD -中,PA AB a ==,E 是棱PC 的中点; (1)求证:PC BD ⊥;(2)求直线BE 与PA 所成角的余弦值;18. 已知函数21()21x xa f x ⋅-=+(a 为实数); (1)根据a 的不同取值,讨论函数()y f x =的奇偶性,并说明理由;(2)若对任意的1x ≥,都有1()3f x ≤≤,求a 的取值范围;19. 松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”, 兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求:(1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)20. 已知双曲线2222:1x y C a b-=经过点(2,3),两条渐近线的夹角为60︒,直线l 交双曲线于A 、B 两点;(1)求双曲线C 的方程;(2)若l 过原点,P 为双曲线上异于A 、B 的一点,且直线PA 、PB 的斜率PA k 、PB k 均 存在,求证:PA PB k k ⋅为定值;(3)若l 过双曲线的右焦点1F ,是否存在x 轴上的点(,0)M m ,使得直线l 绕点1F 无论怎 样转动,都有0MA MB ⋅=成立?若存在,求出M 的坐标;若不存在,请说明理由;21. 如果一个数列从第2项起,每一项与它前一项的差都大于2,则称为“H 型数列”;(1)若数列{}n a 为“H 型数列”,且113a m =-,21a m=,34a =,求实数m 的范围; (2)是否存在首项为1的等差数列{}n a 为“H 型数列”,其前n 项和n S 满足2n S n n <+*()n N ∈?若存在,请求出{}n a 的通项公式;若不存在,请说明理由;(3)已知等比数列{}n a 的每一项均为正整数,且{}n a 为“H 型数列”; 若23n n b a =,n c =5(1)2n n a n -+⋅,当数列{}n b 不是“H 型数列”时, 试判断数列{}n c 是否为“H 型数列”,并说明理由;参考答案一. 填空题1. {1}2. 34i -3. 24. (0,1)(1,)+∞5. π6.147. 143 8. 11 9. 17π 10. 10 11. 3(0,)312. 12-二. 选择题13. B 14. C 15. D 16. A三. 解答题 17.(1)略;(2)33; 18.(1)1a =-,偶函数;1a =,奇函数;a R ∈且1a ≠±,非奇非偶函数; (2)[2,3];19.(1)18.9米;(2)6.9°;20.(1)2213y x -=;(2)3;(3)(1,0)-; 21.(1)1(,0)(,)2-∞+∞;(2)不存在;(3)132n n a -=⋅时,{}n c 不是“H 型数列”;14n n a -=时,{}n c 是“H 型数列”;上海市浦东新区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分) 1. 已知U R =,集合{|421}A x x x =-≥+,则U C A =2. 三阶行列式351236724---中元素5-的代数余子式的值为 3. 8(1)2x -的二项展开式中含2x 项的系数是4. 已知一个球的表面积为16π,则它的体积为5. 一个袋子中共有6个球,其中4个红色球,2个蓝色球,这些球的质地和形状一样,从中 任意抽取2个球,则所抽的球都是红色球的概率是6. 已知直线:0l x y b -+=被圆22:25C x y +=所截得的弦长为6,则b =7. 若复数(1)(2)ai i +-在复平面上所对应的点在直线y x =上,则实数a =8. 函数()(3sin cos )(3cos sin )f x x x x x =+-的最小正周期为9. 过双曲线222:14x y C a -=的右焦点F 作一条垂直于x 轴的垂线交双曲线C 的两条渐近线 于A 、B 两点,O 为坐标原点,则△OAB 的面积的最小值为10. 若关于x 的不等式1|2|02xx m --<在区间[0,1]内恒 成立,则实数m 的范围11. 如图,在正方形ABCD 中,2AB =,M 、N 分别是 边BC 、CD 上的两个动点,且2MN =,则AM AN ⋅的取值范围是12. 已知定义在*N 上的单调递增函数()y f x =,对于任意的*n N ∈,都有*()f n N ∈,且(())3f f n n =恒成立,则(2017)(1999)f f -=二. 选择题(本大题共4题,每题5分,共20分)13. 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+C. cos(2)3y x π=-D. cos(2)6y x π=-14. 已知函数()y f x =的反函数为1()y f x -=,则()y f x =-与1()y f x -=-图像( ) A. 关于y 轴对称 B. 关于原点对称 C. 关于直线0x y +=对称 D. 关于直线0x y -=对称 15. 设{}n a 是等差数列,下列命题中正确的是( )A. 若120a a +>,则230a a +>B. 若130a a +<,则120a a +<C. 若120a a <<,则213a a a >D. 若10a <,则2123()()0a a a a --> 16. 元旦将近,调查鲜花市场价格得知:购买2只玫瑰与1只康乃馨所需费用之和大于8元, 而购买4只玫瑰与5只康乃馨所需费用之和小于22元;设购买2只玫瑰花所需费用为A 元, 购买3只康乃馨所需费用为B 元,则A 、B 的大小关系是( )A. A B >B. A B <C. A B =D. A 、B 的大小关系不确定三. 解答题(本大题共5题,共14+14+14+16+18=76分)17. 在长方体1111ABCD A BC D -中(如图),11AD AA ==,2AB =,点E 是棱AB 中点; (1)求异面直线1AD 与EC 所成角的大小;(2)《九章算术》中,将四个面都是直角三角 形的四面体成为鳖臑,试问四面体1DCDE 是 否为鳖臑?并说明理由;18. 已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ; (1)若3B π=,7b =,△ABC 的面积332S =,求a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;。
2017年普陀区高考数学一模试卷含答案2016.12一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分. 1.若集合{}R ,|2∈==y x y x A ,{}R ,sin |∈==x x y y B ,则=B A .2. 若22παπ<<-,53sin =α,则=α2cot . 3. 函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f.4. 若5522105)1(x a x a x a a x ++++=+ ,则=+++521a a a .5. 设∈k R ,若1222=--k x k y 表示焦点在y 轴上的双曲线,则半焦距的取值围是. 6. 设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是.7. 方程()()23log 259log 22-+=-xx 的解=x .8. 已知圆C :022222=++++k y kx y x (R k ∈)和定点()1,1-P ,若过P 可以作两条直线与圆C 相切,则的取值围是.9. 如图,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1==BC AB ,若C A 1与平面11BCC B 所成的角为6π,则三棱锥ABC A -1的体积为.10.掷两颗骰子得两个数,若两数的差为d ,则{}2,1,0,1,2--∈d 出现 的概率的最大值为(结果用最简分数表示).11. 设地球半径为R ,若A 、B 两地均位于北纬︒45,且两地所在纬度圈上的弧长为R π42,则A 、B 之间的球面距离是(结果用含有R 的代数式表示). 12. 已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是.二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分. 13.若ba <0<,则下列不等关系中,不能成立....的是………………………………………().)A (b a 11>()B ab a 11>-()C 3131b a <()D 22b a >14.设无穷等比数列{}n a 的首项为1a ,公比为,前项和为n S .则“11=+q a ”是“1lim =∞→n n S ”成立的…………………………………………………().)A (充分非必要条件()B 必要非充分条件()C 充要条件()D 既非充分也非必要条件15. 设βα--l 是直二面角,直线在平面α,直线在平面β,且、与均不垂直,则……………………………………………………………().)A (与可能垂直,但不可能平行()B 与可能垂直,也可能平行()C 与不可能垂直,但可能平行()D 与不可能垂直,也不可能平行16. +的最小值为,则下列判断正确的是……………………………………………………………().)A (()B()C 唯一确定()D三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域写出必要的步骤17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知∈a R ,函数||1)(x a x f += (1)当1=a 时,解不等式x x f 2)(≤;(2)若关于的方程02)(=-x x f 在区间[]1,2--上有解,数的取值围.18. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知椭圆Γ:12222=+by a x (0>>b a )的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限的点,x PQ ⊥轴,垂足为Q ,且621=F F ,935arccos 21=∠F PF ,△21F PF 的面积为23. (1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求MQ 的最大值,并求出MQ 取得最大值时M 的坐标.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为8.73/cm g ,总重量为8.5kg .其中一个螺帽的三视图如下图所示(单位:毫米). (1)这堆螺帽至少有多少个;(2)对上述螺帽作防腐处理,每平方米需要耗材0.11千克, 共需要多少千克防腐材料(结果精确到01.0)20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}n a 的各项均为正数,且11=a ,对于任意的*N n ∈,均有()14121+⋅=-+n n n a a a ,=n b ()11log 22-+n a .(1)求证:{}n a +1是等比数列,并求出{}n a 的通项公式; (2)若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求10021c c c +++ ;(3)设11+⋅=n n n b b d ,数列{}n d 的前项和为n T ,是否存在正整数m (n m <<1),使得1T 、m T 、n T 成等比数列,若存在,求出m 的值;若不存在,请说明理由.21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数)(x f y =,若存在实数m 、(0≠m ),使得对于定义域的任意实数,均有)()()(k x f k x f x f m -++=⋅成立,则称函数)(x f 为“可平衡”函数,有序数对()k m ,称为函数)(x f 的“平衡”数对.(1)若1=m ,判断x x f sin )(=是否为“可平衡”函数,并说明理由; (2)若∈a R ,0≠a ,当变化时,求证:2)(x x f =与xa x g 2)(+=的“平衡”数对相同;(3)若1m 、2m R ,且⎪⎭⎫⎝⎛2,1πm 、⎪⎭⎫ ⎝⎛4,2πm 均为函数x x f 2cos )(=的“平衡”数对. 当40π≤<x 时,求2221m m +的取值围.普陀区2016-2017学年第一学期高三数学质量调研评分标准一、填空题(本大题共有12题,满分54分) 1-6::4分;7-12:5分。
2017年上海市普陀区中考数学一模试卷参考答案与试题解析一、选择题(每题4分)01. “相似的图形”是( )A .形状相同的图形B .大小不相同的图形C .能够重合的图形D .大小相同的图形【解答】相似图形是形状相同的图形,大小可以相同,也可以不同,故选A .02.下列函数中,y 关于x 的二次函数是( )A .y=2x +1B .y=2x (x +1)C .y=D .y=(x ﹣2)2﹣x 2【解答】A 、y=2x +1是一次函数,故A 错误;B 、y=2x (x +1)是二次函数,故B 正确;C 、y=不是二次函数,故C 错误;D 、y=(x ﹣2)2﹣x 2是一次函数,故D 错误; 故选:B .03.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1、l 2、l 3与点A 、B 、C ,直线DF 分别交l 1、l 2、l 3与点D 、E 、F ,AC 与DF 相交于点H ,如果AH=2,BH=1,BC=5,那么的值等于( )A .B .C .D .【解答】∵直线l 1∥l 2∥l 3,∴,∵AH=2,BH=1,BC=5, ∴AB=AH +BH=3,∴,∴,故选D . 042x … ﹣2 ﹣10 1 2 … y … 0 4 6 6 4 …A .抛物线于x 轴的一个交点坐标为(﹣2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x=0D .抛物线在对称轴左侧部分是上升的【解答】当x=﹣2时,y=0,∴抛物线过(﹣2,0),∴抛物线与x 轴的一个交点坐标为(﹣2,0),故A 正确;当x=0时,y=6,∴抛物线与y 轴的交点坐标为(0,6),故B 正确;当x=0和x=1时,y=6,∴对称轴为x=,故C 错误;当x <时,y 随x 的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D 正确;故选C .05.如图,在四边形ABCD 中,如果∠ADC=∠BAC ,那么下列条件中不能判定△ADC 和△BAC 相似的是( )A .∠DAC=∠ABCB .AC 是∠BCD 的平分线C .AC 2=BC•CD D .=【解答】在△ADC 和△BAC 中,∠ADC=∠BAC ,如果△ADC ∽△BAC ,需满足的条件有:①∠DAC=∠ABC 或AC 是∠BCD 的平分线;②=;故选:C .06.下列说法中,错误的是( )A .长度为1的向量叫做单位向量B .若k ≠0,且≠,则k 的方向与的方向相同C .若k=0或=,则k =D .若=,=,其中是非零向量,则∥【解答】A 、长度为1的向量叫做单位向量,故本选项错误;B 、当k >0且≠时,那么k的方向与的方向相同,故本选项正确;C 、如果k=0或=,那么k =,故本选项错误;D 、如果=,=,其中是非零向量,那么向量a 与向量b 共线,即∥,故本选项错误;故选:B .二、填空题(每题2分)07.如果:4:3x y =,那么x y y -= 13 . 【解答】∵:4:3x y =,∴令4x k =,()30y k k =≠,∴43133x y k k y k --==,故答案为:. 08.计算:3﹣4(+)= ﹣﹣4 .【解答】3﹣4(+)=3﹣4﹣4=﹣﹣4.故答案是:﹣﹣4.09.如果抛物线y=(m ﹣1)x 2的开口向上,那么m 的取值范围是 m >1 .【解答】∵抛物线y=(m ﹣1)x 2开口向上,∴m ﹣1>0即m >1,故m 的取值范围是m >1.10.抛物线y=4x 2﹣3x 与y 轴的交点坐标是 (0,0) .【解答】在y=4x 2﹣3x 中,令x=0得y=0,∴抛物线与y 轴交于点(0,0),故答案为(0,0).11.若点A (3,n )在二次函数y=x 2+2x ﹣3的图象上,则n 的值为 12 .【解答】∵A (3,n )在二次函数y=x 2+2x ﹣3图象上,∴A (3,n )满足二次函数y=x 2+2x ﹣3,∴n=9+6﹣3=12,即n=12,故答案是:12.12.若线段AB 的长为10,点P 是线段AB 的黄金分割点,则较长的线段AP 的长为5﹣5.【解答】∵AP >BP ,∴AP=AB=(5﹣5)厘米,故答案为:5﹣5.13.利用复印机的缩放功能,将原图中边长为5厘米的一个等边三角形放大成边长为20厘米的等边三角形,那么放大前后的两个三角形的周长比是 1:2 .【解答】因为原图中边长为5cm 的一个等边三角形放大成边长为20cm 的等边三角形,所以放大前后的两个三角形的周长比为5:10=1:2,故答案为:1:2.14.已知点P 在半径为5的⊙O 外,如果设OP=x ,那么x 的取值范围是 x >5 .【解答】∵点P 在半径为5的⊙O 外,∴OP >5,即x >5.故答案为x >5.15.如果港口A 的南偏东52°方向有一座小岛B ,那么从小岛B 观察港口A的方向是 北偏西52° .【解答】如图,∵∠1=∠2=52°,∴从小岛B 观察港口A 的方向是北偏西52°.故答案为:北偏西52°.16.在半径为4厘米的圆面中,挖去一个半径为x 厘米的圆面,剩下部分的面积为y 平方厘米,写出y 关于x 的函数解析式: y=﹣πx 2+16π (结果保留π,不要求写出定义域)【解答】由题意得在半径为4厘米的圆面中,挖去一个半径为x 厘米的圆面,剩下部分的面积为y 平方厘米,y=﹣πx 2+16π,故答案为:y=﹣πx 2+16π.17.如果等腰三角形的腰与底边的比是5:6,那么底角的余弦值等于 .【解答】如图,△ABC 中,AB=AC ,AC :BC=5:6,作AE ⊥BC 于E ,则BE=EC ,,在Rt △AEC 中,cos ∠C===,故答案为.18.如图,DE ∥BC 且过△ABC 的重心,分别与AB 、AC 交于点D 、E , 点P 是线段DE 上一点,CP 的延长线交AB 于点Q ,如果=,那么S △DPQ :S △CPE 的值是 1:15 .【解答】如图,连接QE ,∵DE ∥BC ,DE 过△ABC 的重心,∴=. 设DE=4m ,则BC=6m .∵=,∴DP=m ,PE=3m ,∴==.∵DE ∥BC ,∴∠QDP=∠QBC ,∵∠DQP=∠BQC ,∴△QDP ∽△QBC ,∴==,∴=,∴==,∴=•=×=.故答案为:1:15.三、解答题19.(6分)计算:cos245°+﹣•tan30°.【解答】原式=()2+﹣×=+﹣1=.20.(8分)如图,AD是⊙O的直径,BC是⊙O的弦,AD⊥BC,垂足为点E,AE=BC=16,求⊙O的直径.【解答】连接OB,设OB=OA=R,则OE=16﹣R,∵AD⊥BC,BC=16,∴∠OEB=90°,BE=BC=8,由勾股定理得:OB2=OE2+BE2,R2=(16﹣R)2+82,解得:R=10,即⊙O的直径为20.21.(10分)如图,已知向量,,.(1)求做:向量分别在,方向上的分向量,:(不要求写作法,但要在图中明确标出向量和).(2)如果点A是线段OD的中点,联结AE、交线段OP于点Q,设=,=,试用,表示向量,(请直接写出结论)【解答】(1)如图,分别过P作OA、OB的平行线,交OA于D,交OB于E,则向量分别在,方向上的分向量是,;(2)如图,∵四边形ODPE是平行四边形,∴PE∥DO,PE=DO,∴△OAQ∽△PEQ,∴==,∵点A是线段OD的中点,∴OA=OD=PE,∴===,∴=2=﹣2,==.∵=﹣=﹣2,∴==﹣2,∴=﹣=﹣2﹣=﹣2.22.(10分)一段斜坡路面的截面图如图所示,BC⊥AC,其中坡面AB的坡比i1=1:2,现削坡放缓,新坡面的坡角为原坡面坡脚的一半,求新坡面AD的坡比i2(结果保留根号)【解答】过点D作DE⊥AB于点E,∴∠DEB=∠C=90°,∵∠B=∠B,∴∠BDE=∠BAC,∴tan∠BAC=tan∠BDE,即==,设DC=2x,∵∠DAC=∠DAE,∠DEB=∠C=90°,∴DE=DC=2x,则BE=x,BD==x,∴BC=CD+BD=(2+)x,∴AC=2BC=(4+2)x,∴新坡面AD的坡比i2===﹣2.23.(12分)如图,在四边形ABCD中,∠BAD=∠CDA,AB=DC=,CE=a,AC=b,求证:(1)△DEC∽△ADC;(2)AE•AB=BC•DE.【解答】(1)∵DC=,CE=a,AC=b,∴CD2=CE×CA,即=,又∵∠ECD=∠DCA,∴△DEC∽△ADC;(2)∵△DEC∽△ADC,∴∠DAE=∠CDE,∵∠BAD=∠CDA,∴∠BAC=∠EDA,∵△DEC∽△ADC,∴=,∵DC=AB,∴=,即=,∴△ADE∽△CAB,∴=,即AE•AB=BC•DE.24.(12分)如图,已知在平面直角坐标系中,点A(4,0)是抛物线y=ax2+2x﹣c上一点,将此抛物线向下平移6个单位后经过点B(0,2),平移后所得的新抛物线的顶点记为C,新抛物线的对称轴与线段AB的交点记为P.(1)求平移后所得到的新抛物线的表达式,并写出点C的坐标;(2)求∠CAB的正切值;(3)如果点Q是新抛物线对称轴上的一点,且△BCQ与△ACP相似,求点Q的坐标.【解答】(1)点B(0,2)向上平移6个单位得到点B'(0,8),将A(4,0),B'(0,8)分别代入y=ax2+2x﹣c,得,解得,∴原抛物线为y=﹣x2+2x+8,向下平移6个单位后所得的新抛物线为y=﹣x2+2x+2,∴顶点C的坐标为(1,3);(2)如图2,由A(4,0),B(0,2),C(1,3),得AB2=20,AC2=18,BC2=2,∴AB2=AC2+BC2,∴∠ACB=90°,∴tan∠CAB===;(3)如图3,设抛物线的对称轴x=1与x轴交于点H,由==,得PH=AH=,∴P(1,),由HA=HC=3,得∠HCA=45°,∴当点Q在点C下方时,∠BCQ=∠ACP,∴△BCQ与△ACP相似分两种情况:①如图3,当=时,=,解得CQ=4,此时Q(1,﹣1);②如图4,当=时,=,解得CQ=,此时Q(1,).25.(14分)如图,在Rt△ABC中,∠ACB=90°,AB=10,sinB=,点O是AB的中点,∠DOE=∠A,当∠DOE以点O为旋转中心旋转时,OD交AC的延长线于点D,交边CB于点M,OE交线段BM于点N.(1)当CM=2时,求线段CD的长;(2)设CM=x,BN=y,试求y与x之间的函数解析式,并写出定义域;(3)如果△OMN是以OM为腰的等腰三角形,请直接写出线段CM的长.【解答】(1)如图1,作OH⊥BC于H.在Rt△ABC中,∵AB=10,sinB=,∴AC=6,BC=8,∵AO=OB,OH∥AC,∴CH=HB=4,OH=3,∵CM=2,∴CM=HM=2,∵,∴△DCM≌△OHM,∴CD=OH=3.(2)如图2,作NG⊥OB于G.∵∠HOB=∠A=∠MON,∴∠1=∠2,在Rt△BNG中,BN=y,sibB=,∴GN=y,BG=y,∵tan∠1=tan∠2,∴=,∴=,∴y=,(0<x<4).(3)①如图3,当OM=ON时,OH垂直平分MN,∴BN=CM=x,∵△OMH≌△ONG,∴NG=HM=4﹣x,∵sinB=,∴=,∴CM=x=.②如图4,当OM=MN时.连接CO,∵OA=OB,OM=MN,∴CO=OA=OB,∴∠MON=∠MNO=∠A=∠OCA,∴△MON∽△OAC,∴∠AOC=∠OMN,∴∠BOC=∠CMO,∴△CMO∽△COB,∴=,∴8x=52,∴x=.综上所述,△OMN是以OM为腰的等腰三角形时,线段CM的长为或.。
2017年高考数学一模分类汇编--三角一、填空题汇编:(第1--6题4分/题;第7--12题5分/题)1、(17年普陀一模2) 若22ππα-<<,3sin 5α=,则cot 2α=2、(17年浦东一模8) 函数()3cos 3sin )f x x x x x =+-的最小正周期为3、(17年长宁/嘉定一模2) 函数sin()3y x πω=-(0ω>)的最小正周期是π,则ω=4、(17年长宁/嘉定一模9)如图,在ABC ∆中,45B ∠=︒,D 是BC 边上的一点,5AD =,7AC =,3DC =,则AB 的长为5、(17年杨浦一模4)若ABC ∆中,4=+b a ,︒=∠30C ,则ABC ∆面积的最大值是 .6、(17年松江一模5)已知(sin ,cos )a x x =,(sin ,sin )b x x =,则函数()f x a b =⋅的最小正周期为7、(17年闵行一模1)集合[]{}cos(cos )0,0,x x x ππ=∈=_____________ .(用列举法表示)8(17年松江一模)如右图,已知半径为1的扇形AOB ,60AOB ∠=︒,P 为弧AB 上的一个动点,则OP AB ⋅的取值范围是_____________.9、(17年静安一模2).函数⎪⎭⎫⎝⎛+-=4sin 31)(2πx x f 的最小正周期为 .10、(17年静安一模6).已知为锐角,且,则________ .11、(17年静安一模9).直角三角形ABC 中,3AB =,4AC =,5BC =,点M 是三角形ABC 外接圆上任意一点,则AB AM ⋅的最大值为___________.12、(17年金山一模3).如果5sin 13α=-,且α为第四象限角,则tan α的值是 13、(17年金山一模4).函数cos sin ()sin cos x xf x x x=的最小正周期是14、(17年虹口一模3).设函数()sin cos f x x x =-,且()1f α=,则sin2α= . 15、(17年虹口一模6).已知角A 是ABC ∆的内角,则“1cos 2A =”是“3sin A =的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).16、(17年奉贤一模11).参数方程[)πθθθθ2,0,sin 12cos2sin ∈⎪⎩⎪⎨⎧+=+=y x 表示的曲线的普通方程是_________.3cos()45πα+=sin α=17、(17年奉贤一模12).已知函数()()sin cos 0,f x wx wx w x R =+>∈,若函数()f x 在区间(),ωω-内单调递增,且函数()f x 的图像关于直线x ω=对称,则ω的值为____________.18、(17年崇明一模9).已知,A B 分别是函数()2sin f x x ω=(0)ω>在y 轴右侧图像上的第一个最高点和第一个最低点,且2AOB π∠=,则该函数的最小正周期是19、(17年崇明一模11).在平面直角坐标系中,横、纵坐标均为整数的点叫做格点,若函数()y f x =的图像恰好经过k 个格点,则称函数()y f x =为k 阶格点函数,已知函数:①2y x =;②2sin y x =; ③1xy π=-;④cos()3y x π=+;其中为一阶格点函数的序号为 (注:把你认为正确的序号都填上)20、(17年宝山一模6). 若函数cos sin sin cos x x y x x=的最小正周期为a π,则实数a 的值为二、选择题汇编:(5分/题) 1、(17年徐汇一模13)、“4x k ππ=+()k Z ∈”是“tan 1x =”的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要2、(17年青浦一模13)、已知()sin3f x x π=,{1,2,3,4,5,6,7,8}A =现从集合A 中任取两个不同元素s 、t ,则使得()()0f s f t ⋅=的可能情况为 ( ).A .12种B .13种C .14种D .15种3、(17年浦东一模13) 将cos 2y x =图像向左平移6π个单位,所得的函数为( ) A. cos(2)3y x π=+ B. cos(2)6y x π=+ C. cos(2)3y x π=-D. cos(2)6y x π=- 4、(17年长宁/嘉定一模15)给出下列命题:① 存在实数α使3sin cos 2αα+=;② 直线2x π=-是函数sin y x =图像的一条对称轴;③ cos(cos )y x =(x R ∈)的值域是[cos1,1];④ 若α、β都是第一象限角,且αβ>,则tan tan αβ>;其中正确命题的题号为( )A. ①②B. ②③C. ③④D. ①④5、(17年长宁/嘉定一模16) 如果对一切实数x 、y ,不等式29cos sin 4y x a x y-≥-恒成立,则实数a 的取值范围是( )A. 4(,]3-∞ B. [3,)+∞ C. [- D. [3,3]-6、(17年杨浦一模13)若直线1=+bya x 通过点()θθsin ,c os P ,则下列不等式正确的是 ( )(A )122≤+b a (B )122≥+b a (C )11122≤+b a (D )11122≥+ba7、(17年松江一模16)解不等式11()022x x -+>时,可构造函数1()()2x f x x =-,由()f x 在x R ∈是减函数及()(1)f x f >,可得1x <,用类似的方法可求得不等式263arcsin arcsin 0x x x x +++>的解集为( )A. (0,1]B. (1,1)-C. (1,1]-D. (1,0)-8、(17年虹口一模14).已知函数()sin(2)3f x x π=+在区间[]0,a (其中0a >)上单调递增,则实数a 的取值范围是( )..A 02a <≤π.B 012a π<≤.C ,12a k k N ππ*=+∈ .D 22,12k a k k N <≤+∈πππ9、(17年奉贤一模15).已知函数22sin ,()cos(),x x f x x x α⎧+⎪=⎨-++⎪⎩00x x ≥<([0,2)απ∈是奇函数,则α=( )A .0 B .2πC .πD .23π10、(17年崇明一模13). 下列函数在其定义域内既是奇函数又是增函数的是( )A. tan y x =B. 3xy = C. 13y x = D. lg ||y x =三、解答题汇编1、(17年徐汇一模18)、已知函数2sin ()1x xf x x -=;(1)当[0,]2x π∈时,求()f x 的值域;(2)已知△ABC 的内角,,A B C 的对边分别为,,a b c,若()2Af =4a =,5b c +=, 求△ABC 的面积;2、(17年青浦一模18)、本题满分14分)第(1)小题满分6分,第(2)小题满分8分.已知函数()()221cos 42f x x x x π⎛⎫=+--∈ ⎪⎝⎭R .(1) 求函数()f x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值; (2)在ABC ∆中,若A B <,且()()12f A f B ==,求BCAB的值.3、(17年浦东一模13)已知△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ;(1)若3B π=,b =ABC 的面积S =a c +的值; (2)若22cos ()C BA BC AB AC c ⋅+⋅=,求角C ;4、(17年长宁/嘉定一模18)(14分) 在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,且28sin 2cos 272B C A +-=;(1)求角A 的大小;(2)若a =3b c +=,求b 和c 的值;5、(17年杨浦一模17)(本题满分14分)本题共有2个小题,第1小题满分8分,第2小题6分. 如图,某柱体实心铜质零件的截面边界是长度为55毫米线段AB 和88毫米的线段AC 以及圆心为P ,半径为PB 的一段圆弧BC 构成,其中︒=∠60BAC . (1)求半径PB 的长度;(2)现知该零件的厚度为3毫米,试求该零件的重量(每1立方厘米铜重8.9克,按四舍五入精确到0.1克).6、(17年松江一模19)松江天马山上的“护珠塔”因其倾斜度超过意大利的比萨斜塔而号称“世界第一斜塔”,兴趣小组同学实施如下方案来测量塔的倾斜度和塔高,如图,记O 点为塔基、P 点为塔尖、 点P 在地面上的射影为点H ,在塔身OP 射影所在直线上选点A ,使仰角45HAP ︒∠=, 过O 点与OA 成120︒的地面上选B 点,使仰角45HBP ︒∠=(点A 、B 、O 都在同一水平 面上),此时测得27OAB ︒∠=,A 与B 之间距离为33.6米,试求: (1)塔高;(即线段PH 的长,精确到0.1米) (2)塔的倾斜度;(即OPH ∠的大小,精确到0.1︒)60° A B PC7、(17年松江一模18)(本题满分14分)本题共有2个小题,第1小题满分4分,第2小题满分10分.已知()23,1m =,2cos ,sin 2A n A ⎛⎫= ⎪⎝⎭,A B C 、、是ABC △的内角. (1)当2A π=时,求n 的值;(2)若23C π=,3AB =,当m n ⋅取最大值时,求A 的大小及边BC 的长.8、(17年静安一模18).(本题满分14分,第1小题7分,第2小题7分)在某海滨城市附近海面有一台风,据监测,当前台风中心位于城市A (看做一点)的东偏南θ角方向2cos θ⎛⎫= ⎪ ⎪⎝⎭,300 km 的海面P 处,并以20km / h 的速度向西偏北45°方向移动.台风侵袭的范围为圆形区域,当前半径为60 km ,并以10km / h 的速度不断增大.(1) 问10小时后,该台风是否开始侵袭城市A ,并说明理由; (2) 城市A 受到该台风侵袭的持续时间为多久?9、(17年金山一模18). 已知△ABC 中,1AC =,23ABC π∠=,设BAC x ∠=,记()f x AB BC =⋅; (1)求函数()f x 的解析式及定义域;(2)试写出函数()f x 的单调递增区间,并求方程1()6f x =的解;10、(17年虹口一模18).(本题满分14分)如图,我海监船在D 岛海域例行维权巡航,某时刻航行至A 处,此时测得其北偏东30︒方向与它相距20海里的B 处有一外国船只,且D 岛位于海监船正东18海里处.(1)求此时该外国船只与D 岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D 岛12海里的E 处(E 在B 的正南方向),不让其进入D 岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1︒,速度精确到0.1海里/小时).A11、(17年奉贤一模19).(本题满分14分)本题共有1个小题,满分14分一艘轮船在江中向正东方向航行,在点观测到灯塔在一直线上,并与航线成角α()0900<<α.轮船沿航线前进b 米到达处,此时观测到灯塔在北偏西方向,灯塔在北偏东β()0900<<α方向,0090αβ<+<.求.(结果用,,b αβ的表达式表示).12、(17年崇明一模18).在一个特定时段内,以点E 为中心的7海里以内海域被设为警戒水域,点E正北55海里处有一个雷达观测站A ,某时刻测得一艘匀速直线行驶的船只位于点A 北偏东45°且与点A相距B 处,经过40分钟又测得该船已行驶到点A 北偏东45θ︒+(其中sin θ=090θ︒︒<<)且与点A相距海里的位置C 处; (1)求该船的行驶速度;(单位:海里/小时) (2)若该船不改变航行方向继续行驶,判断 它是否会进入警戒水域,并说明理由;P A B ,C A 45︒B CB。
2017年上海市高考数学试卷一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1、(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B=、2、(4分)若排列数=6×5×4,则m=、3、(4分)不等式>1的解集为、4、(4分)已知球的体积为36π,则该球主视图的面积等于、5、(4分)已知复数z满足z+=0,则|z|=、6、(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=、7、(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是、8、(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为、9、(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为、10、(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=、11、(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于、12、(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧、用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和、若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为、二、选择题(本大题共4题,每题5分,共20分)13、(5分)关于x、y的二元一次方程组的系数行列式D为()A、B、C、D、14、(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A、等于B、等于0C、等于D、不存在15、(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存、x200+k、x300+k成等差数列”的一个必要条件是()在k∈N*,使得x100+kA、a≥0B、b≤0C、c=0D、a﹣2b+c=016、(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1、P为C1上的动点,Q为C2上的动点,w是的最大值、记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A、2个B、4个C、8个D、无穷个三、解答题(本大题共5题,共14+14+14+16+18=76分)17、(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5、(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小、18、(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π)、(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积、19、(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差、(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆)、设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?20、(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点、(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程、21、(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2)、(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值、函数h(x)=f(x)g(x)、证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”、参考答案与试题解析一、填空题(本大题共12题,满分54分,第1~6题每题4分,第7~12题每题5分)1、(4分)已知集合A={1,2,3,4},集合B={3,4,5},则A∩B={3,4} 、题目分析:利用交集定义直接求解、试题解答:解:∵集合A={1,2,3,4},集合B={3,4,5},∴A∩B={3,4}、故答案为:{3,4}、点评:本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用、2、(4分)若排列数=6×5×4,则m=3、题目分析:利用排列数公式直接求解、试题解答:解:∵排列数=6×5×4,∴由排列数公式得,∴m=3、故答案为:m=3、点评:本题考查实数值的求法,是基础题,解题时要认真审题,注意排列数公式的合理运用、3、(4分)不等式>1的解集为(﹣∞,0)、题目分析:根据分式不等式的解法求出不等式的解集即可、试题解答:解:由>1得:,故不等式的解集为:(﹣∞,0),故答案为:(﹣∞,0)、点评:本题考查了解分式不等式,考查转化思想,是一道基础题、4、(4分)已知球的体积为36π,则该球主视图的面积等于9π、题目分析:由球的体积公式,可得半径R=3,再由主视图为圆,可得面积、试题解答:解:球的体积为36π,设球的半径为R,可得πR3=36π,可得R=3,该球主视图为半径为3的圆,可得面积为πR2=9π、故答案为:9π、点评:本题考查球的体积公式,以及主视图的形状和面积求法,考查运算能力,属于基础题、5、(4分)已知复数z满足z+=0,则|z|=、题目分析:设z=a+bi(a,b∈R),代入z2=﹣3,由复数相等的条件列式求得a,b的值得答案、试题解答:解:由z+=0,得z2=﹣3,设z=a+bi(a,b∈R),由z2=﹣3,得(a+bi)2=a2﹣b2+2abi=﹣3,即,解得:、∴、则|z|=、故答案为:、点评:本题考查复数代数形式的乘除运算,考查了复数相等的条件以及复数模的求法,是基础题、6、(4分)设双曲线﹣=1(b>0)的焦点为F1、F2,P为该双曲线上的一点,若|PF1|=5,则|PF2|=11、题目分析:根据题意,由双曲线的方程可得a的值,结合双曲线的定义可得||PF1|﹣|PF2||=6,解可得|PF2|的值,即可得答案、试题解答:解:根据题意,双曲线的方程为:﹣=1,其中a==3,则有||PF1|﹣|PF2||=6,又由|PF1|=5,解可得|PF2|=11或﹣1(舍)故|PF2|=11,故答案为:11、点评:本题考查双曲线的几何性质,关键是掌握双曲线的定义、7、(5分)如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,若的坐标为(4,3,2),则的坐标是(﹣4,3,2)、题目分析:由的坐标为(4,3,2),分别求出A和C1的坐标,由此能求出结果、试题解答:解:如图,以长方体ABCD﹣A1B1C1D1的顶点D为坐标原点,过D的三条棱所在的直线为坐标轴,建立空间直角坐标系,∵的坐标为(4,3,2),∴A(4,0,0),C1(0,3,2),∴、故答案为:(﹣4,3,2)、点评:本题考查空间向量的坐标的求法,考查空间直角坐标系等基础知识,考查运算求解能力,考查数形结合思想,是基础题、8、(5分)定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),若g(x)=为奇函数,则f﹣1(x)=2的解为、题目分析:由奇函数的定义,当x>0时,﹣x<0,代入已知解析式,即可得到所求x>0的解析式,再由互为反函数的两函数的自变量和函数值相反,即可得到所求值、试题解答:解:若g(x)=为奇函数,可得当x>0时,﹣x<0,即有g(﹣x)=3﹣x﹣1,由g(x)为奇函数,可得g(﹣x)=﹣g(x),则g(x)=f(x)=1﹣3﹣x,x>0,由定义在(0,+∞)上的函数y=f(x)的反函数为y=f﹣1(x),且f﹣1(x)=2,可由f(2)=1﹣3﹣2=,可得f﹣1(x)=2的解为x=、故答案为:、点评:本题考查函数的奇偶性和运用,考查互为反函数的自变量和函数值的关系,考查运算能力,属于基础题、9、(5分)已知四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从中任选2个,则事件“所选2个函数的图象有且仅有一个公共点”的概率为、题目分析:从四个函数中任选2个,基本事件总数n=,再利用列举法求出事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件的个数,由此能求出事件A:“所选2个函数的图象有且只有一个公共点”的概率、试题解答:解:给出四个函数:①y=﹣x,②y=﹣,③y=x3,④y=x,从四个函数中任选2个,基本事件总数n=,③④有两个公共点(0,0),(1,1)、事件A:“所选2个函数的图象有且只有一个公共点”包含的基本事件有:①③,①④共2个,∴事件A:“所选2个函数的图象有且只有一个公共点”的概率为P(A)==、故答案为:、点评:本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用、10、(5分)已知数列{a n}和{b n},其中a n=n2,n∈N*,{b n}的项是互不相等的正整数,若对于任意n∈N*,{b n}的第a n项等于{a n}的第b n项,则=2、题目分析:a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,可得==、于是b1=a1=1,=b4,=b9,=b16、即可得出、试题解答:解:∵a n=n2,n∈N*,若对于一切n∈N*,{b n}中的第a n项恒等于{a n}中的第b n项,∴==、∴b1=a1=1,=b4,=b9,=b16、∴b1b4b9b16=、∴=2、故答案为:2、点评:本题考查了数列递推关系、对数的运算性质,考查了推理能力与计算能力,属于中档题、11、(5分)设a1、a2∈R,且,则|10π﹣a1﹣a2|的最小值等于、题目分析:由题意,要使+=2,可得sinα1=﹣1,sin2α2=﹣1、求出α1和α2,即可求出|10π﹣α1﹣α2|的最小值试题解答:解:根据三角函数的性质,可知sinα1,sin2α2的范围在[﹣1,1],要使+=2,∴sinα1=﹣1,sin2α2=﹣1、则:,k1∈Z、,即,k2∈Z、那么:α1+α2=(2k1+k2)π,k1、k2∈Z、∴|10π﹣α1﹣α2|=|10π﹣(2k1+k2)π|的最小值为、故答案为:、点评:本题主要考察三角函数性质,有界限的范围的灵活应用,属于基本知识的考查、12、(5分)如图,用35个单位正方形拼成一个矩形,点P1、P2、P3、P4以及四个标记为“▲”的点在正方形的顶点处,设集合Ω={P1,P2,P3,P4},点P∈Ω,过P作直线l P,使得不在l P上的“▲”的点分布在l P的两侧、用D1(l P)和D2(l P)分别表示l P一侧和另一侧的“▲”的点到l P的距离之和、若过P的直线l P中有且只有一条满足D1(l P)=D2(l P),则Ω中所有这样的P为P1、P3、P4、题目分析:根据任意四边形ABCD两组对边中点的连线交于一点,过此点作直线,使四边形的四个顶点不在该直线的同一侧,则该直线两侧的四边形的顶点到直线的距离之和相等;由此得出结论、试题解答:解:设记为“▲”的四个点是A,B,C,D,线段AB,BC,CD,DA的中点分别为E,F,G,H,易知EFGH为平行四边形,如图所示;又平行四边形EFGH的对角线交于点P2,则符合条件的直线l P一定经过点P2,且过点P2的直线有无数条;由过点P1和P2的直线有且仅有1条,过点P3和P2的直线有且仅有1条,过点P4和P2的直线有且仅有1条,所以符合条件的点是P1、P3、P4、故答案为:P1、P3、P4、点评:本题考查了数学理解力与转化力的应用问题,也考查了对基本问题的阅读理解和应用转化能力、二、选择题(本大题共4题,每题5分,共20分)13、(5分)关于x、y的二元一次方程组的系数行列式D为()A、B、C、D、题目分析:利用线性方程组的系数行列式的定义直接求解、试题解答:解:关于x、y的二元一次方程组的系数行列式:D=、故选:C、点评:本题考查线性方程组的系数行列式的求法,是基础题,解题时要认真审题,注意线性方程组的系数行列式的定义的合理运用、14、(5分)在数列{a n}中,a n=(﹣)n,n∈N*,则a n()A、等于B、等于0C、等于D、不存在题目分析:根据极限的定义,求出a n=的值、试题解答:解:数列{a n}中,a n=(﹣)n,n∈N*,则a n==0、故选:B、点评:本题考查了极限的定义与应用问题,是基础题、15、(5分)已知a、b、c为实常数,数列{x n}的通项x n=an2+bn+c,n∈N*,则“存、x200+k、x300+k成等差数列”的一个必要条件是()在k∈N*,使得x100+kA、a≥0B、b≤0C、c=0D、a﹣2b+c=0,x200+k,x300+k成等差数列,可得:2x200+k=x100+k x300+k,代入化题目分析:由x100+k简即可得出、、x200+k、x300+k成等差数列,可得:2[a(200+k)试题解答:解:存在k∈N*,使得x100+k2+b(200+k)+c]=a(100+k)2+b(100+k)+c+a(300+k)2+b(300+k)+c,化为:a=0、,x200+k,x300+k成等差数列的必要条件是a≥0、∴使得x100+k故选:A、点评:本题考查了等差数列的通项公式、简易逻辑的判定方法,考查了推理能力与计算能力,属于基础题、16、(5分)在平面直角坐标系xOy中,已知椭圆C1:=1和C2:x2+=1、P为C1上的动点,Q为C2上的动点,w是的最大值、记Ω={(P,Q)|P 在C1上,Q在C2上,且=w},则Ω中元素个数为()A、2个B、4个C、8个D、无穷个题目分析:设出P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α\β<2π,由向量数量积的坐标表示和两角差的余弦公式和余弦函数的值域,可得最大值及取得的条件,即可判断所求元素的个数、试题解答:解:椭圆C1:=1和C2:x2+=1、P为C1上的动点,Q为C2上的动点,可设P(6cosα,2sinα),Q(cosβ,3sinβ),0≤α\β<2π,则=6cosαcosβ+6sinαsinβ=6cos(α﹣β),当α﹣β=2kπ,k∈Z时,w取得最大值6,则Ω={(P,Q)|P在C1上,Q在C2上,且=w}中的元素有无穷多对、另解:令P(m,n),Q(u,v),则m2+9n2=36,9u2+v2=9,由柯西不等式(m2+9n2)(9u2+v2)=324≥(3mu+3nv)2,当且仅当mv=nu,即O、P、Q共线时,取得最大值6,显然,满足条件的P、Q有无穷多对,D项正确、故选:D、点评:本题考查椭圆的参数方程的运用,以及向量数量积的坐标表示和余弦函数的值域,考查集合的几何意义,属于中档题、三、解答题(本大题共5题,共14+14+14+16+18=76分)17、(14分)如图,直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB 和AC的长分别为4和2,侧棱AA1的长为5、(1)求三棱柱ABC﹣A1B1C1的体积;(2)设M是BC中点,求直线A1M与平面ABC所成角的大小、题目分析:(1)三棱柱ABC﹣A1B1C1的体积V=S△ABC×AA1=,由此能求出结果、(2)连结AM,∠A1MA是直线A1M与平面ABC所成角,由此能求出直线A1M 与平面ABC所成角的大小、试题解答:解:(1)∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5、∴三棱柱ABC﹣A1B1C1的体积:V=S△ABC×AA1===20、(2)连结AM,∵直三棱柱ABC﹣A1B1C1的底面为直角三角形,两直角边AB和AC的长分别为4和2,侧棱AA1的长为5,M是BC中点,∴AA1⊥底面ABC,AM==,∴∠A1MA是直线A1M与平面ABC所成角,tan∠A1MA===,∴直线A1M与平面ABC所成角的大小为arctan、点评:本题考查三棱柱的体积的求法,考查线面角的大小的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查化归与转化思想、函数与方程思想、数形结合思想,是中档题、18、(14分)已知函数f(x)=cos2x﹣sin2x+,x∈(0,π)、(1)求f(x)的单调递增区间;(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,求△ABC的面积、题目分析:(1)由二倍角的余弦公式和余弦函数的递增区间,解不等式可得所求增区间;(2)由f(A)=0,解得A,再由余弦定理解方程可得c,再由三角形的面积公式,计算即可得到所求值、试题解答:解:(1)函数f(x)=cos2x﹣sin2x+=cos2x+,x∈(0,π),由2kπ﹣π≤2x≤2kπ,解得kπ﹣π≤x≤kπ,k∈Z,k=1时,π≤x≤π,可得f(x)的增区间为[,π);(2)设△ABC为锐角三角形,角A所对边a=,角B所对边b=5,若f(A)=0,即有cos2A+=0,解得2A=π,即A=π,由余弦定理可得a2=b2+c2﹣2bccosA,化为c2﹣5c+6=0,解得c=2或3,若c=2,则cosB=<0,即有B为钝角,c=2不成立,则c=3,△ABC的面积为S=bcsinA=×5×3×=、点评:本题考查二倍角公式和余弦函数的图象和性质,考查解三角形的余弦定理和面积公式的运用,考查运算能力,属于中档题、19、(14分)根据预测,某地第n(n∈N*)个月共享单车的投放量和损失量分别为a n和b n(单位:辆),其中a n=,b n=n+5,第n个月底的共享单车的保有量是前n个月的累计投放量与累计损失量的差、(1)求该地区第4个月底的共享单车的保有量;(2)已知该地共享单车停放点第n个月底的单车容纳量S n=﹣4(n﹣46)2+8800(单位:辆)、设在某月底,共享单车保有量达到最大,问该保有量是否超出了此时停放点的单车容纳量?题目分析:(1)计算出{a n}和{b n}的前4项和的差即可得出答案;(2)令a n≥b n得出n≤42,再计算第42个月底的保有量和容纳量即可得出结论、试题解答:解:(1)∵a n=,b n=n+5∴a1=5×14+15=20a2=5×24+15=95a3=5×34+15=420a4=﹣10×4+470=430b1=1+5=6b2=2+5=7b3=3+5=8b4=4+5=9∴前4个月共投放单车为a1+a2+a3+a4=20+95+420+430=965,前4个月共损失单车为b1+b2+b3+b4=6+7+8+9=30,∴该地区第4个月底的共享单车的保有量为965﹣30=935、(2)令a n≥b n,显然n≤3时恒成立,当n≥4时,有﹣10n+470≥n+5,解得n≤,∴第42个月底,保有量达到最大、当n≥4,{a n}为公差为﹣10等差数列,而{b n}为等差为1的等差数列,∴到第42个月底,单车保有量为×39+535﹣×42=×39+535﹣×42=8782、S42=﹣4×16+8800=8736、∵8782>8736,∴第42个月底单车保有量超过了容纳量、点评:本题考查了数列模型的应用,等差数列的求和公式,属于中档题、20、(16分)在平面直角坐标系xOy中,已知椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,M为x正半轴上的动点、(1)若P在第一象限,且|OP|=,求P的坐标;(2)设P(),若以A、P、M为顶点的三角形是直角三角形,求M的横坐标;(3)若|MA|=|MP|,直线AQ与Γ交于另一点C,且,,求直线AQ的方程、题目分析:(1)设P(x,y)(x>0,y>0),联立,能求出P点坐标、(2)设M(x0,0),A(0,1),P(),由∠P=90°,求出x0=;由∠M=90°,求出x0=1或x0=;由∠A=90°,则M点在x轴负半轴,不合题意、由此能求出点M的横坐标、(3)设C(2cosα,sinα),推导出Q(4cosα,2sinα﹣1),设P(2cosβ,sinβ),M(x0,0)推导出x0=cosβ,从而4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,cosβ=﹣cosα,且sinα=(1﹣2sinα),由此能求出直线AQ、试题解答:解:(1)设P(x,y)(x>0,y>0),∵椭圆Γ:=1,A为Γ的上顶点,P为Γ上异于上、下顶点的动点,P在第一象限,且|OP|=,∴联立,解得P(,)、(2)设M(x0,0),A(0,1),P(),若∠P=90°,则•,即(x0﹣,﹣)•(﹣,)=0,∴(﹣)x0+﹣=0,解得x0=、如图,若∠M=90°,则•=0,即(﹣x0,1)•(﹣x0,)=0,∴=0,解得x0=1或x0=,若∠A=90°,则M点在x轴负半轴,不合题意、∴点M的横坐标为,或1,或、(3)设C(2cosα,sinα),∵,A(0,1),∴Q(4cosα,2sinα﹣1),又设P(2cosβ,sinβ),M(x0,0),∵|MA|=|MP|,∴x02+1=(2cosβ﹣x0)2+(sinβ)2,整理得:x0=cosβ,∵=(4cosα﹣2cosβ,2sinα﹣sinβ﹣1),=(﹣cosβ,﹣sinβ),,∴4cosα﹣2cosβ=﹣5cosβ,且2sinα﹣sinβ﹣1=﹣4sinβ,∴cosβ=﹣cosα,且sinα=(1﹣2sinα),以上两式平方相加,整理得3(sinα)2+sinα﹣2=0,∴sinα=,或sinα=﹣1(舍去),此时,直线AC的斜率k AC=﹣=(负值已舍去),如图、∴直线AQ为y=x+1、点评:本题考查点的坐标的求法,考查直线方程的求法,考查椭圆、直线方程、三角函数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方思想,是中档题、21、(18分)设定义在R上的函数f(x)满足:对于任意的x1、x2∈R,当x1<x2时,都有f(x1)≤f(x2)、(1)若f(x)=ax3+1,求a的取值范围;(2)若f(x)是周期函数,证明:f(x)是常值函数;(3)设f(x)恒大于零,g(x)是定义在R上的、恒大于零的周期函数,M是g(x)的最大值、函数h(x)=f(x)g(x)、证明:“h(x)是周期函数”的充要条件是“f(x)是常值函数”、题目分析:(1)直接由f(x1)﹣f(x2)≤0求得a的取值范围;(2)若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),证明对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),可得f(x0)=f(x0+nT k),n∈Z,再由…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,可得对任意x∈R,f(x)=f(x0)=C,为常数;(3)分充分性及必要性证明、类似(2)证明充分性;再证必要性,然后分类证明试题解答:(1)解:由f(x1)≤f(x2),得f(x1)﹣f(x2)=a(x13﹣x23)≤0,∵x1<x2,∴x13﹣x23<0,得a≥0、故a的范围是[0,+∞);(2)证明:若f(x)是周期函数,记其周期为T k,任取x0∈R,则有f(x0)=f(x0+T k),由题意,对任意x∈[x0,x0+T k],f(x0)≤f(x)≤f(x0+T k),∴f(x0)=f(x)=f(x0+T k)、又∵f(x0)=f(x0+nT k),n∈Z,并且…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴对任意x∈R,f(x)=f(x0)=C,为常数;(3)证明:充分性:若f(x)是常值函数,记f(x)=c1,设g(x)的一个周期为T g,则h(x)=c1•g(x),则对任意x0∈R,h(x0+T g)=c1•g(x0+T g)=c1•g(x0)=h(x0),故h(x)是周期函数;必要性:若h(x)是周期函数,记其一个周期为T h、若存在x1,x2,使得f(x1)>0,且f(x2)<0,则由题意可知,x1>x2,那么必然存在正整数N1,使得x2+N1T k>x1,∴f(x2+N1T k)>f(x1)>0,且h(x2+N1T k)=h(x2)、又h(x2)=g(x2)f(x2)<0,而h(x2+N1T k)=g(x2+N1T k)f(x2+N1T k)>0≠h(x2),矛盾、综上,f(x)>0恒成立、由f(x)>0恒成立,任取x0∈A,则必存在N2∈N,使得x0﹣N2T h≤x0﹣T g,即[x0﹣T g,x0]⊆[x0﹣N2T h,x0],∵…∪[x0﹣3T k,x0﹣2T k]∪[x0﹣2T k,x0﹣T k]∪[x0﹣T k,x0]∪[x0,x0+T k]∪[x0+T k,x0+2T k]∪…=R,∴…∪[x0﹣2N2T h,x0﹣N2T h]∪[x0﹣N2T h,x0]∪[x0,x0+N2T h]∪[x0+N2T h,x0+2N2T h]∪…=Rh(x0)=g(x0)•f(x0)=h(x0﹣N2T h)=g(x0﹣N2T h)•f(x0﹣N2T h),∵g(x0)=M≥g(x0﹣N2T h)>0,f(x0)≥f(x0﹣N2T h)>0、因此若h(x0)=h(x0﹣N2T h),必有g(x0)=M=g(x0﹣N2T h),且f(x0)=f(x0﹣N2T h)=c而由(2)证明可知,对任意x∈R,f(x)=f(x0)=C,为常数21/ 21。
高考数学一模试卷一、选择题(本大题共4小题,共20.0分)1.“m∈{1,2}“是“ln m<1”成立的()A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件2.设集合A={x||x-a|=1},B={1,-3,b},若A⊆B,则对应的实数对(a,b)有()A. 1对B. 2对C. 3对D. 4对3.已知两个不同平面α,β和三条不重合的直线a,b,c,则下列命题中正确的是(()A. 若a∥α,α∩β=b,则a∥bB. 若a,b在平面α内,且c⊥a,c⊥b,则c⊥αC. 若a,b,c是两两互相异面的直线,则只存在有限条直线与a,b,c都相交D. 若α,β分别经过两异面直线a,b,且α∩β=c,则c必与a或b相交4.若直线l:+=1经过第一象限内的点P(,),则ab的最大值为()A. B. 4-2 C. 5-2 D. 6-3二、填空题(本大题共12小题,共54.0分)5.若抛物线y2=mx的焦点坐标为(,0),则实数m的值为______.6.=______.7.不等式的解集是______ .8.已知i为虚数单位,若复数z=+mi是实数,则实数m的值为______.9.设函数f(x)=log a(x+4)(a>0且a≠1),若其反函数的零点为2,则a=______.10.(1+)(1-x)6展开式中含x2项的系数为______(结果用数值表示).11.各项都不为零的等差数列{a n}(n∈N*)满足a2-2a82+3a10=0,数列{b n}是等比数列,且a8=b8,则b4b9b11=______.12.设椭圆Γ:+y2=1(a>1),直线1过Γ的左顶点A交y轴于点P,交Γ于点Q,若△AOP是等腰三角形(O为坐标原点),且=2,则Γ的长轴长等于______.13.记a,b,c,d,e,f为1,2,3,4,5,6的任意一个排列,则(a+b)(c+d)(e+f)为偶数的排列的个数共有______.14.已知函数f(x)=(x2+8x+15)(ax2+bx+c)(a,b,c∈R)是偶函数,若方程ax2+bx+c=1在区间[1,2]上有解,则实数a的取值范围是______.15.设P是边长为2的正六边形A1A2A3A4A5A6的边上的任意一点,长度为4的线段MN是该正六边形外接圆的一条动弦,则•的取值范围为______.16.若M、N两点分别在函数y=f(x)与y=g(x)的图象上,且关于直线x=1对称,则称M、N是y=f(x)与y=g(x)的一对“伴点”(M、N与N、M视为相同的一对),已知f(x)=,g(x)=|x+a|+1,若y=f(x)与y=g(x)存在两对“件点”,则实数a的取值范围为______.三、解答题(本大题共5小题,共76.0分)17.如图所示的三棱锥P-ABC的三条棱PA,AB,AC两两互相垂直,AB=AC=2PA=2,点D在棱AC上,且=λ(λ>0).(1)当λ=时,求异面直线PD与BC所成角的大小;(2)当三棱锥D-PBC的体积为时,求λ的值.18.设函数f(x)=.(1)当a=-4时,解不等式f(x)<5;(2)若函数f(x)在区间[2,+∞)上是增函数,求实数a的取值范围.19.某居民小区为缓解业主停车难的问题,拟对小区内一块扇形空地AOB进行改建.如图所示,平行四边形OMPN区域为停车场,其余部分建成绿地,点P在围墙AB弧上,点M和点N分别在道路OA和道路OB上,且OA=60米,∠AOB=60°,设∠POB=θ.(1)求停车场面积S关于θ的函数关系式,并指出θ的取值范围;(2)当θ为何值时,停车场面积S最大,并求出最大值(精确到0.1平方米).20.已知双曲线Γ:-=1(a>0,b>0)的焦距为4,直线1:x-my-4=0(m∈R)与Γ交于两个不同的点D、E,且m=0时直线l与Γ的两条渐近线所围成的三角形恰为等边三角形.(1)求双曲线Γ的方程;(2)若坐标原点O在以线段DE为直径的圆的内部,求实数m的取值范围;(3)设A、B分别是Γ的左、右两顶点,线段BD的垂直平分线交直线BD于点P,交直线AD于点Q,求证:线段PQ在x轴上的射影长为定值.21.数列{a n}与{b n}满足a1=a,b n=a n+1-a n,S n是数列{a n}的前n项和(n∈N*).(1)设数列{b n}是首项和公比都为-的等比数列,且数列{a n}也是等比数列,求a的值;(2)设b n+1-b n=2n-1,若a=3且a n≥a4对n∈N*恒成立,求a2的取值范围;(3)设a=4,b n=2.C n=(n∈N*,λ≥-2),若存在整数k,1,且k>l>1,使得C k=C l成立,求λ的所有可能值.答案和解析1.【答案】A【解析】解:ln m<1⇔0<m<e,∵{1,2}⫋(0,e),∴m∈{1,2}“是“ln m<1”成立的充分非必要条件,故选:A.先求出命题所对应的集合,讨论集合之间的包含关系,得出结论.本题考查解不等式,简易逻辑,属于基础题.2.【答案】D【解析】解:因为集合A={x||x-a|=1},所以A={a-1,a+1},因为B={1,-3,b},A⊆B,所以a-1=1,或a-1=-3,或a-1=b,①当a-1=1时,即a=2,A={1,3},此时可知B={1,-3,3},成立,即a=2,b=3;②当a-1=-3时,即a=-2,A={-3,-1},此时可知B={1,-3,-1},成立,即a=-2,b=-1;③当a-1=b时,则a+1=1或-3:当a+1=1时,即a=0,A={-1,1},此时可知B={1,-3,-1},成立,即a=0,b=-1;当a+1=-3时,即a=-4,A={-5,-3},此时可知B={1,-3,-5},成立,即a=-4,b=-5;综上所述:a=2,b=3,或a=-2,b=-1,或a=0,b=-1,或a=-4,b=-5,共4对.故选:D.先解出A,再讨论包含关系(注意集合元素互异性),解出数对.本题考查集合关系,综合集合元素互异性,属于基础题.3.【答案】D【解析】解:对于选项A:若a∥α,α∩β=b,则直线a也可能与直线b异面,故错误.对于选项B,只有直线a和b为相交直线时,若c⊥a,c⊥b,则c⊥α.故错误对于选项C:若a,b,c是两两互相异面的直线,则存在无限条(虚线)直线与a,b,c都相交.故错误如图所示:对于选项D:若α,β分别经过两异面直线a,b,且α∩β=c,则c必与a或b相交,正确.故选:D.直接利用定义和判定定理的应用求出结果.本题考查的知识要点:立体几何中的定义和判定的定理的应用,主要考查学生对定义的理解能力,属于基础题型.4.【答案】B【解析】解:直线l:+=1经过第一象限内的点P(,),则a,b>0,+=1.∴ab=ab(+)=+=+.令=t>0,g(t)=+,(t>0).∴g′(t)=-=,可得t=时,g(t)取得极大值即最大值,g()=4-2.故选:B.直线l:+=1经过第一象限内的点P(,),可得a,b>0,+=1.ab=ab (+)=+.令=t>0,g(t)=+,(t>0).利用导数已经函数的单调性极值最值即可得出.本题考查了直线方程、换元法、利用导数研究函数的单调性极值与最值式,考查了推理能力与计算能力,属于中档题.5.【答案】2【解析】解:由抛物线方程得:焦点坐标(,0),∴=,∴m=2,故答案为:2.直接由抛物线方程写出焦点坐标,由题意得求出m的值.考查抛物线方程写焦点坐标,属于基础题.6.【答案】3【解析】解:===3.故答案为:3.利用数列的极限的运算法则化简求解即可.本题考查数列的极限的运算法则是应用,是基本知识的考查,基础题.7.【答案】{x|0<x<1}【解析】解:∵>1,∴-1=>0,∴>0,∴0<x<1.∴不等式的解集为{x|0<x<1}.故答案为:{x|0<x<1}.将不等式>1移项后通分,即可求得不等式的解集.本题考查不等式的解法,移项后通分是关键,属于基础题.8.【答案】【解析】解:∵复数z=+mi=是实数,∴m-,即m=.故答案为:.利用复数代数形式的乘除运算化简,再由虚部为0求解m值.本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.9.【答案】2【解析】解:函数f(x)=log a(x+4)(a>0且a≠1),若其反函数的零点为2,即函数过(0,2),代入2=log a(0+4),a2=4,a=2(a>0),故答案为:2.根据函数过(0,2)代入求出即可.考查函数与反函数的关系,对数的运算,基础题.10.【答案】9【解析】解:二项式(1-x)6的展开式中,通项公式为T r+1==•(-1)r•x r,分别取r=2,5,可得(1+)(1-x)6展开式中含x2项的系数为:.故答案为:9.求出(1-x)6展开式中的常数项和含x2项,利用多项式乘多项式得答案.本题考查了二项式展开式通项公式的应用问题,是基础题.11.【答案】8【解析】解:各项均不为0的等差数列{a n}满足a2-2a82+3a10=0,∴+3(a1+9d)=0,化为:a1+7d=2=a8,∵数列{b n}是等比数列,且b8=a8=2,∴b4b9b11=.故答案为:8.由已知等式结合等差数列的通项公式求得a8,再由等比数列的通项公式结合a8=b8求解b4b9b11的值.本题考查了等差数列与等比数列的通项公式及其性质,考查了推理能力与计算能力,属于中档题.12.【答案】2【解析】解:如图所示,设Q(x0,y0).由题意可得:A(-a,0),P(0,a).∵=2,∴(x0,y0-a)=2(-a-x0,-y0),∴x0=-,y0=.代入椭圆Γ方程可得:+=1,解得a=.∴Γ的长轴长等=2.故答案为:2.如图所示,设Q(x0,y0).由题意可得:A(-a,0),P(0,a).根据=2,可得x0,y0.代入椭圆Γ方程解得a,即可得出.本题考查了椭圆的标准方程及其性质、向量坐标运算性质,考查了推理能力与计算能力,属于中档题.13.【答案】432【解析】解:根据题意,a,b,c,d,e,f为1,2,3,4,5,6的任意一个排列,则共有A66=720个排列,若(a+b)(c+d)(e+f)为偶数的对立事件为“(a+b)(c+d)(e+f)为奇数”,(a+b)、(c+d)、(e+f)全部为奇数,有6×3×4×2×2×1=288,故则(a+b)(c+d)(e+f)为偶数的排列的个数共有720-288=432.故答案为:432.若(a+b)(c+d)(e+f)为偶数的对立事件为“(a+b)(c+d)(e+f)为奇数”,即(a+b)、(c+d)、(e+f)全部为奇数,根据计数原理计算其个数,由a,b,c,d,e,f为1,2,3,4,5,6的任意一个排列,共有种,进而可得所求.本题考查排列、组合的应用,涉及分步计数原理的应用,考查分析解决问题的能力,属于中档题.14.【答案】【解析】解:∵f(x)=(x2+8x+15)(ax2+bx+c)是偶函数,图象关于y轴对称,令x2+8x+15=0可得,x=-3或x=-5,根据偶函数图象的对称性可知,3,5是ax2+bx+c=0的两个根,,∴,由ax2+bx+c=1可得,ax2-8ax+15a=1,∵x∈[1,2]时,x2-8x+15∈[3,8],∴a=故答案为:.由f(x)是偶函数,图象关于y轴对称,可知,3,5是ax2+bx+c=0的两个根,根据方程的根与系数关系可求得a,b,c的关系,然后结合二次函数的性质可求a的范围.本题主要考查函数解析式的求解以及不等式的求解,根据函数奇偶性的性质求出函数的解析式是解决本题的关键.15.【答案】[6-4,8+8]【解析】解:设正六边形外接圆的圆心为O,正六边形A1A2A3A4A5A6的边长为,所以半径为2,设MN的中点为Q,则=()•()=+•()+,因为与为相反向量,所以•()=0,=-4,所以•=,因为|OQ|=2,所以Q在以O为圆心,以2为半径的圆上,|PQ|max=2+2,|PQ|min=-2,•=的最大值为8+8,最小值为6-4,所以•的取值范围为[6-4,8+8].关键把•转化为含定值的形式,取MN的中点,再由Q的轨迹,可求得的最大值与最小值,进而可求得取值范围.本题主要考查平面向量数量积的性质及其运算,属于中档题.16.【答案】(3-2,1+)【解析】解:设曲线y=f(x)关于x=1的对称图象上的点为(x,y),(x,y)关于x=1的对称点为(x′,y′),则x′=2-x,y′=y,代入f(x)=,得h(x)=.作出函数h(x)=的图象如图,函数g(x)=|x+a|+1的图象是把y=|x|+1向左(a>0)或向右(a<0)平移|a|个单位得到的.由图可知,要使y=f(x)与y=g(x)存在两对“伴点”,需要把g(x)=|x+a|+1向左平移.则a>0,设直线y=-(x+a)+1,即x+y+a-1=0,由圆心(-2,0)到直线的距离为2,得,解得a=3-或a=3+2(舍);设直线y=(x+a)+1,即x-y+a+1=0,由圆心(-2,0)到直线的距离为2,得,解得a=1+2或a=1-2(舍).∴要使y=f(x)与y=g(x)存在两对“伴点”,则实数a的取值范围为(3-2,1+).故答案为:(3-2,1+).求出f(x)关于直线x=1的对称图象所对应的函数解析式h(x),画出图形,再由函数图象的平移结合新定义求解实数a的取值范围.本题主要考查对新定义函数的图象和性质应用,考查数形结合和转化的数学思想,属于中档题.17.【答案】解:(1)作DE∥CB,交AB于E,连结PE,则异面直线PD与BC所成角为∠PDE,△ABC中,DE==,PD=PE=,∴△PDE是等边三角形,∴∠PDE=,∴当λ=时,异面直线PD与BC所成角的大小为.(2)如图,V D-PBC=V P-DBC===,解得CD=,∴AD=,∴λ=.【解析】(1)作DE∥CB,交AB于E,连结PE,则异面直线PD与BC所成角为∠PDE,由此能求出当λ=时,异面直线PD与BC所成角的大小.(2)由V D-PBC=V P-DBC=,能求出结果.本题考查异面直线所成角的大小的求法,考查实数值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.18.【答案】解:(1)依题意得:f(x)=2x-a•2-x,当a=-4时,不等式化简为,令2x=t,整理得t2-5t+4<0,解得1<t<4,故0<x<2.所以x∈(0,2).(2)由于函数f(x)=在区间[2,+∞)上是增函数,令2x=t∈[4,+∞),由y=t知函数为单调递增函数,所以在[4,+∞)上也单调递增,①当a≥0时,满足条件.②当a<0时,则由耐克函数得:,所以-16≤a<0,综上所述a∈[-16,+∞).【解析】(1)直接利用换元法的应用求出不等式的解集.(2)利用函数的单调性和耐克函数的应用求出结果.本题考查的知识要点:不等式的解法及应用,换元法的应用,函数的性质单调性的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.19.【答案】解:(1)△OPN中,由正弦定理得,=,即=,解得ON=40sin(-θ);所以停车场面积S关于θ的函数关系式为S=40sin(-θ)•60sinθ=2400sin(-θ)sinθ,其中θ∈(0,);(2)由S=2400sin(-θ)sinθ=2400(cosθ-sinθ)•sinθ=1200(sinθcosθ-sin2θ)=1200(sin2θ+cos2θ-)=1200[sin(2θ+)-];当2θ+=,即θ=时,停车场面积S最大,最大值为:1200×(1-)=600=600×1.732=1039.2(平方米).【解析】(1)由正弦定理求得ON,再计算停车场面积S关于θ的函数关系式;(2)化简函数解析式S,求出S的最大值以及取最大值时对应θ的值.本题考查了三角函数模型的应用问题,也考查了运算求解能力,是中档题.20.【答案】解:(1)双曲线Γ:-=1(a>0,b>0)的焦距为4,可得c=2,m=0时直线l:x=4与Γ的两条渐近线y=±x所围成的三角形恰为等边三角形,可得4=•,即a=b,又a2+b2=4,解得a=,b=1,则双曲线的方程为-y2=1;(2)设D(x1,y1),E(x2,y2),联立直线x-my-4=0和x2-3y2=3,可得(m2-3)y2+8my+13=0,第11页,共12页即有y 1+y 2=-,y 1y 2=,可得DE 的中点F (-,-),|DE|=•=•,若坐标原点O 在以线段DE 为直径的圆的内部,可得|OF |<|DE |, 即+<•(1+m 2)•,化为3m 4+26m 2-105>0,解得m 2>3,即有m >或m <-;(3)证明:双曲线的顶点A (-,0),B (,0),由(2)可得线段BD 的垂直平分线交直线BD 于点P (,),直线BD 的斜率为,可得BD 的垂直平分线方程为y -=-(x -),①AD 的方程为y =(x +),②由D 在双曲线上可得x 12-3y 12=3,即x 12-3=3y 12,③联立①②③解得x Q =+,则线段PQ 在x 轴上的射影长为|x P -x Q|=.即为定值.【解析】(1)求得双曲线的c =2,由等边三角形的性质可得a ,b 的方程,结合a ,b ,c 的关系求得a ,b ,进而得到双曲线的方程;(2)设D (x 1,y 1),E (x 2,y 2),联立直线x -my -4=0和x 2-3y 2=3,应用韦达定理和弦长公式,设DE 的中点为F ,求得F 的坐标,由题意可得|OF |<|DE |,应用两点的距离公式,解不等式可得所求范围;(3)求得A ,B 的坐标和P 的坐标,求得BD 的垂直平分线方程和AD 的方程,联立解得Q 的坐标,求出|x P -x Q |,即可得证.本题考查双曲线的方程和应用,考查直线方程和双曲线方程联立,应用韦达定理和弦长公式,以及直线方程联立求交点,考查化简运算能力,属于中档题.21.【答案】解:(1)数列{b n }是首项和公比都为-的等比数列,所以.数列{a n }与{b n }满足a 1=a ,b n =a n +1-a n ,所以.所以,,由于数列{a n }也是等比数列,所以,整理得,解得a =.(2)由b n +1-b n =2n-1,所以=.由于b 1=a 2-3, 所以.再利用累加法,得到:,依题意:a n≥a4对n∈N*恒成立,所以,令n=1,2,3,4,5,得到a2∈[-8,-1].(3)由于a=4,b n=2.所以a n+1-a n=2,整理得a n=2n+2.故.所以C n ==,假设存在整数k,1,且k>l>1,使得C k=C l成立,故=,当或时,满足条件.【解析】(1)直接利用等比数列的定义和等比中项的应用求出结果.(2)利用累加法和恒成立问题的应用和赋值法的应用求出结果.(3)利用存在性问题的应用和赋值法的应用求出结果.本题考查的知识要点:递推关系式的应用,数列的通项公式的求法及应用,累加法的应用,存在性问题的应用,主要考查学生的运算能力和转换能力及思维能力,属于中档题型.第12页,共12页。
普陀区2016-2017学年第一学期高三数学质量调研一、填空题(本大题共有12题,满分54分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对前6题得4分、后6题得5分,否则一律得零分.1.若集合{}R ,|2∈==y x y x A ,{}R ,sin |∈==x x y y B ,则=B A I .2. 若22παπ<<-,53sin =α,则=α2cot . 3. 函数x x f 2log 1)(+=(1≥x )的反函数=-)(1x f.4. 若5522105)1(x a x a x a a x ++++=+Λ,则=+++521a a a Λ .5. 设∈k R ,若1222=--k x k y 表示焦点在y 轴上的双曲线,则半焦距的取值范围是 .6. 设∈m R ,若函数()11)(32+++=mx x m x f 是偶函数,则)(x f 的单调递增区间是 .7. 方程()()23log 259log 22-+=-xx 的解=x .8. 已知圆C :022222=++++k y kx y x (R k ∈)和定点()1,1-P ,若过P 可以作两条直线与圆C 相切,则的取值范围是 .9. 如图,在直三棱柱111C B A ABC -中,︒=∠90ABC ,1==BC AB , 若C A 1与平面11BCC B 所成的角为6π,则三棱锥ABC A -1的体积 为 .10.掷两颗骰子得两个数,若两数的差为d ,则{}2,1,0,1,2--∈d 出现的概率的最大值为 (结果用最简分数表示).11. 设地球半径为R ,若A 、B 两地均位于北纬︒45,且两地所在纬度圈上的弧长为R π42,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示).12. 已知定义域为R 的函数)(x f y =满足)()2(x f x f =+,且11<≤-x 时,21)(x x f -=;函数⎩⎨⎧=≠=.0,1,0,lg )(x x x x g ,若)()()(x g x f x F -=,则[]10,5-∈x ,函数)(x F 零点的个数是 .二、选择题(本大题共有4题,满分20分)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.13.若b a <0<,则下列不等关系中,不能成立....的是……………………( ). )A (b a 11> ()B ab a 11>- ()C 3131b a < ()D 22b a >14.设无穷等比数列{}n a 的首项为1a ,公比为,前项和为n S .则“11=+q a ”是“1lim =∞→n n S ”成立的……( ))A (充分非必要条件 ()B 必要非充分条件()C 充要条件 ()D 既非充分也非必要条件15. 设βα--l 是直二面角,直线在平面α内,直线在平面β内,且、与均不垂直,则( ) )A (与可能垂直,但不可能平行 ()B 与可能垂直,也可能平行 ()C 与不可能垂直,但可能平行 ()D 与不可能垂直,也不可能平行16. +的最小值为,则下列判断正确的是( ))A ( ()B 确定,则唯一确定()C ()D三、解答题(本大题共有5题,满分76分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤17.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知∈a R ,函数||1)(x a x f +=(1)当1=a 时,解不等式x x f 2)(≤;(2)若关于的方程02)(=-x x f 在区间[]1,2--上有解,求实数的取值范围.18. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分已知椭圆Γ:12222=+by a x (0>>b a )的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,x PQ ⊥轴,垂足为Q ,且621=F F ,935arccos 21=∠F PF ,△21F PF 的面积为23.(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求MQ 的最大值,并求出MQ 取得最大值时M 的坐标.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为8.73/cm g ,总重量为8.5kg .其中一个螺帽的三视图如下图所示(单位:毫米). (1)这堆螺帽至少有多少个;(2)对上述螺帽作防腐处理,每平方米需要耗材千克, 共需要多少千克防腐材料(结果精确到01.0)20. (本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{}n a 的各项均为正数,且11=a ,对于任意的*N n ∈,均有()14121+⋅=-+n n n a a a , =n b ()11log 22-+n a .(1)求证:{}n a +1是等比数列,并求出{}n a 的通项公式; (2) 若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求10021c c c +++Λ; (3)设11+⋅=n n n b b d ,数列{}n d 的前项和为n T ,是否存在正整数m (n m <<1),使得1T 、m T 、n T 成等比数列,若存在,求出m 的值;若不存在,请说明理由.21. (本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分.已知函数)(x f y =,若存在实数m 、(0≠m ),使得对于定义域内的任意实数,均有)()()(k x f k x f x f m -++=⋅成立,则称函数)(x f 为“可平衡”函数,有序数对()k m ,称为函数)(x f 的“平衡”数对.(1)若1=m ,判断x x f sin )(=是否为“可平衡”函数,并说明理由;(2)若∈a R ,0≠a ,当变化时,求证:2)(x x f =与xa x g 2)(+=的“平衡”数对相同; (3)若1m 、2m R ,且⎪⎭⎫⎝⎛2,1πm 、⎪⎭⎫ ⎝⎛4,2πm 均为函数x x f 2cos )(=的“平衡”数对. 当40π≤<x 时,求2221m m +的取值范围.普陀区2016-2017学年第一学期高三数学质量调研评分标准一、填空题(本大题共有12题,满分54分) 1-6::4分;7-12:5分。
1.[]1,0. 2.247. 3. ()12-x (1≥x ). 4. 31. 5. 2>c . 6. [)+∞,0. 7. 1. 8.2-<k 或0>k . 9.62. 10.61. 11.3R π. 12. 15. 二、选择题(本大题共有4题,满分20分)三、解答题17.(本题满分14分)本题共有2个小题,第1小题满分7分,第2小题满分7分 【解】(1)当1=a 时,||11)(x x f +=,所以x x f 2)(≤x x 2||11≤+⇔……(*) ①若0>x ,则(*)变为,0)1)(12(≥-+x x x 021<≤-⇔x 或1≥x ,所以1≥x ;②若0<x ,则(*)变为,0122≥+-xx x 0>⇔x ,所以φ∈x 由①②可得,(*)的解集为[)+∞,1。
(2)02)(=-x x f ⇔02||1=-+x x a ,即xx a 12+=其中[]1,2--∈x 令)(x g =xx 12+,其中[]1,2--∈x ,对于任意的1x 、[]1,22--∈x 且21x x < 则()=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫ ⎝⎛+=-2211211212)(x x x x x g x g ()()21212112x x x x x x -- 由于1221-≤<≤-x x ,所以021<-x x ,021>x x ,4121<<x x ,所以01221>-x x 所以()()21212112x x x x x x --0<,故())(21x g x g <,所以函数)(x g 在区间[]1,2--上是增函数所以=-29()≤-2g )(x g ()31-=-≤g ,即⎥⎦⎤⎢⎣⎡--∈3,29)(x g ,故⎥⎦⎤⎢⎣⎡--3,2918. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 【解】(1)在△21F PF 中,由935arccos21=∠F PF 得935cos 21=∠F PF 96sin 21=∠F PF 因为△21F PF 的面积为23,621=F F ,所以23sin 2121121=∠⋅⋅F PF PF F F . 解得331=PF (2)分在△21F PF 中,由余弦定理得,212112212122cos 2F PF F F PF F F PF PF ∠⋅⋅-+=,所以322=PF ,故32=PF ,于是34221=+=PF PF a ,故32=a ……4分,由于3=c ,所以3=b ,故椭圆Γ的方程为131222=+y x (2)设()00,y x P ,根据题意可知2321021=⋅⋅y F F ,故20±=y ,由于00>y ,所以20=y ……7分,将20=y 代入椭圆方程得,1321220=+x ,解得20±=x ,由于00>x ,所以20=x ,故Q 的坐标为()0,2……8分 令()y x M ,,则131222=+y x ,所以4322x y -=()2222y x MQ +-=74432+-=x x 3538432+⎪⎭⎫ ⎝⎛-=x ,其中3232≤≤-x ……11分,所以当32-=x 时,2MQ 的最大值为3816+,故MQ 的最大值为()132+…13分,此时点M 的坐标为()0,32-.19. (本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分 【解】设正六棱柱的底边边长为,高为,圆孔的半径为,并设螺帽的表面积为表S ,根据三视图可知,12=a ,10=h ,5=r ,则(1)设螺帽的体积为V ,则h S V ⋅=底,其中=底S 2260sin 216r a π-⨯⨯⨯︒π253216-高10=h ,螺帽的体积()10253216⋅-=πV ,()252102532161008.710008.5≈⋅-⨯÷⨯π个(2)⎪⎭⎫⎝⎛⋅-⨯⨯⨯⨯+=︒2260sin 21626r a ah S π表h a ⋅⋅+π2 ⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯⨯⨯+⨯⨯=2252312216210126π1052⋅⋅+π()05.011.02521010025321627206≈⨯⨯+-⨯+ππ(千克) 答:这堆零件至少有252个,防腐共需要材料05.0千克。