第三章 证明(三)桃园中学单元测验题
- 格式:doc
- 大小:69.00 KB
- 文档页数:4
深圳深圳市南山区桃源中学七年级下册数学期末试卷章末练习卷(Word 版 含解析)一、解答题1.如图1,点A 在直线MN 上,点B 在直线ST 上,点C 在MN ,ST 之间,且满足MAC ACB SBC ∠+∠+∠360=︒.(1)证明://MN ST ;(2)如图2,若60ACB ∠=︒,//AD CB ,点E 在线段BC 上,连接AE ,且2DAE CBT ∠=∠,试判断CAE ∠与CAN ∠的数量关系,并说明理由;(3)如图3,若180ACB n︒∠=(n 为大于等于2的整数),点E 在线段BC 上,连接AE ,若MAE n CBT ∠=∠,则:CAE CAN ∠∠=______.2.如图,直线//PQ MN ,一副直角三角板,ABC DEF ∆∆中,90,45,30,60ACB EDF ABC BAC DFE DEF ︒︒︒︒∠=∠=∠=∠=∠=∠=.(1)若DEF ∆如图1摆放,当ED 平分PEF ∠时,证明:FD 平分EFM ∠.(2)若,ABC DEF ∆∆如图2摆放时,则PDE ∠=(3)若图2中ABC ∆固定,将DEF ∆沿着AC 方向平移,边DF 与直线PQ 相交于点G ,作FGQ ∠和GFA ∠的角平分线GH FH 、相交于点H (如图3),求GHF ∠的度数.(4)若图2中DEF ∆的周长35,5cm AF cm =,现将ABC ∆固定,将DEF ∆沿着CA 方向平移至点F 与A 重合,平移后的得到''D E A ∆,点D E 、的对应点分别是''D E 、,请直接写出四边形'DEAD 的周长.(5)若图2中DEF ∆固定,(如图4)将ABC ∆绕点A 顺时针旋转,1分钟转半圈,旋转至AC 与直线AN 首次重合的过程中,当线段BC 与DEF ∆的一条边平行时,请直接写出旋转的时间.3.已知,AB ∥CD ,点E 在CD 上,点G ,F 在AB 上,点H 在AB ,CD 之间,连接FE ,EH ,HG ,∠AGH =∠FED ,FE ⊥HE ,垂足为E . (1)如图1,求证:HG ⊥HE ;(2)如图2,GM 平分∠HGB ,EM 平分∠HED ,GM ,EM 交于点M ,求证:∠GHE =2∠GME ;(3)如图3,在(2)的条件下,FK 平分∠AFE 交CD 于点K ,若∠KFE :∠MGH =13:5,求∠HED 的度数.4.综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础.已知:AM ∥CN ,点B 为平面内一点,AB ⊥BC 于B .问题解决:(1)如图1,直接写出∠A 和∠C 之间的数量关系; (2)如图2,过点B 作BD ⊥AM 于点D ,求证:∠ABD =∠C ;(3)如图3,在(2)问的条件下,点E 、F 在DM 上,连接BE 、BF 、CF ,BF 平分∠DBC ,BE 平分∠ABD ,若∠FCB +∠NCF =180°,∠BFC =3∠DBE ,则∠EBC = .5.已知,如图:射线PE 分别与直线AB 、CD 相交于E 、F 两点,PFD ∠的角平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设PFM α∠=︒,EMF β∠=︒且()2350αβα-+-=.(1)α=________,β=________;直线AB 与CD 的位置关系是______;(2)如图,若点G 是射线MA 上任意一点,且MGH PNF ∠=∠,试找出FMN ∠与GHF ∠之间存在一个什么确定的数量关系?并证明你的结论.(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图)分别与AB 、CD 相交于点1M 和点1N 时,作1PM B ∠的角平分线1M Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值变不变?若不变,请求出其值;若变化,请说明理由.二、解答题6.已知直线//AB CD ,M ,N 分别为直线AB ,CD 上的两点且70MND ∠=︒,P 为直线CD 上的一个动点.类似于平面镜成像,点N 关于镜面MP 所成的镜像为点Q ,此时,,NMP QMP NPM QPM MNP MQP ∠=∠∠=∠∠=∠.(1)当点P 在N 右侧时:①若镜像Q 点刚好落在直线AB 上(如图1),判断直线MN 与直线PQ 的位置关系,并说明理由;②若镜像Q 点落在直线AB 与CD 之间(如图2),直接写出BMQ ∠与DPQ ∠之间的数量关系;(2)若镜像PQ CD ⊥,求BMQ ∠的度数. 7.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF ∥MN ,点A 、B 分别为直线EF 、MN 上的一点,点P 为平行线间一点,请直接写出∠PAF 、∠PBN 和∠APB 之间的数量关系; (问题迁移)(2)如图2,射线OM 与射线ON 交于点O ,直线m ∥n ,直线m 分别交OM 、ON 于点A 、D ,直线n 分别交OM 、ON 于点B 、C ,点P 在射线OM 上运动.①当点P 在A 、B (不与A 、B 重合)两点之间运动时,设∠ADP =∠α,∠BCP =∠β.则∠CPD ,∠α,∠β之间有何数量关系?请说明理由;②若点P 不在线段AB 上运动时(点P 与点A 、B 、O 三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD ,∠α,∠β之间的数量关系.8.如图,AB ⊥AK ,点A 在直线MN 上,AB 、AK 分别与直线EF 交于点B 、C ,∠MAB+∠KCF =90°.(1)求证:EF ∥MN ;(2)如图2,∠NAB 与∠ECK 的角平分线交于点G ,求∠G 的度数;(3)如图3,在∠MAB 内作射线AQ ,使∠MAQ =2∠QAB ,以点C 为端点作射线CP ,交直.线.AQ 于点T ,当∠CTA =60°时,直接写出∠FCP 与∠ACP 的关系式.9.已知射线//AB 射线CD ,P 为一动点,AE 平分PAB ∠,CE 平分PCD ∠,且AE 与CE 相交于点E .(注意:此题不允许使用三角形,四边形内角和进行解答)(1)在图1中,当点P 运动到线段AC 上时,180APC ∠=︒.直接写出AEC ∠的度数; (2)当点P 运动到图2的位置时,猜想AEC ∠与APC ∠之间的关系,并加以说明; (3)当点P 运动到图3的位置时,(2)中的结论是否还成立?若成立,请说明理由:若不成立,请写出AEC ∠与APC ∠之间的关系,并加以证明. 10.已知直线//EF MN ,点,A B 分别为EF , MN 上的点.(1)如图1,若120FAC ACB ∠=∠=︒,12CAD FAC ∠=∠, 12CBD CBN ∠=∠,求CBN∠与ADB ∠的度数;(2)如图2,若120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠,则ADB =∠_________︒;(3)若把(2)中“120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠”改为“FAC ACB m ∠=∠=︒,1CAD FAC n∠=∠, 1CBD CBN n ∠=∠”,则ADB =∠_________︒.(用含,m n 的式子表示)三、解答题11.己知:如图①,直线MN ⊥直线PQ ,垂足为O ,点A 在射线OP 上,点B 在射线OQ 上(A 、B 不与O 点重合),点C 在射线ON 上且2OC =,过点C 作直线//l PQ .点D 在点C 的左边且3CD =(1)直接写出的BCD ∆面积 ;(2)如图②,若AC BC ⊥,作CBA ∠的平分线交OC 于E ,交AC 于F ,试说明CEF CFE ∠=∠;(3)如图③,若ADC DAC ∠=∠,点B 在射线OQ 上运动,ACB ∠的平分线交DA 的延长线于点H ,在点B 运动过程中HABC∠∠的值是否变化?若不变,求出其值;若变化,求出变化范围. 12.模型与应用. (模型)(1)如图①,已知AB ∥CD ,求证∠1+∠MEN +∠2=360°.(应用)(2)如图②,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6的度数为 .如图③,已知AB ∥CD ,则∠1+∠2+∠3+∠4+∠5+∠6+…+∠n 的度数为 .(3)如图④,已知AB∥CD,∠AM1M2的角平分线M1 O与∠CM n M n-1的角平分线M n O交于点O,若∠M1OM n=m°.在(2)的基础上,求∠2+∠3+∠4+∠5+∠6+……+∠n-1的度数.(用含m、n的代数式表示)13.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC 的面积记为S2.则S1=S2.解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 .拓展延伸:(1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为.(2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 .14.【问题探究】如图1,DF∥CE,∠PCE=∠α,∠PDF=∠β,猜想∠DPC与α、β之间有何数量关系?并说明理由;【问题迁移】如图2,DF∥CE,点P在三角板AB边上滑动,∠PCE=∠α,∠PDF=∠β.(1)当点P在E、F两点之间运动时,如果α=30°,β=40°,则∠DPC= °.(2)如果点P 在E 、F 两点外侧运动时(点P 与点A 、B 、E 、F 四点不重合),写出∠DPC 与α、β之间的数量关系,并说明理由.(图1) (图2)15.互动学习课堂上某小组同学对一个课题展开了探究.小亮:已知,如图三角形ABC ,点D 是三角形ABC 内一点,连接BD ,CD ,试探究BDC ∠与A ∠,1∠,2∠之间的关系. 小明:可以用三角形内角和定理去解决. 小丽:用外角的相关结论也能解决.(1)请你在横线上补全小明的探究过程: ∵180BDC DBC BCD ∠+∠+∠=︒,(______) ∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质) ∵12180A DBC BCD ∠+∠+∠+∠+∠=︒, ∴12180A DBC BCD ∠+∠+∠=︒-∠-∠, ∴12BDC A ∠=∠+∠+∠.(______) (2)请你按照小丽的思路完成探究过程; (3)利用探究的结果,解决下列问题:①如图①,在凹四边形ABCD 中,135BDC ∠=︒,25B C ∠=∠=︒,求A ∠=______; ②如图②,在凹四边形ABCD 中,ABD ∠与ACD ∠的角平分线交于点E ,60A ∠=︒,140BDC ∠=︒,则E ∠=______;③如图③,ABD ∠,ACD ∠的十等分线相交于点、1F 、2F 、…、9F ,若120BDC ∠=︒,364BF C ∠=︒,则A ∠的度数为______;④如图④,BAC ∠,BDC ∠的角平分线交于点E ,则B ,C ∠与E ∠之间的数量关系是______;⑤如图⑤,ABD ∠,BAC ∠的角平分线交于点E ,40C ∠=︒,140BDC ∠=︒,求AEB ∠的度数.【参考答案】一、解答题1.(1)见解析;(2)见解析;(3)n-1 【分析】(1)连接AB ,根据已知证明∠MAB+∠SBA=180°,即可得证; (2)作CF ∥ST ,设∠CBT=α,表示出∠CAN ,∠ACF ,∠BCF ,根据 解析:(1)见解析;(2)见解析;(3)n -1 【分析】(1)连接AB ,根据已知证明∠MAB +∠SBA =180°,即可得证;(2)作CF ∥ST ,设∠CBT =α,表示出∠CAN ,∠ACF ,∠BCF ,根据AD ∥BC ,得到∠DAC =120°,求出∠CAE 即可得到结论;(3)作CF ∥ST ,设∠CBT =β,得到∠CBT =∠BCF =β,分别表示出∠CAN 和∠CAE ,即可得到比值. 【详解】解:(1)如图,连接AB ,,360MAC ACB SBC ∠+∠+∠=︒,180ACB ABC BAC ∠+∠+∠=︒,180MAB SBA ∴∠+∠=︒, //MN ST ∴(2)2CAE CAN ∠=∠,理由:作//CF ST ,则////,MN CF ST 如图,设CBT α∠=,则2DAE α∠=.BCF CBT α∠=∠=,60CAN ACF α∠=∠=︒-,//AD BC ,180120DAC ACB ∠=︒-∠=︒,12012022(60)2CAE DAE CAN αα∴∠=︒-∠=︒-=︒-=∠.即2CAE CAN ∠=∠.(3)作//CF ST ,则////,MN CF ST 如图,设CBT β∠=,则MAE n β∠=.//CF ST ,CBT BCF β∴∠=∠=,180180n ACF CAN n nββ︒︒-∠=∠=-=, 1801180180(180)n CAE MAE CAN n n n n βββ︒-∠=︒-∠-∠=︒--+=︒-, 11::1n CAE CAN n n n-∠∠==-, 故答案为1n -.【点睛】本题主要考查平行线的性质和判定,解题关键是角度的灵活转换,构建数量关系式. 2.(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E 作EK ∥MN ,利用平行线性解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm ;(5)10s 或30s 或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E 作EK ∥MN ,利用平行线性质即可求得答案;(3)如图3,分别过点F 、H 作FL ∥MN ,HR ∥PQ ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可.【详解】(1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°,∵ED平分∠PEF,∴∠PEF=2∠PED=2∠DEF=2×60°=120°,∵PQ∥MN,∴∠MFE=180°−∠PEF=180°−120°=60°,∴∠MFD=∠MFE−∠DFE=60°−30°=30°,∴∠MFD=∠DFE,∴FD平分∠EFM;(2)如图2,过点E作EK∥MN,∵∠BAC=45°,∴∠KEA=∠BAC=45°,∵PQ∥MN,EK∥MN,∴PQ∥EK,∴∠PDE=∠DEK=∠DEF−∠KEA,又∵∠DEF=60°.∴∠PDE=60°−45°=15°,故答案为:15°;(3)如图3,分别过点F、H作FL∥MN,HR∥PQ,∴∠LFA=∠BAC=45°,∠RHG=∠QGH,∵FL∥MN,HR∥PQ,PQ∥MN,∴FL∥PQ∥HR,∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA,∵∠FGQ和∠GFA的角平分线GH、FH相交于点H,∴∠QGH=12∠FGQ,∠HFA=12∠GFA,∵∠DFE=30°,∴∠GFA=180°−∠DFE=150°,∴∠HFA=12∠GFA=75°,∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°,∴∠GFL=∠GFA−∠LFA=150°−45°=105°,∴∠RHG=∠QGH=12∠FGQ=12(180°−105°)=37.5°,∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°;(4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A,∴D′A=DF,DD′=EE′=AF=5cm,∵DE+EF+DF=35cm,∴DE+EF+D′A+AF+DD′=35+10=45(cm),即四边形DEAD′的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:BC∥DE时,如图5,此时AC∥DF,∴∠CAE=∠DFE=30°,∴3t=30,解得:t=10;BC∥EF时,如图6,∵BC∥EF,∴∠BAE=∠B=45°,∴∠BAM=∠BAE+∠EAM=45°+45°=90°,∴3t=90,解得:t=30;BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R,∵∠DRM=∠EAM+∠DFE=45°+30°=75°,∴∠BKA=∠DRM=75°,∵∠ACK=180°−∠ACB=90°,∴∠CAK=90°−∠BKA=15°,∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°,解得:t=40,综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行.【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.3.(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.解析:(1)见解析;(2)见解析;(3)40°【分析】(1)根据平行线的性质和判定解答即可;(2)过点H作HP∥AB,根据平行线的性质解答即可;(3)过点H作HP∥AB,根据平行线的性质解答即可.【详解】证明:(1)∵AB∥CD,∴∠AFE=∠FED,∵∠AGH=∠FED,∴∠AFE=∠AGH,∴EF∥GH,∴∠FEH+∠H=180°,∵FE⊥HE,∴∠FEH=90°,∴∠H=180°﹣∠FEH=90°,∴HG⊥HE;(2)过点M作MQ∥AB,∵AB∥CD,∴MQ∥CD,过点H作HP∥AB,∵AB∥CD,∵GM平分∠HGB,∴∠BGM=∠HGM=12∠BGH,∵EM平分∠HED,∴∠HEM=∠DEM=12∠HED,∵MQ∥AB,∴∠BGM=∠GMQ,∵MQ∥CD,∴∠QME=∠MED,∴∠GME=∠GMQ+∠QME=∠BGM+∠MED,∵HP∥AB,∴∠BGH=∠GHP=2∠BGM,∵HP∥CD,∴∠PHE=∠HED=2∠MED,∴∠GHE=∠GHP+∠PHE=2∠BGM+2∠MED=2(∠BGM+∠MED),∴∠GHE=∠2GME;(3)过点M作MQ∥AB,过点H作HP∥AB,由∠KFE:∠MGH=13:5,设∠KFE=13x,∠MGH=5x,由(2)可知:∠BGH=2∠MGH=10x,∵∠AFE+∠BFE=180°,∴∠AFE=180°﹣10x,∵FK平分∠AFE,∴∠AFK=∠KFE=12∠AFE,即1(18010)132x x︒-=,解得:x=5°,∴∠BGH=10x=50°,∵HP∥AB,HP∥CD,∴∠BGH=∠GHP=50°,∠PHE=∠HED,∵∠GHE=90°,∴∠PHE=∠GHE﹣∠GHP=90°﹣50°=40°,∴∠HED=40°.【点睛】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质定理以及灵活构造平行线是解题的关键.4.(1);(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质解析:(1)90A C ∠+∠=︒;(2)见解析;(3)105°【分析】(1)通过平行线性质和直角三角形内角关系即可求解.(2)过点B 作BG ∥DM ,根据平行线找角的联系即可求解.(3)利用(2)的结论,结合角平分线性质即可求解.【详解】解:(1)如图1,设AM 与BC 交于点O ,∵AM ∥CN ,∴∠C =∠AOB ,∵AB ⊥BC ,∴∠ABC =90°,∴∠A +∠AOB =90°,∠A +∠C =90°,故答案为:∠A +∠C =90°;(2)证明:如图2,过点B 作BG ∥DM ,∵BD ⊥AM ,∴DB ⊥BG ,∴∠DBG =90°,∴∠ABD +∠ABG =90°,∵AB ⊥BC ,∴∠CBG +∠ABG =90°,∴∠ABD =∠CBG ,∵AM ∥CN ,∴∠C =∠CBG ,∴∠ABD =∠C ;(3)如图3,过点B 作BG ∥DM ,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)知∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=∠AFB=β,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°得:2α+β+3α+3α+β=180°,∵AB⊥BC,∴β+β+2α=90°,∴α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.故答案为:105°.【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键.5.(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2解析:(1)35,35,平行;(2)∠FMN+∠GHF=180°,证明见解析;(3)不变,2【分析】(1)根据(α-35)2+|β-α|=0,即可计算α和β的值,再根据内错角相等可证AB∥CD;(2)先根据内错角相等证GH∥PN,再根据同旁内角互补和等量代换得出∠FMN+∠GHF=180°;(3)作∠PEM1的平分线交M1Q的延长线于R,先根据同位角相等证ER∥FQ,得∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,得出∠EPM 1=2∠R ,即可得1FPN Q ∠∠=2. 【详解】解:(1)∵(α-35)2+|β-α|=0,∴α=β=35,∴∠PFM =∠MFN =35°,∠EMF =35°,∴∠EMF =∠MFN ,∴AB ∥CD ;(2)∠FMN +∠GHF =180°;理由:由(1)得AB ∥CD ,∴∠MNF =∠PME ,∵∠MGH =∠MNF ,∴∠PME =∠MGH ,∴GH ∥PN ,∴∠GHM =∠FMN ,∵∠GHF +∠GHM =180°,∴∠FMN +∠GHF =180°;(3)1FPN Q∠∠的值不变,为2, 理由:如图3中,作∠PEM 1的平分线交M 1Q 的延长线于R ,∵AB ∥CD ,∴∠PEM 1=∠PFN ,∵∠PER =12∠PEM 1,∠PFQ =12∠PFN ,∴∠PER =∠PFQ ,∴ER ∥FQ ,∴∠FQM 1=∠R ,设∠PER =∠REB =x ,∠PM 1R =∠RM 1B =y ,则有:122y x Ry x EPM ⎧⎨⎩=+∠=+∠, 可得∠EPM 1=2∠R ,∴∠EPM 1=2∠FQM 1, ∴11EPM FQM ∠∠=1FPN Q∠∠=2. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.二、解答题6.(1)①,证明见解析,②,(2)或.【分析】(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,解析:(1)①//MN PQ ,证明见解析,②70DPQ BMQ ∠∠+=︒,(2)160︒或20︒.【分析】(1) ①根据//AB CD 和镜像证出NMP QPM ∠=∠,即可判断直线MN 与直线PQ 的位置关系,②过点Q 作QF ∥CD ,根据平行线的性质证DPQ BM MQP Q ∠=∠∠+即可;(2)过点Q 作QF ∥CD ,根据点P 的位置不同,分类讨论,依据平行线的性质求解即可.【详解】(1)①//MN PQ ,证明:∵//AB CD ,∴NPM QMP ∠=∠,∵,NMP QMP NPM QPM ∠=∠∠=∠,∴NMP QPM ∠=∠,∴//MN PQ ;②过点Q 作QF ∥CD ,∵//AB CD ,∴////AB CD QF ,∴1BMQ ∠=∠,2QPD ∠=∠,∴DPQ BM MQP Q ∠=∠∠+,∵70MNP MQP ∠=∠=︒,∴70DPQ BMQ ∠∠+=︒;(2)如图,当点P 在N 右侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,∴180NP FQP Q ∠=∠+︒,FQM BMQ ∠=∠,∵PQ CD ⊥,∴90NPQ ∠=︒,∴90FQP ∠=︒,∵70MND PQM ∠=∠=︒,∴20FQM ∠=︒,∴20BMQ ∠=︒,如图,当点P 在N 左侧时,过点Q 作QF ∥CD ,同(1)得,////AB CD QF ,同理可得,90FQP ∠=︒,∵70MND ∠=︒,∴110MNP PQM ∠=∠=︒,∴20FQM ∠=︒,∵//AB QF ,∴180BM FQM Q ∠=∠+︒,∴160BMQ ∠=︒;综上,BMQ ∠的度数为160︒或20︒.【点睛】本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.7.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°;(2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:作PC ∥EF ,如图1,∵PC ∥EF ,EF ∥MN ,∴PC ∥MN ,∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,∴∠PAF +∠APC +∠PBN +∠CPB =360°,∴∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,理由如下:如答图,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠+∠②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:如备用图1,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠-∠;当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:如备用图2,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD βα∠=∠-∠;综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.8.(1)见解析;(2)∠CGA=45°;(3)∠FCP=2∠ACP 或∠FCP+2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN=90°,然后根据同角的余角相等可得∠KAN=∠K解析:(1)见解析;(2)∠CGA=45°;(3)∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【分析】(1)有垂直定义可得∠MAB+∠KCN =90°,然后根据同角的余角相等可得∠KAN=∠KCF ,从而判断两直线平行;(2)设∠KAN=∠KCF=α,过点G 作GH ∥EF ,结合角平分线的定义和平行线的判定及性质求解;(3)分CP 交射线AQ 及射线AQ 的反向延长线两种情况结合角的和差关系分类讨论求解.【详解】解:(1)∵AB ⊥AK∴∠BAC=90°∴∠MAB+∠KAN =90°∵∠MAB+∠KCF =90°∴∠KAN=∠KCF∴EF ∥MN(2)设∠KAN=∠KCF=α则∠BAN=∠BAC+∠KAN=90°+α∠KCB=180°-∠KCF=180°-α∵AG 平分∠NAB ,CG 平分∠ECK∴∠GAN=12∠BAN=45°+12α,∠KCG=12∠KCB=90°-12α∴∠FCG=∠KCG+∠KCF=90°+12α过点G 作GH ∥EF∴∠HGC=∠FCG=90°+12α又∵MN ∥EF∴MN ∥GH∴∠HGA=∠GAN=45°+12α∴∠CGA=∠HGC -∠HGA=(90°+12α)-(45°+12α)=45°(3)①当CP 交射线AQ 于点T∵180CTA TAC ACP ∠+∠+∠=︒∴180CTA QAB BAC ACP ∠+∠+∠+∠=︒又∵=60,90CTA BAC ∠︒∠=︒∴30QAB ACP ∠+∠=︒由(1)可得:EF ∥MN∴FCA MAC ∠=∠∵FCP FCA ACP ∠=∠+∠∴FCP MAC ACP ∠=∠+∠∵MAC MAQ QAB BAC ∠=∠+∠+∠,2MAQ QAB ∠=∠∴()390=330901803MAC QAB ACP ACP ∠=∠+︒︒-∠+︒=︒-∠∴1803FCP ACP ACP ∠=︒-∠+∠即∠FCP +2∠ACP=180°②当CP 交射线AQ 的反向延长线于点T ,延长BA 交CP 于点GFCP FCA ACP ∠=∠-∠,由EF ∥MN 得MAC FCA ∠=∠∴FCP MAC ACP ∠=∠-∠又∵TAG QAB ∠=∠,180BAC CAG ∠+∠=︒,90BAC ∠=︒∴18090CAG BAC ∠=︒-∠=︒90CAT CAG TAG QAB ∠=∠-∠=︒-∠∵180CAT CTA ACP ∠+∠+∠=︒,60CTA ∠=︒∴120CAT ACP ∠+∠=︒∴90120QAB ACP ︒-∠+∠=︒∴30QAB ACP ∠=∠-︒由①可得390MAC QAB ∠=∠+︒∴()=330903MAC ACP ACP ∠∠-︒+︒=∠∴32FCP MAC ACP ACP ACP ACP ∠=∠-∠=∠-∠=∠综上,∠FCP =2∠ACP 或∠FCP +2∠ACP=180°.【点睛】本题考查平行线的判定和性质以及角的和差关系,准确理解题意,正确推理计算是解题关键.9.(1);(2),证明见解析;(3),证明见解析.【分析】(1)过点作,先根据平行线的性质、平行公理推论可得,从而可得,再根据平行线的性质可得,然后根据角平分线的定义可得,最后根据角的和差即可得; 解析:(1)90︒;(2)2APC AEC ∠=∠,证明见解析;(3)2360APC AEC ∠+∠=︒,证明见解析.【分析】(1)过点E 作//EF AB ,先根据平行线的性质、平行公理推论可得,AEF BAE CEF DCE ∠=∠∠=∠,从而可得AEC BAE DCE ∠=∠+∠,再根据平行线的性质可得180PAB PCD ∠+∠=︒,然后根据角平分线的定义可得11,22BAE PAB DCE PCD ∠=∠∠=∠,最后根据角的和差即可得; (2)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠,再根据(1)同样的方法可得APC PAB PCD ∠=∠+∠,由此即可得出结论;(3)过点E 作//EF AB ,过点P 作//PQ AB ,先根据(1)可得2PAB PCD AEC ∠+∠=∠,再根据平行线的性质、平行公理推论可得180,180APQ PAB CPQ PCD ∠=︒-∠∠=︒-∠,然后根据角的和差、等量代换即可得出结论.【详解】解:(1)如图,过点E 作//EF AB ,AEF BAE ∴∠=∠,//AB CD ,//EF CD ∴,CEF DCE ∴∠=∠,AEC AEF CEF BAE DCE ∴∠=∠+∠=∠+∠,又//AB CD ,且点P 运动到线段AC 上,180PAB PCD ∴∠+∠=︒,AE ∵平分PAB ∠,CE 平分PCD ∠,11,22BAE PAB DCE PCD ∴∠=∠∠=∠, 111()90222AEC PAB PCD PAB PCD ∴∠=∠+∠=∠+∠=︒; (2)猜想2APC AEC ∠=∠,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 同理可得:APC PAB PCD ∠=∠+∠,2APC AEC ∴∠=∠;(3)2360APC AEC ∠+∠=︒,证明如下:如图,过点E 作//EF AB ,过点P 作//PQ AB ,由(1)已得:1()2AEC BAE DCE PAB PCD ∠=∠+∠=∠+∠, 即2PAB PCD AEC ∠+∠=∠,//PQ AB ,180APQ PAB ∴∠+∠=︒,即180APQ PAB ∠=︒-∠,//AB CD ,//PQ CD ∴,180CPQ PCD ∴∠+∠=︒,即180CPQ PCD ∠=︒-∠,APC APQ CPQ ∴∠=∠+∠,180180PAB PCD =︒-∠+︒-∠,()360PAB PCD =︒-∠+∠,3602AEC =︒-∠,即2360APC AEC ∠+∠=︒.【点睛】本题考查了平行线的性质、平行公理推论、角平分线的定义等知识点,熟练掌握平行线的性质是解题关键.10.(1)120º,120º;(2)160;(3) 【分析】(1)过点作,,根据 ,平行线的性质和周角可求出,则 ,再根据 , ,可得 , ,可求出 ,,根据 即可得到结果;(2)同理(1)的求法,解析:(1)120º,120º;(2)160;(3)()1360n m n -⋅- 【分析】(1)过点,C D 作CG EF ,DH EF ,根据 120FAC ACB ∠=∠=︒,平行线的性质和周角可求出120GCB ∠=︒,则 120CBN GCB ∠=∠=︒,再根据 12CAD FAC ∠=∠, 12CBD CBN ∠=∠,可得 1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒,可求出60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,根据 ADB ADH BDH ∠=∠+∠即可得到结果;(2)同理(1)的求法,根据120FAC ACB ∠=∠=︒,13CAD FAC ∠=∠, 13CBD CBN ∠=∠求解即可; (3)同理(1)的求法,根据FAC ACB m ∠=∠=︒,1CAD FAC n ∠=∠, 1CBD CBN n ∠=∠求解即可;【详解】解:(1)如图示,分别过点,C D 作CG EF ,DH EF ,∵EFMN , ∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1602CBD CBN ∠=∠=︒, 1602CAD FAC ∠=∠=︒ ∴60DBN CBN CBD ∠=∠-∠=︒,又∵60FAD FAC CAD ∠=∠-∠=︒,∴60ADH FAD ∠=∠=︒,60BDH DBN ∠=∠=︒,∴120ADB ADH BDH ∠=∠+∠=︒.(2)如图示,分别过点,C D 作CG EF ,DH EF ,∵EF MN ,∴EF MN CG DH ,∴120ACG FAC ∠=∠=︒,∴360120GCB ACG ACB ∠=︒-∠-∠=︒,∴120CBN GCB ∠=∠=︒,∵1403CBD CBN ∠=∠=︒, 1403CAD FAC ∠=∠=︒∴80DBN CBN CBD ∠=∠-∠=︒,又∵80FAD FAC CAD ∠=∠-∠=︒,∴80ADH FAD ∠=∠=︒,80BDH DBN ∠=∠=︒,∴160ADB ADH BDH ∠=∠+∠=︒.故答案为:160;(3)同理(1)的求法∵EF MN ,∴EF MN CG DH , ∴ACG FAC m ∠=∠=︒,∴3603602GCB ACG ACB m ∠=︒-∠-∠=︒-︒,∴3602CBN GCB m ∠=∠=︒-︒, ∵13602m CBD CBN n n ︒-︒∠=∠=, 1m CAD FAC n n︒∠=∠= ∴()()360213602=3602m n m DBN CB D m n N n CB ︒-︒-︒-︒-︒∠-∠=-=∠︒, 又∵()1n m FAD FAC CAD m m n n -︒∠=∠-∠=︒-=︒, ∴()1n ADH FAD m n -∠=∠=︒, ()13602n BDH DBN m n-∠=∠=︒-︒, ∴()()()1113602=360n n n ADB ADH BDH m m m n n n --∠=∠+∠=-︒︒-︒︒-+︒. 故答案为:()1360n m n-⋅-. 【点睛】 本题主要考查了平行线的性质和角度的运算,熟悉相关性质是解题的关键.三、解答题11.(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD=CD•OC ,(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠解析:(1)3; (2)见解析; (3)见解析【详解】分析:(1)因为△BCD 的高为OC ,所以S △BCD =12CD •OC ,(2)利用∠CFE +∠CBF =90°,∠OBE +∠OEB =90°,求出∠CEF =∠CFE .(3)由∠ABC +∠ACB =2∠DAC ,∠H +∠HCA =∠DAC ,∠ACB =2∠HCA ,求出∠ABC =2∠H ,即可得答案.详解:(1)S △BCD =12CD •OC =12×3×2=3. (2)如图②,∵AC ⊥BC ,∴∠BCF =90°,∴∠CFE +∠CBF =90°.∵直线MN ⊥直线PQ ,∴∠BOC =∠OBE +∠OEB =90°.∵BF 是∠CBA 的平分线,∴∠CBF =∠OBE .∵∠CEF =∠OBE ,∴∠CFE +∠CBF =∠CEF +∠OBE ,∴∠CEF =∠CFE .(3)如图③,∵直线l ∥PQ ,∴∠ADC =∠PAD .∵∠ADC =∠DAC∴∠CAP =2∠DAC .∵∠ABC +∠ACB =∠CAP ,∴∠ABC +∠ACB =2∠DAC .∵∠H +∠HCA =∠DAC ,∴∠ABC +∠ACB =2∠H +2∠HCA ∵CH 是,∠ACB 的平分线,∴∠ACB =2∠HCA ,∴∠ABC =2∠H ,∴H ABC ∠∠=12.点睛:本题主要考查垂线,角平分线和三角形面积,解题的关键是找准相等的角求解. 12.(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ,∴∠1+∠MEF解析:(1)证明见解析;(2)900° ,180°(n -1);(3)(180n -180-2m)°【详解】【模型】(1)证明:过点E 作EF ∥CD ,∵AB ∥CD ,∴EF∥AB,∴∠1+∠MEF=180°,同理∠2+∠NEF=180°∴∠1+∠2+∠MEN=360°【应用】(2)分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB,利用(1)的方法可得∠1+∠2+∠3+∠4+∠5+∠6=180×5=900°;由上面的解题方法可得:∠1+∠2+∠3+∠4+∠5+∠6+…+∠n=180°(n-1),故答案是:900°, 180°(n-1);(3)过点O作SR∥AB,∵AB∥CD,∴SR∥CD,∴∠AM1O=∠M1OR同理∠C M n O=∠M n OR∴∠A M1O+∠CM n O=∠M1OR+∠M n OR,∴∠A M1O+∠CM n O=∠M1OM n=m°,∵M1O平分∠AM1M2,∴∠AM1M2=2∠A M1O,同理∠CM n M n-1=2∠CM n O,∴∠AM1M2+∠CM n M n-1=2∠AM1O+2∠CM n O=2∠M1OM n=2m°,又∵∠A M1M2+∠2+∠3+∠4+∠5+∠6+……+∠n-1+∠CM n M n-1=180°(n-1),∴∠2+∠3+∠4+∠5+∠6+…+∠n-1=(180n-180-2m)°点睛:本题考查了平行线的性质,角平分线的定义,解决此类题目,过拐点作平行线是解题的关键,准确识图理清图中各角度之间的关系也很重要.13.解决问题:6;拓展延伸:(1)S1=2S2 (2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)解析:解决问题:6;拓展延伸:(1)S1=2S2(2)10.5【解析】试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论;拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论;(2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论.试题解析:解:解决问题连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6.拓展延伸:解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2.(2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5,△AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.14.∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C解析:∠DPC=α+β,理由见解析;(1)70 ;(2) ∠DPC=α –β,理由见解析.【解析】(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(2)化成图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【问题探究】解:∠DPC=α+β如图,过P作PH∥DF∵DF∥CE,∴∠PCE=∠1=α,∠PDF=∠2∵∠DPC=∠2+∠1=α+β【问题迁移】(1)70(图1) ( 图2)(2) 如图1,∠DPC =β -α∵DF ∥CE ,∴∠PCE =∠1=β,∵∠DPC =∠1-∠FDP =∠1-α.∴∠DPC =β -α如图2,∠DPC = α -β∵DF ∥CE,∴∠PDF =∠1=α∵∠DPC =∠1-∠ACE=∠1-β.∴∠DPC =α - β15.(1)三角形内角和180°;等量代换;(2)见解析;(3)①;②;③;④;⑤【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断; (2)想要利用外角的性质求解,就需要构造外解析:(1)三角形内角和180°;等量代换;(2)见解析;(3)①85A ∠=︒;②100E ∠=︒;③40A ∠=︒;④2B C E ∠-∠=∠;⑤130︒【分析】(1)根据三角形的内角和定理即可判断,根据等量代换的概念即可判断;(2)想要利用外角的性质求解,就需要构造外角,因此延长BD 交AC 于E ,然后根据外角的性质确定1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,即可判断BDC ∠与A ∠,1∠,2∠之间的关系;(3)①连接BC ,然后根据(1)中结论,代入已知条件即可求解;②连接BC ,然后根据(1)中结论,求得ABD ACD ∠+∠的和,进而得到DBC DCB ∠+∠的和,然后根据角平分线求得EBD ECD ∠+∠的和,进而求得80EBC ECB ∠+∠=︒,然后利用三角形内角和定理180E EBC ECB ∠+∠+∠=︒,即可求解;③连接BC ,首先求得18060DBC DCB BDC ∠+∠=︒-∠=︒,然后根据十等分线和三角形内角和的性质得到333180=116CBF BC F F B C =︒-∠︒∠+∠,然后得到ABD ACD ∠+∠的和,最后根据(1)中结论即可求解;④设BD 与AE 的交点为点O ,首先利用根据外角的性质将∠BOE 用两种形式表示出来,然后得到BAE ABD E BDE ∠+∠=∠+∠,然后根据角平分线的性质,移项整理即可判断; ⑤根据(1)问结论,得到BAC ABD ∠+∠的和,然后根据角平分线的性质得到BAE ABE ∠+∠的和,然后利用三角形内角和性质即可求解.【详解】(1)∵180BDC DBC BCD ∠+∠+∠=︒,(三角形内角和180°)∴180BDC DBC BCD ∠=︒-∠-∠,(等式性质)∵12180A DBC BCD ∠+∠+∠+∠+∠=︒,∴12180A DBC BCD ∠+∠+∠=︒-∠-∠,∴12BDC A ∠=∠+∠+∠.(等量代换)故答案为:三角形内角和180°;等量代换.(2)如图,延长BD 交AC 于E ,由三角形外角性质可知,1BEC A ∠=∠+∠,2BDC BEC ∠=∠+∠,∴12BDC A ∠=∠+∠+∠.(3)①如图①所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=135252585A BDC ABD ACD ∠=∠-∠-∠︒-︒-︒=︒,∴85A ∠=︒;②如图②所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∴=1406080ABD ACD BDC A ∠+∠=∠-∠︒-︒=︒,∵ABD ∠与ACD ∠的角平分线交于点E , ∴12EBD ABD ∠=∠,12ECD ACD ∠=∠, ∴()11140222EBD ECD ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠=︒, ∵140BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18040DBC DCB BDC ∠+∠=︒-∠=︒,∴80EBC ECB ∠+∠=︒,∵180E EBC ECB ∠+∠+∠=︒,∴100E ∠=︒;③如图③所示,连接BC ,,根据(1)中结论,得BDC A ABD ACD ∠=∠+∠+∠,∵120BDC ∠=︒,180BDC DBC DCB ∠+∠+∠=︒,∴18060DBC DCB BDC ∠+∠=︒-∠=︒,∵ABD ∠与ACD ∠的十等分线交于点3F ,∴3710DBF ABD ∠=∠,3710DCF ACD ∠=∠, ∴()33777101010DBF DCF ABD ACD ABD ACD ∠+∠=∠+∠=∠+∠, ∴()333371060CBF BCF EBF ECF A DBC D A CB BD CD ∠+∠=+︒∠+∠=∠+∠+∠+∠,∵333180CBF BCF BF C +∠=︒∠+∠,∴333180=116CBF BC F F B C =︒-∠︒∠+∠,∴80ABD ACD ︒∠+∠=,∴()1208040A BDC ABD ACD ∠=∠-∠+∠=︒-︒=︒,∴40A ∠=︒;④如图④所示,设BD 与AE 的交点为点O ,∵AE 平分BAC ∠,BD 平分BDC ∠, ∴12BAE BAC ∠=∠,12BDE BDC ∠=∠, ∵BOE BAE ABD ∠=∠+∠,BOE E BDE ∠=∠+∠,∴BAE ABD E BDE ∠+∠=∠+∠, ∴()11+22BAC ABD E BAC ABD ACD ∠+∠=∠+∠+∠∠, ∴()1111+2222E BAC ABD ACD BAC ABD ABD ACD ∠=∠+∠∠-∠-∠=∠-∠,即2B C E ∠-∠=∠;⑤∵ABD ∠,BAC ∠的角平分线交于点E , ∴()1502BAE ABE BAC ABD ∠+∠=∠+∠=︒, ∴()180********AEB BAE ABE ∠=︒-∠+∠=︒-︒=︒.【点睛】本题考查了三角形内角和定量,外角的性质,以及辅助线的做法,重点是观察题干中的解题思路,然后注意角平分线的性质,逐渐推到即可求解.。
一、选择题1.我国南宋数学家杨辉1261年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就.在“杨辉三角”中,第n 行的所有数字之和为12n -,若去除所有为1的项,依次构成数列2,3,3,4,6,4,5,10,10,5,,则此数列的前55项和为( )A .4072B .2026C .4096D .20482.正四面体ABCD 的棱AD 与平面α所成角为θ,其中02πθ<<,点D 在平面α内,则当四面体ABCD 转动时( )A .存在某个位置使得BC α,也存在某个位置使得BC α⊥B .存在某个位置使得BC α,但不存在某个位置使得BC α⊥ C .不存在某个位置使得BC α,但存在某个位置使得BC α⊥D .既不存在某个位置使得BC α,也不存在某个位置使得BC α⊥3.观察下列各式:a+b=1.a 2+b 2=3,a 3+b 3=4 ,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10=( ) A .28 B .76C .123D .1994.设k 1111S k 1k 2k 32k=+++⋯++++,则1k S +=( ) A .()k 1S 2k 1++B .()k 11S 2k 12k 1++++ C .()k 11S 2k 12k 1+-++ D .()k 11S 2k 12k 1+-++5.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球; ②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球; ④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是( ) A .踢足球 B .打篮球 C .打羽毛球 D .打乒乓球6.已知一列数按如下规律排列,1,3,-2,5,-7,12,-19,31,…,则第9个数是( )A .50B .42C .-50D .-427.给出下面四个推理:①由“若a b 、是实数,则+≤+a b a b ”推广到复数中,则有“若12z z 、是复数,则1212z z z z +≤+”;②由“在半径为R 的圆内接矩形中,正方形的面积最大”类比推出“在半径为R 的球内接长方体中,正方体的体积最大”;③以半径R 为自变量,由“圆面积函数的导函数是圆的周长函数”类比推出“球体积函数的导函数是球的表面积函数”;④由“直角坐标系中两点11(,)A x y 、22(,)B x y 的中点坐标为1212(,)22x x y y ++”类比推出“极坐标系中两点11(,)C ρθ、22(,)D ρθ的中点坐标为1212(,)22ρρθθ++”.其中,推理得到的结论是正确的个数有( )个 A .1B .2C .3D .48.设实数a,b,c 满足a+b+c=1,则a,b,c 中至少有一个数不小于 ( ) A .0B .13C .12D .19.甲、乙、丙三人参加某公司的面试,最终只有一人能够被该公司录用,得到面试结果以后甲说:丙被录用了;乙说:甲被录用了;丙说:我没被录用.若这三人中仅有一人说法错误,则下列结论正确的是( ) A .丙被录用了 B .乙被录用了C .甲被录用了D .无法确定谁被录用了10.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是( )A .201620172⨯B .201501822⨯C .201520172⨯D .201601822⨯11.由圆心与弦(非直径)中点的连线垂直于弦,想到球心与截面圆(不经过球心的小截面圆)圆心的连线垂直于截面,用的是( )A .类比推理B .三段论推理C .归纳推理D .传递性推理12.“杨辉三角”又称“贾宪三角”,是因为贾宪约在公元1050年首先使用“贾宪三角”进行高次开方运算,而杨辉在公元1261年所著的《详解九章算法》一书中,记录了贾宪三角形数表,并称之为“开方作法本源”图.下列数表的构造思路就源于“杨辉三角”.该表由若干行数字组成,从第二行起,每一行中的数字均等于其“肩上”两数之和,表中最后一行仅有一个数,则这个数是 ( )2017 2016 2015 2014……6 5 4 3 2 1 4033 4031 4029…………11 9 7 5 3 8064 8060………………20 16 12 8 16124……………………36 28 20 ……………………… A .201620172⨯ B .201501822⨯ C .201520172⨯D .201601822⨯二、填空题13.已知f (x )=21xx +(x >0),若f 1(x )=f (x ),f n +1=f (f n (x )),n ∈N *,则猜想f 2020(x )=_____.14.点()00,x y 到直线0Ax By c ++=的距离公式为d =,通过类比的方法,可求得:在空间中,点()1,1,2到平面230x y z +++=的距离为___. 15.观察下面数表: 1, 3,5, 7,9,11,13,15,17,19,21,23,25,27,29,………..设1027是该表第m 行的第n 个数,则m n +等于________.16.将正整数对作如下分组,第1组为()(){}1,2,2,1,第2组为()(){}1,3,3,1,第3组为()()()(){}1,4,2,3,3,2,4,1,第4组为()()()(){}1,5,2,44,25,1⋅⋅⋅⋅⋅⋅则第30组第16个数对为__________.17.点00(,)x y 到直线0Ax By C ++=的距离公式为d =,通过类比的方法,可求得:在空间中,点(0,1,3)到平面2330x y z +++=的距离为__________. 18.观察下列各式:(1) 2()2x x '=,(2) 43()4x x '=,(3) (cos )sin x x '=-,……,根据以上事实,由归纳推理可得:若定义在R 上的偶函数()f x 的导函数为()g x ,则(0)g =____. 19.小明在做一道数学题目时发现:若复数111cos i?sin ?,z αα=+222 cos i?sin ,z αα=+,333cos i?sin z αα=+(其中123,,R ααα∈), 则121212cos()i?sin(+)z z αααα⋅=++,232323cos()i?sin(+)z z αααα⋅=++ ,根据上面的结论,可以提出猜想: z 1·z 2·z 3=__________________. 20.观察下列各式:0014C =011334C C +=01225554;C C C ++=0123377774C C C C +++=……照此规律,当n ∈N 时,012121212121n n n n n C C C C -----++++=______________.三、解答题21.设数列{}n x 各项均为正数,且满足()22221222,n x x x n n n N ++++=+∈,(1)求数列{}n x 的通项公式n x ;(2)已知122311113n n x x x x x x ++++=+++,求n ;(3)试用数学归纳法证明:2122312(1)1n n x x x x x x n +⎡⎤+++<+-⎣⎦.22.已知{}n a 是等差数列,{}n b 是等比数列,11331542,,a b a b a a b ===+=.设,n n n n c a b S =是数列{}n c 的前n 项和.(1)求,n n a b ;(2)试用数学归纳法证明:18(34)2n n S n +=+-⋅.23.设等差数列{}n a 的前n 项和为n S ,23a =-,()4521S a =+,数列{}n b 的前n 项和为n T ,满足11b =-,()*11n n n b T T n N ++=∈.(1)求数列{}n a 、{}n b 的通项公式; (2)记n c =,*n N ∈,证明:()12214n c c c n n +++<+. 24.观察下列等式:11=;2349++=;3456725++++=;4567891049++++++=; ……(1)照此规律,归纳猜想第()*n n N ∈个等式;(2)用数学归纳法证明(1)中的猜想. 25.数列{}n a 满足()*2Nn n S n a n =-∈.(1)计算123a a a 、、,并猜想n a 的通项公式; (2)用数学归纳法证明(1)中的猜想. 26.记S n =1+2+3+…+n ,T n =12+22+32+…+n 2. (Ⅰ)试计算312123,,S S S T T T 的值,并猜想n nS T 的通项公式. (Ⅱ)根据(Ⅰ)的猜想试计算T n 的通项公式,并用数学归纳法证明之.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】利用n 次二项式系数对应杨辉三角形的第n +1行,然后令x =1得到对应项的系数和,结合等比数列和等差数列的公式进行转化求解即可. 【详解】解:由题意可知:每一行数字和为首项为1,公比为2的等比数列,则杨辉三角形的前n 项和为S n 1212n-==-2n ﹣1,若去除所有的为1的项,则剩下的每一行的个数为1,2,3,4,……,可以看成构成一个首项为1,公差为1的等差数列, 则T n ()12n n +=,可得当n =10,所有项的个数和为55, 则杨辉三角形的前12项的和为S 12=212﹣1, 则此数列前55项的和为S 12﹣23=4072, 故选A . 【点睛】本题主要考查归纳推理的应用,结合杨辉三角形的系数与二项式系数的关系以及等比数列等差数列的求和公式是解决本题的关键,综合性较强,难度较大.2.B解析:B 【分析】由线面垂直与线面平行的判定,结合反证法,即可得出结果.【详解】当正四面体过点D 的高与平面α垂直时,平面ABC 平面α,所以BC 平面α; 若BC ⊥平面α,因为正四面体中BC AD ⊥,所以AD ⊂平面α,或AD 平面α,此时AD 与平面α所成角为0,与条件矛盾,所以BC 不可能垂直平面α; 故选B 【点睛】本题主要考查直线与平面平行与垂直的判定,在验证BC 与平面α是否垂直时,可借助反证的思想来解决,属于中档试题.3.C解析:C 【详解】 由题观察可发现,347,4711,71118+=+=+=, 111829,182947+=+=, 294776,4776123+=+=,即1010123a b +=, 故选C.考点:观察和归纳推理能力.4.C解析:C 【解析】分析:由题意将k 替换为1k +,然后和k S 比较即可. 详解:由题意将k 替换为1k +,据此可得:()()()()1111111121321k S k k k k +=+++++++++++()111123421k k k k =++++++++()11111123422121k k k k k k =+++++++++++ ()111111111234221211k k k k k k k k =+++++++-+++++++ ()1111111123422121k k k k k k k =++++++-++++++ ()112121k S k k =+-++. 本题选择C 选项.点睛:本题主要考查数学归纳法中由k 到k +1的计算方法,意在考查学生的转化能力和计算求解能力.5.A解析:A【解析】分析:由题意结合所给的逻辑关系进行推理论证即可. 详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球; 则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球. 本题选择A 选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.6.C解析:C 【解析】分析:由题意结合所给数据的特征确定第九个数即可. 详解:观察所给的数列可知,数列的特征为:121,3a a ==,()213n n n a a a n --=-≥,则978193150a a a =-=--=-. 本题选择C 选项.点睛:本题主要考查数列的递推关系,学生的推理能力等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【详解】分析:根据题意,利用类比推理的概念逐一判定,即可得到结论.详解:由题意,对于①中,根据复数的表示和复数的几何意义,可知“若复数12,z z ,则1212z z z z +≤+”是正确的;对于②中,根据平面与空间的类比推理可得:“在半径为R 的球内接长方体中,正方体的体积最大”是正确的;对于③中,由球的体积公式为343V R π=,其表面积公式为24S R π=,所以V S '=,所以是正确的;对于④中,如在极坐标系中,点(1,0),(1,)2C D π,此时CD 的中点坐标为(,)24π,不满足“极坐标系中两点1122(,),(,)C D ρθρθ的中点坐标为1212(,)22ρρθθ++”,所以不正确,综上,正确命题的个数为三个,故选C .点睛:本题主要考查了命题的真假判定,以及类比推理的应用,其中熟记类比推理的概念和应用,以及命题的真假判定是解答的关键,着重考查了分析问题和解答问题,以及推理与论证能力.8.B解析:B 【解析】∵三个数a ,b ,c 的和为1,其平均数为13∴三个数中至少有一个大于或等于13假设a ,b ,c 都小于13,则1a b c ++< ∴a ,b ,c 中至少有一个数不小于13故选B.9.C解析:C 【分析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可. 【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意, 若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意, 若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意, 综上可得甲被录用了, 故选:C. 【点睛】本题考查了逻辑推理能力,属基础题.10.B解析:B 【详解】由题意,数表的每一行从右往左都是等差数列,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为20142, 故第1行的从右往左第一个数为:122-⨯, 第2行的从右往左第一个数为:032⨯, 第3行的从右往左第一个数为:142⨯, …第n 行的从右往左第一个数为:2(1)2n n -+⨯ ,表中最后一行仅有一个数,则这个数是201501822⨯.11.A解析:A【解析】将平面几何问题推广为空间几何的问题,利用了类比推理. 本题选择A 选项.点睛:在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.12.B解析:B 【分析】数表的每一行都是等差数列,从右到左,第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014,第2016行只有M ,由此可得结论. 【详解】由题意,数表的每一行都是等差数列,从右到左,且第一行公差为1,第二行公差为2,第三行公差为4,…,第2015行公差为22014, 故从右到左第1行的第一个数为:2×2﹣1,从右到左第2行的第一个数为:3×20, 从右到左第3行的第一个数为:4×21, …从右到左第n 行的第一个数为:(n+1)×2n ﹣2, 第2017行只有M ,则M=(1+2017)•22015=2018×22015 故答案为:B . 【点睛】本题主要考查归纳与推理,意在考查学生对这些知识的掌握水平和分析推理能力.二、填空题13.【分析】先依次将前几个函数求出来观察其结构即可猜想出【详解】由题可知……可以猜想所以故答案为:【点睛】本题考查数学归纳法的简单应用考查数学猜想能力属于基础题解析:()202020202211xx -+. 【分析】先依次将前几个函数求出来,观察其结构,即可猜想出. 【详解】 由题可知,11122()()1211x xf x f x x x ,22212222221()()213121111x x x xx f x f f x fxx x x x , 22233222322221122()()22112111211x x x xf x f f x fxx x x ,33344333432221122()()22112111211x x x xf x f f x fxx x x , 44455444542221122()()22112111211x x x xf x f f x fxx x x ……可以猜想2()211n n n xf x x ,所以2020202020202()211xf x x .故答案为:()202020202211xx -+. 【点睛】本题考查数学归纳法的简单应用,考查数学猜想能力,属于基础题.14.【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可详解:类比点到直线的距离可知在空间中点到平面的距离故答案是点睛:该题考查的是类比推理利用平面内点到直线的距离公式类比着得解析:2. 【解析】分析:根据平面内点到直线的距离公式类比得到空间中点到平面的距离公式即可. 详解:类比点00(,)P x y 到直线0Ax By C ++=的距离d =,可知在空间中点(0,1,1)-到平面230x y z +++=的距离d ==. 点睛:该题考查的是类比推理,利用平面内点到直线的距离公式类比着得出空间中点到平面的距离公式,代入求得结果,属于简单题目.15.13【解析】根据上面数表的数的排列规律13579…都是连续奇数第一行1个数第二行2=21个数且第1个数是3=22﹣1第三行4=22个数且第1个数是7=23﹣1第四行8=23个数且第1个数是15=24解析:13 【解析】根据上面数表的数的排列规律,1、3、5、7、9…都是连续奇数, 第一行1个数,第二行2=21个数,且第1个数是3=22﹣1 第三行4=22个数,且第1个数是7=23﹣1 第四行8=23个数,且第1个数是15=24﹣1 …第10行有29个数,且第1个数是210﹣1=1023,第2个数为1025,第三个数为1027;所以1027是第10行的第3个数,所以m=10,n=3, 所以m+n=13; 故填13.16.【解析】根据归纳推理可知每对数字中两个数字不相等且第一组每一对数字和为第二组每一对数字和为第三组每对数字和为第组每一对数字和为第组第一对数为第二对数为第对数为第对数为故答案为 解析:(17,15)【解析】根据归纳推理可知,每对数字中两个数字不相等,且第一组每一对数字和为3,第二组每一对数字和为4,第三组每对数字和为5,......,第30组每一对数字和为32, ∴第30组第一对数为()1,31,第二对数为()2,30,.......,第15对数为()15,17,第16对数为()17,15,故答案为()17,15.17.【解析】类比点到直线的距离可知在空间中点到平面的距离为故答案为【解析】类比点()00,P x y 到直线0Ax By C ++=的距离d =,可知在空间中,点()0,1,3到平面2330x y z +++=的距离为d ==.18.0【解析】由(x2)=2x 中原函数为偶函数导函数为奇函数;(x4)=4x3中原函数为偶函数导函数为奇函数;(cosx )=﹣sinx 中原函数为偶函数导函数为奇函数;…我们可以推断偶函数的导函数为奇函数解析:0 【解析】由(x 2)'=2x 中,原函数为偶函数,导函数为奇函数; (x 4)'=4x 3中,原函数为偶函数,导函数为奇函数; (cosx )'=﹣sinx 中,原函数为偶函数,导函数为奇函数; …我们可以推断,偶函数的导函数为奇函数. 若定义在R 上的函数f (x )满足f (﹣x )=f (x ), 则函数f (x )为偶函数,又∵g (x )为f (x )的导函数,则g (x )奇函数 故g (﹣x )+g (x )=0,即g (﹣0)=﹣g (0),g (0)=0 故答案为:0.19.【解析】试题分析:运用推理考点:1归纳推理2复数的运算 解析:()()123123cos sin i αααααα+++++【解析】试题分析:运用推理()()123123cos sin i αααααα+++++ 考点:1.归纳推理.2.复数的运算.20.【详解】试题分析:由已知等式观察知:第一个式子左边一项下标为上标为右边为;第二个式子左边两项下标为上标依次为右边为;第三个式子左边三项下标为上标依次为右边为;第四个式子左边四项下标为上标依次为右边为 解析:14n -【详解】试题分析: 由已知等式观察知:第一个式子,左边一项,下标为1,上标为0,右边为04;第二个式子,左边两项,下标为3,上标依次为0,1,右边为14;第三个式子,左边三项,下标为5,上标依次为0,1,2,右边为24;第四个式子,左边四项,下标为7,上标依次为0,1,2,3,右边为34;……照此规律,当n N ∈时,01211212121214n n n n n n C C C C ------+++⋅⋅⋅+=, 综上所述,答案为:14n -. 考点:归纳推理的应用.三、解答题21.(1)*n x n N =∈;(2)48;(3)证明见解析. 【分析】(1)先根据和项与通项关系求得2n x ,解得n x ;(2)利用裂项相消法化简条件,解得结果;(3)先证明1n =成立,再根据n k =成立推导1n k =+成立即可. 【详解】(1)当2n ≥时222222221212122,2(1)2(1),n n x x x n n x x x n n -+++=++++=-+- 所以222222(1)2(1)4n n n n n x n =+----=当1n =时221224,40n n n x x nx x =+=∴=>∴=(2)1112n n x x +==+所以122311111111(21)(32)(1)(1)32222n n n nn x x x x x x ++++=-+-+++-=+=+++解得48n =;(3)①当1n =时, 2122232[(11)1]x x =⨯⨯=+-,即1n =时,结论成立; ②假设当,(1,)n k k k Z =≥∈时,结论成立,即2122312(1)1k k x x x x x x k +⎡⎤+++<+-⎣⎦当1n k =+时, 21212122312(1)1k k k k k k x x x x x x x x x k x ++++++⎡⎤+++<+⎣⎦+-因为21222(2(1)12(212)3)k k x k x k k ++⎡⎤⎡⎤+-+-+=+⎣⎦+⎣⎦222(2)12(2)1k k =+⎡⎤⎡⎤+-+-⎣<⎦⎣⎦即当1n k =+时, 结论成立; 由①②得,2122312(1)1n n x x x x x x n +⎡⎤+++<+-⎣⎦【点睛】本题考查根据和项求通项、裂项相消法求和、数学归纳法证明不等式,考查综合分析论证与求解能力,属中档题.22.(1)31,2nn n a n b =-=;(2)见解析【分析】(1) 设{}n a 的公差为{},n d b 的公比为q ,再利用基本量法根据题中所给的条件求,d q 即可.(2)先证明当1n =时结论成立.再假设当n k =时18(34)2k k S k +=+-⋅成立,再根据11k k k S S c ++=+,化简证明当1n k =+时也成立即可.【详解】(1)设{}n a 的公差为{},n d b 的公比为q ,由112a b ==,得12(1),2n n n a n d b q -=+-=.又由33154,a b a a b =+=,得23222,2242,d q d q ⎧+=⎨++=⎩解得3,2d q ==. 所以31,2nn n a n b =-=.(2)证明:由(1)知,(31)2nn c n =-⋅,则14c =.①当1n =时,1118(314)24S +=+⨯-⋅=,结论成立. ②假设当n k =时,18(34)2k k S k +=+-⋅成立,则当1n k =+时,11118(34)2(32)2k k k k k S S c k k ++++=+=+-⋅++⋅18(62)2k k +=+-⋅2(1)18(31)28[3(1)4]2k k k k +++=+-⋅=++-⋅,结论也成立.综合①②,由数学归纳法可知,18(34)2n n S n +=+-⋅.【点睛】本题主要考查了基本量法求解等差等比数列通项公式的方法,同时也考查了数学归纳法证明的问题.属于中档题.23.(1)21n a n =-+,()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩.(2)见解析【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组求出1a 和d ,进而可得{}n a 的通项公式;由11n n n b T T ++=⋅,得1111n n T T +-=-,可得1n T n=-,利用1n n n b T T -=-,可得{}n b 的通项公式;(2)利用数学归纳法, ①当1n =时,左边1=,右边4=,不等式成立,②假设n k =时成立,即()12214k c c c k k +++<+,证明当1n k =+时,不等式也成立. 【详解】解:(1)设首项为1a ,公差为d ,则()111346241a d a d a d +=-⎧⎨+=++⎩,解得11a =-,2d =-,故21n a n =-+, 由11n n n b T T ++=⋅,得11n n n n T T T T ++=⋅-,即1111n n T T +-=-,11T =-,所以1nn T =-,即1n T n=-,所以()()1121n n n b T T n n n -=-=≥-,故()1,11,21n n b n n n -=⎧⎪=⎨≥⎪-⎩. (2)由(1)知n c =()12214n c c c n +++<+, ①当1n =时,左边1=,右边4=,不等式成立,②假设n k =时成立,即()12214k c c c k k +++<+, 即当1n k =+时,()21214k k c c c c k +++++<++()214k k ⎡=++⎢⎢⎣()214k k ⎡=++⎢⎣224k k ⎡⎢=++⎢⎣))()2243123k k k k k <+++=++. 即当1n k =+时,不等式也成立.由①,②可知,不等式()1212n c c c n n +++<+对任意*n N ∈都成立. 【点睛】本题考查等差数列的通项公式以及n S 法求数列的通项公式,考查数列归纳法,是中档题. 24.(1)()221n -;(2)证明见解析. 【解析】分析:(1)第n 个等式为()()()()()212...3221*n n n n n n N ++++++-=-∈.(2)利用个数学归纳法证明猜想.详解:(1)第n 个等式为()()()()()212...3221*n n n n n n N ++++++-=-∈;(2)用数学归纳法证明如下: ①当1n =时,左边1=,右边211==, 所以当1n =时,原等式成立.②假设当()*n k k N =∈时原等式成立,即()()()()()212....3221*k k k k k k N ++++++-=-∈,则当1n k =+时,()()()()()12....3231331k k k k k k +++++-+-+++()()()22131331k k k k k ⎡⎤=--+-+++⎣⎦()()22244121211k k k k ⎡⎤=++=+=+-⎣⎦,所以当1n k =+时,原等式也成立.由①②知,(1)中的猜想对任何*n N ∈都成立.点睛:(1)本题主要考查归纳猜想和数学归纳法,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是证明n=k+1时,()()()()()12....3231331k k k k k k +++++-+-+++=()2211k ⎡⎤+-⎣⎦.25.(1) 11a =;232a =;374a =;()*121N 2n n n a n --=∈.(2)证明见解析. 【详解】分析:(1)将n 进行赋值,分别求得前三项的数值,猜想归纳处通项;(2)利用数学归纳法的证明步骤,证明猜想即可. 详解:(1)当1n =时,1112a S a ==-, ∴11a =;当2n =时,122222a a S a +==⨯-, ∴232a =; 当3n =时,1233323a a a S a ++==⨯-, ∴374a =; 由此猜想()*121N 2n n n a n --=∈;(2)证明:①当1n =时,11a =结论成立,②假设n k =(1k ≥,且*N k ∈)时结论成立,即1212k k k a --=,当1n k =+时,()11121k k k k a S S k a +++=-=+- 122k k k k a a a +-+=+-,∴122k k a a +=+,∴1122122k k k ka a +++-==, ∴当1n k =+时结论成立,由①②可知对于一切的自然数*N n ∈,1212n n n a --=成立.点睛:这个题目考查的是数列通项公式的求法;数列通项的求法中有常见的已知n S 和n a 的关系,求n a 表达式,一般是写出1n S -做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等 26.(Ⅰ)3331,,;5721n + (Ⅱ)见解析【解析】 试题分析:(1)利用题意求解数列的前3项可得通项公式n n S T =321n +;(2)利用题意猜想通项公式为()()1216nn n nT++=,然后利用数学归纳法证明结论即可.试题解:(Ⅰ)猜想:,(Ⅱ)根据(Ⅰ)的猜想:又,故(n∈N*),证明:①当(Ⅱ)时,左边T1=1,右边=左边=右边,猜想成立.②假设n=k时,猜想成立.即成立.则当n=k+1时,=,==,==,∴当n=k+1时,猜想也成立.由①②知对于任意的n∈N*,均成立.。
P O FEDCBA第三章 证明〔三〕单元评估试卷班级 姓名 成绩 一、精心选一选,相信自己的判断!〔每一小题3分,一共30分〕 题号 1 2 3 4 5 6 7 8 9 10 答案1.下面给出的条件中,能断定一个四边形是平行四边形的是 〔 〕。
A .一组邻角互补,一组对角相等。
B .一组对边平行,一组邻角相等。
C .一组对边相等,一组对角相等。
D .一组对边相等,一组邻角相等。
2.顺次连接矩形四条边的中点,所得到的四边形一定是 〔 〕。
A .矩形 B .菱形 C .正方形 D .平行四边形 3.以下说法错误的选项是 〔 〕。
A .有一组对边平行但不相等的四边形是梯形 B .有一个角是直角的梯形是直角梯形。
C .等腰梯形的两底角相等。
D .直角梯形的两条对角线不相等。
4.如图1把一个长方形纸片沿EF 折叠后,点D 、C 分别落在D ′、C ′的位置,假设∠EFB =65°,那么∠AED ′ 等于 〔 〕。
A.50° B.55° C.60° D.65°5. ABCD 中,O 是对角线的交点,不能断定这个平行四边形是正方形的是 〔 〕。
A .∠BAD=90°,AB=ADB .∠BAD=90°,AC ⊥BD C .AC ⊥BD ,AC=BD D .AB=AC ,∠BAD=∠BCD6、平行四边形的两条对角线将此平行四边形分成全等三角形的对数是〔 〕 A 2 对 B 3对 C 4对 D 5 对7.给出以下命题:①四条边相等的四边形是正方形;②两组邻边分别相等的四边形是平行四边形;③有一个角是直角的平行四边形是矩形;④矩形、线段都是轴对称图形.其中错误命题的个数是 〔 〕 A.1B.28、 菱形具有而平行四边形不具有的性质是 〔 〕 A .内角和是360°; B. 对角相等; C. 对边平行且相等; D. 对角线互相垂直.9、如图2,□ABCD 中,EF 过对角线的交点O ,AB=4,AD=3,OF=1.3,那么四边形BCEF 的周长为〔 〕B.9.6如图2 如图310、如图3,在矩形ABCD 中,AB=3,AD=4,P 是AD 上的动点,PE ⊥AC 于E ,PF ⊥BD 于F,那么PE+PF的值是〔 〕A.513B.25 C.2D.512 二、耐心填一填:〔把答案填放相应的空格里。
2022-2023学年度第二学期初三年级模拟考试(数学)一.选择题(共10小题,满分30分,每小题3分)1.cos 60︒的值等于()A.12B.2C.32D.12.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A.B. C. D.3.下列计算错误的是()A .2a a a ⋅= B.23a a a+= C.()235a a = D.314a a a -÷=4.在一个不透明的布袋中装有50摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A .15个B.20个C.30个D.35个5.如图,点A ,B ,C 是O 上的三个点,若76AOB ∠=︒,则C ∠的度数为()A.76°B.38°C.24°D.33°6.把二次函数221y x x =++先向右平移2个单位长度,再向上平移1个单位长度,新二次函数表达式变为()A.()232y x =++ B.()212y x =-+ C.()211y x =-+ D.()231y x =+-7.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件,能使菱形ABCD 成为正方形的是()A.AC BD =B.AC BD ⊥C.AD AB =D.AC 平分DAB∠8.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是 AB 的中点,连接AC 、BC ,则图中阴影部分面积是()A.43π- B.23π-C.43πD.23π9.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为()A. B. C. D.10.如图,已知△ABC 中,AB=10,AC=8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为()A.3B.4C.4.8D.5二.填空题(共5小题,满分15分,每小题3分)11.抛物线y =2(x -3)2+1的顶点坐标为_______.12.在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,AC=6,BC=8,CD=_______.13.图①是伸缩折叠不锈钢晾衣架的实物图,图②是它的侧面示意图,AD 和CB 相交于点O ,点A 、B 之间的距离为1.2米,AB CD ∥,根据图②中的数据可得C 、D 之间的距离为__________米.14.如图,点A ,C 为函数()0ky x x=<图象上的两点,过A ,C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B ,D ,连接OA ,AC ,OC ,线段OC 交AB 于点E ,且点E 恰好为OC 的中点.当AEC △的面积为34时,k 的值为______.15.如图,在矩形ABCD 中,点E 为BC 上一点,8EB =,4AB =,连接AE ,将ABE 沿AE 所在的直线翻折,得到AB E ' ,B E '交AD 于点F ,将AB E ' 沿B E '所在的直线翻折,得到A B E '' ,A E '交AD 于点G ,GEGA '的值为______.三.解答题(共7小题,满分55分)16.计算:tan 602sin 3012cos 45︒+︒+-︒.17.先化简,再求值:23224x x x x x x ⎛⎫-÷ ⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.18.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x 值为,参加调差的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有万人.19.某电商在抖音平台上对红富士苹果进行直播销售.已知苹果的成本价为6元/千克,如果按10元/千克销售,每天可卖出160千克.通过调查发现,每千克苹果售价增加1元,日销售量减少20千克.(1)为保证每天利润为700元,商家想尽快销售完库存,每千克售价应为多少元?(2)售价为多少元时,每天的销售利润最大,最大是多少?20.如图,在ABC 中,AC BC =BC 为直径作O ,交AC 于点F ,过C 点作CD AC ⊥交AB 延长线于点D ,E 为CD 上一点,且EB ED =.(1)求证:BE 为O 的切线;(2)若2,tan 2AF A ==,求BE 的长.21.在平面直角坐标系中,若两点的横坐标不相等,纵坐标互为相反数,则称这两点关于x 轴斜对称.其中一点叫做另一点关于x 轴的斜对称点.如:点()()4,2,1,2--关于x 轴斜对称.在平面直角坐标系xOy 中,点A 的坐标为()2,1.(1)下列各点中,与点A 关于x 轴斜对称的是______(只填序号);①()3,1-,②()2,1-,③()2,1-,④()1,1--.(2)若点A 关于x 轴的斜对称点B 恰好落在直线31y kx k =++上,AOB 的面积为3,求k 的值;(3)抛物线21y x bx =--上恰有两个点M 、N 与点A 关于x 轴斜对称,抛物线的顶点为D ,且DMN 为等腰直角三角形,则b 的值为______.22.如图,抛物线22y ax bx =++经过点()1,0A -,()4,0B ,交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D 为y D 使23ABC ABD S S =△△?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45︒,与抛物线交于另一点E ,求BE 的长.2022-2023学年度第二学期初三年级模拟考试(数学)一.选择题(共10小题,满分30分,每小题3分)1.cos 60︒的值等于()A.12B.2C.32D.1【答案】A 【解析】【分析】根据特殊角的三角函数的特殊值,即可求解本题.【详解】cos60︒=12.故选A.【点睛】主要考查特殊角的三角函数值的记忆则准确性,很基础.2.我国古代数学家刘徽用“牟合方盖”找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.如图所示的几何体是可以形成“牟合方盖”的一种模型,它的俯视图是()A. B. C. D.【答案】A 【解析】【分析】根据俯视图即从物体的上面观察得得到的视图,进而得出答案.【详解】该几何体的俯视图是:.故选A .【点睛】此题主要考查了几何体的三视图;掌握俯视图是从几何体上面看得到的平面图形是解决本题的关键.3.下列计算错误的是()A.2a a a ⋅=B.23a a a+= C.()235a a = D.314a a a -÷=【答案】C 【解析】【分析】根据同底数幂的乘法、合并同类项、幂的乘方、负整数指数幂逐项判断即可得.【详解】解:A 、2a a a ⋅=,则此项正确,不符合题意;B 、23a a a +=,则此项正确,不符合题意;C 、()236aa =,则此项错误,符合题意;D 、313341a a a a a aa -==⋅=÷÷,则此项正确,不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法、合并同类项、幂的乘方、负整数指数幂,熟练掌握各运算法则是解题关键.4.在一个不透明的布袋中装有50个黄、白两种颜色的球,除颜色外其他都相同,小红通过多次摸球试验后发现,摸到黄球的频率稳定在0.3左右,则布袋中白球可能有()A.15个B.20个C.30个D.35个【答案】D 【解析】【分析】利用频率估计概率得到摸到黄球的概率为0.3,根据概率公式计算即可.求出黄球的个数,即可求解.【详解】解:∵摸到黄球的频率稳定在0.3左右∴黄球的个数为500.315⨯=∴布袋中白球可能有501535-=故选:D【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.5.如图,点A ,B ,C 是O 上的三个点,若76AOB ∠=︒,则C ∠的度数为()A.76°B.38°C.24°D.33°【答案】B 【解析】【分析】根据同弧所对的圆周角等于圆心角的一半,即可求得.【详解】解:∵点A ,B ,C 是O 上的三个点,76AOB ∠=︒,∴11763822︒∠=∠=⨯︒=C AOB ,故选:B .【点睛】本题考查圆周角定理的运用,解题的关键是根据同弧所对的圆周角等于圆心角的一半解答.6.把二次函数221y x x =++先向右平移2个单位长度,再向上平移1个单位长度,新二次函数表达式变为()A.()232y x =++ B.()212y x =-+ C.()211y x =-+ D.()231y x =+-【答案】C 【解析】【分析】将原二次函数整理为用顶点式表示的形式,根据二次函数的平移可得新抛物线的表达式.【详解】解:()22211y x x x =++=+,先向右平移2个单位长度得到的函数表达式为:()212y x =+-,即()21y x =-,再向上平移1个单位长度后,所得图象的函数表达式为()211y x =-+,故选:C .【点睛】本题考查了二次函数图象与几何变换.讨论二次函数的图象的平移问题,只需看顶点坐标是如何平移得到的即可.7.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,添加下列条件,能使菱形ABCD 成为正方形的是()A.AC BD =B.AC BD ⊥C.AD AB =D.AC 平分DAB∠【答案】A 【解析】【分析】根据菱形的性质及正方形的判定来添加合适的条件.【详解】解:要使菱形成为正方形,只要菱形满足以下条件之一即可,(1)有一个内角是直角,(2)对角线相等.即90ABC ∠=︒或AC BD =.故选:A【点睛】本题比较容易,考查特殊四边形的判定,解题的关键是根据菱形的性质及正方形的判定解答.8.如图,扇形AOB 中,半径OA =2,∠AOB =120°,C 是 AB 的中点,连接AC 、BC ,则图中阴影部分面积是()A.43π- B.23π-C.43πD.23π【答案】A 【解析】【详解】连接OC ,过O 作OM ⊥AC 于M ,∵∠AOB =120°,C 是 AB 的中点,∴∠AOC =∠BOC =60°,∵OA =OB =OC =2,∴△ABC 、△BOC 是等边三角形,∴AC =BC =OA =2,AM =1,∴△BOC 的边AC 上的高是=∴阴影部分的面积是22602160212236023602ππ⨯⨯-⨯--⨯=43π-故选:A.9.已知2(0)y ax bx c a =++≠的图象如图,则y ax b =+和cy x=的图象为()A. B. C. D.【答案】C 【解析】【分析】根据二次函数y=ax 2+bx+c (a≠0)的图象可以得到a <0,b >0,c <0,由此可以判定y=ax+b 经过一、二、四象限,双曲线cy x=在二、四象限.【详解】根据二次函数y=ax 2+bx+c (a≠0)的图象,可得a <0,b >0,c <0,∴y=ax+b 过一、二、四象限,双曲线cy x=在二、四象限,∴C 是正确的.故选C .【点睛】此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.10.如图,已知△ABC 中,AB=10,AC=8,BC =6,DE 是AC 的垂直平分线,DE 交AB 于点D ,交AC 于点E ,连接CD ,则CD 的长度为()A.3B.4C.4.8D.5【答案】D 【解析】【详解】已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC 为直角三角形,又因DE 为AC 边的中垂线,可得DE ⊥AC ,AE=CE=4,所以DE 为三角形ABC 的中位线,即可得DE=12BC =3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.二.填空题(共5小题,满分15分,每小题3分)11.抛物线y =2(x -3)2+1的顶点坐标为_______.【答案】(3,1)【解析】【分析】由抛物线解析式可求得答案.【详解】根据二次函数的性质,由顶点式直接得出顶点坐标为(3,1).故答案是(3,1).【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在()2y a x h k =-+中,对称轴为直线x =h ,顶点坐标为(h ,k ).12.在Rt △ABC 中,∠C=90°,AD 平分∠CAB ,AC=6,BC=8,CD=_______.【答案】3.【解析】【详解】试题分析:如图,过点D 作DE ⊥AB 于E ,∵∠C=90°,AC=6,BC=8,∴10==,∵AD 平分∠CAB ,∴CD=DE ,∴S △ABC =12AC•CD+12AB•DE=12AC•BC ,即12×6•CD+12×10•CD=12×6×8,解得CD=3.考点:1.角平分线的性质,2.勾股定理13.图①是伸缩折叠不锈钢晾衣架的实物图,图②是它的侧面示意图,AD 和CB 相交于点O ,点A 、B 之间的距离为1.2米,AB CD ∥,根据图②中的数据可得C 、D 之间的距离为__________米.【答案】0.96【解析】【分析】根据相似三角形对应高的比等于相似比,即可求解.【详解】解:∵AB CD ∥,∴DCO ABO ∠=∠,CDO BAO ∠=∠,∴CDO BAO ∽△△,∴0.81CD AB =,∵ 1.2AB =,∴0.81.21CD =,解得:0.96CD =,故答案为:0.96.【点睛】本题主要考查了相似三角形的判定和性质,解题的关键是掌握相似三角形对应高的比等于相似比.14.如图,点A ,C 为函数()0k y x x=<图象上的两点,过A ,C 分别作AB x ⊥轴,CD x ⊥轴,垂足分别为B ,D ,连接OA ,AC ,OC ,线段OC 交AB 于点E ,且点E 恰好为OC 的中点.当AEC △的面积为34时,k 的值为______.【答案】2-【解析】【分析】根据三角形的中线的性质求出AEO △的面积,根据相似三角形的性质求出1OCD S =△,根据反比例函数系数k 的几何意义解答即可.【详解】解:∵点E 为OC 的中点,∴AEO △的面积AEC =△的面积34=,∵点A ,C 为函数()0k y x x =<图象上的两点,∴ABO CDO S S = ,∴34AEO CDBE S S ==四边形△,∵AB x ⊥轴,CD x ⊥轴,∴EB CD ∥,∴OEB OCD ∽△△,∴212OEB OCD S S ⎛⎫= ⎪⎝⎭△△,∴1OCD S =△,则112xy =-,∴2k xy ==-.故答案为:2-.【点睛】本题考查的是反比例函数系数k 的几何意义、相似三角形的性质,掌握反比例函数系数k 的几何意义、相似三角形的面积比等于相似比的平方是解题的关键.15.如图,在矩形ABCD 中,点E 为BC 上一点,8EB =,4AB =,连接AE ,将ABE 沿AE 所在的直线翻折,得到AB E ' ,B E '交AD 于点F ,将AB E ' 沿B E '所在的直线翻折,得到A B E '' ,A E '交AD 于点G ,GE GA '的值为______.【答案】56【解析】【分析】根据折叠的性质和矩形的性质可得EF AF =,设EF AF x ==,则8B F x '=-,在Rt ABE △中,利用勾股定理可得5EF AF ==,3B F '=,从而得到3tan 4B F B AF AB ''∠==',过点G 作GH EB ⊥'于点H ,则GH A B ''∥,可得EG EH A G B H ='',HGF B AF ∠=∠',从而得到3tan tan 4FH B AF HGF GH '∠=∠==,可设3,4HF m GH m ==,在Rt A B E ''△中,可得1tan 2GH GEH EH ∠==,从而得到8EH m =,再由8B E '=,可得4011EH =,4811B H '=,即可求解.【详解】解:由折叠的性质得:4A B AB AB '''===,A E AE '=,8B E BE '==,AEB AEB A EB '''∠=∠=∠,90AB E A B E B '''∠=∠=∠=︒,在矩形ABCD 中,BC AD ∥,∴AEB EAG ∠=∠,∴AEF EAG FEG ∠=∠=∠,∴EF AF =,在Rt ABE △中,AE ==设EF AF x ==,则8B F x '=-,在Rt AB F '△中,222AF AB B F ''=+,∴()22248x x =+-,解得:5x =,即5EF AF ==,3B F '=,∴3tan 4B F B AF AB ''∠==',如图,过点G 作GH EB ⊥'于点H ,则GH A B ''∥,∴EG EH GA B H='',HGF B AF ∠=∠',∴3tan tan 4FH B AF HGF GH '∠=∠==,可设3,4HF m GH m ==,在Rt A B E ''△中,41tan 82A B A EB B E ''''∠===',∴1tan 2GH GEH EH ∠==,∴8EH m =,∵EH FH B F B E ''++=,∴8338m m ++=,解得:511m =,∴4011EH =,4811B H FH B F ''=+=,∴4051148611EG EH A G B H ===''.故答案为:56【点睛】本题主要考查了解直角三角形,矩形和折叠问题,平行线分线段成比例,勾股定理等知识,灵活做辅助线构造直角三角形是解题的关键.三.解答题(共7小题,满分55分)16.计算:tan 602sin 3012cos 45︒+︒+-︒.【解析】【分析】把特殊角的三角函数值代入进行计算,即可得到答案.【详解】解:tan 602sin 3012cos 45︒+︒+-︒)12122=⨯+-⨯11=-=【点睛】本题考查了特殊角三角函数值的混合运算,熟记特殊角的三角函数值是解题关键.17.先化简,再求值:23224x x x x x x ⎛⎫-÷⎪-+-⎝⎭,在﹣2,0,1,2四个数中选一个合适的代入求值.【答案】28x +,10.【解析】【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把x =1代入计算即可求出值.【详解】解:原式=()()()()2322422x x x x x x x x +---⋅-+=()()()()()242222x x x x x x x+-+⋅-+=2(x +4)=2x +8当x =-2,0,2时,分式无意义当x =1时,原式=10.【点睛】本题主要考查了分式的化简和代入求值,关键是代入的时候要根据分式有意义的条件选择合适的值代入.18.11月读书节,深圳市为统计某学校初三学生读书状况,如下图:(1)三本以上的x 值为,参加调差的总人数为,补全统计图;(2)三本以上的圆心角为.(3)全市有6.7万学生,三本以上有万人.【答案】(1)20%;400;见解析(2)72°(3)1.34【解析】÷即可求出总人数,用【分析】(1)根据看1本书的人数为40人,所占的百分比为10%,4010%100%10%25%45%---即可得x的值,用总人数乘以x的值,即可得到3本以上的人数,即可补全统计图;(2)用x的值乘以360︒,即可得到圆心角;(3)用6.7万乘以三本以上的百分比,即可解答.【小问1详解】÷(人,解:4010%=400x=---100%10%25%45%=20%⨯(人,故答案为:20%,400;如图所示;【小问2详解】⨯︒︒,解:20%360=72故答案为:72︒;【小问3详解】⨯(人,解:6700020%=13400故答案为:1.34.【点睛】本题主要考查了条形图与扇形图的综合应用,解决此类问题关键是注意图形有机结合,综合分析获取正确信息.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19.某电商在抖音平台上对红富士苹果进行直播销售.已知苹果的成本价为6元/千克,如果按10元/千克销售,每天可卖出160千克.通过调查发现,每千克苹果售价增加1元,日销售量减少20千克.(1)为保证每天利润为700元,商家想尽快销售完库存,每千克售价应为多少元?(2)售价为多少元时,每天的销售利润最大,最大是多少?【答案】(1)11元(2)售价为12元时,每天的销售利润最大,最大是720元【解析】【分析】(1)设每千克售价应为x 元,根据“如果按10元/千克销售,每天可卖出160千克,每千克苹果售价增加1元,日销售量减少20千克”列出方程,即可求解;(2)设每千克售价应为m 元,每天的销售利润为W 元,根据题意,列出函数的关系式,结合二次函数的性质,即可求解.【小问1详解】解:设每千克售价应为x 元,根据题意得:()()61602010700x x ---=⎡⎤⎣⎦,解得:1211,13x x ==,∵商家想尽快销售完库存,∴11x =,答:每千克售价应为11元;【小问2详解】解:设每千克售价应为m 元,每天的销售利润为W 元,根据题意得:()()()22616020102048021602012720W m m m m m =---=-+-=--+⎡⎤⎣⎦,∵200-<,∴当12m =时,W 的值最大,最大值为720,答:售价为12元时,每天的销售利润最大,最大是720元.【点睛】本题考查了一元二次方程的应用以及二次函数的应用,解题的关键是:找准等量关系,正确列出一元二次方程和二次函数的解析式,利用二次函数的性质求最值.20.如图,在ABC 中,AC BC =BC 为直径作O ,交AC 于点F ,过C 点作CD AC ⊥交AB 延长线于点D ,E 为CD 上一点,且EB ED =.(1)求证:BE 为O 的切线;(2)若2,tan 2AF A ==,求BE 的长.【答案】(1)见解析(2)154【解析】【分析】(1)根据等腰三角形的性质得∠A =∠ABC ,∠D =∠EBD ,根据等腰三角形的性质得到∠A =∠ABC ,∠D =∠DBE ,推出∠CBE =90°,于是得到结论;(2)连接BF ,根据圆周角定理得到BF ⊥AC ,根据三角函数的定义得到BF =4,设CF =x ,列出关于x 的方程并求解,再根据相似三角形的判定和性质定理即可得到结论.【小问1详解】证明:∵AC =BC ,EB =ED∴∠A =∠ABC ,∠D =∠EBD∵CD ⊥AC∴∠A +∠D =90°∴∠ABC +∠EBD =90°∴∠CBE =90°∵BC 是⊙O 的直径.∴BE 是⊙O 的切线.【小问2详解】解:连接BF∵BC 是⊙O 的直径.∴∠BFC =∠BFA =90°在Rt △ABF 中,tan A =22BF BFAF =∴BF =4设CF =x ,则AC =BC =x +2在Rt △BCF 中,222BC CF BF =+即222(2)4x x +=+∴x =3∴CF =3,BC=5∵∠ACB =∠AFB =90°∴BF ∥CD∴∠1=∠2又∵∠CFB =∠EBC =90°∴△CFB ∽△EBC ∴FC FB BE BC =∴345BE =∴BE =154【点睛】本题考查了切线的判定和性质,相似三角形的判定和性质,勾股定理,圆周角定理,正确地作出辅助线是解题的关键.21.在平面直角坐标系中,若两点的横坐标不相等,纵坐标互为相反数,则称这两点关于x 轴斜对称.其中一点叫做另一点关于x 轴的斜对称点.如:点()()4,2,1,2--关于x 轴斜对称.在平面直角坐标系xOy 中,点A 的坐标为()2,1.(1)下列各点中,与点A 关于x 轴斜对称的是______(只填序号);①()3,1-,②()2,1-,③()2,1-,④()1,1--.(2)若点A 关于x 轴的斜对称点B 恰好落在直线31y kx k =++上,AOB 的面积为3,求k 的值;(3)抛物线21y x bx =--上恰有两个点M 、N 与点A 关于x 轴斜对称,抛物线的顶点为D ,且DMN 为等腰直角三角形,则b 的值为______.【答案】(1)①④(2)27-或25(3)2±【解析】【分析】(1)根据关于x 轴纵对称的点的定义即可得到答案;(2)根据关于x 轴纵对称的点的定义,设(),1B x -,画出图形,分0x >,0x <进行讨论即可;(3)根据成纵对称的点的定义,可知这两个点的纵坐标为1-,再令1y =-,则211x bx --=-,可得点M 的坐标为()0,1-,点(),1N b -,然后根据DMN 为等腰直角三角形,可得222MN DM =,可得到关于b 的方程,即可求解【小问1详解】解:∵点A 的坐标为()2,1,∴与点A 关于x 轴斜对称的是()3,1-和()1,1--;故答案为:①④【小问2详解】解:根据题意可设(),1B x -,①如图1,当0x >时,AOB AOM BOMAMNB S S S S =--梯形△△△()11112212132222x x x =+⨯-⨯⨯-=+=.解得:4x =.∴()4,1B -.∴4311k k ++=-.解得:27k =-.如图2,当0x <时AOB ABM BON AONMS S S S =--梯形△△△()()()1111221122132222x x x =-⨯-⨯⨯--⨯+⨯=--=.解得:8x =-.∴()8,1B --.∴8311k k -++=-.解得:25k =.∴综上所述:27k =-或25.【小问3详解】解:∵2224124b b y x bx x +⎛⎫=--=-- ⎪⎝⎭,∴抛物线的对称轴为直线2b x =,抛物线的顶点为24,24b b ⎛⎫+- ⎪⎝⎭,令0x =,1y =-,∵点M ,N 与点A 关于x 轴斜对称,∴点M ,N 的纵坐标为1-,令1y =-,则211x bx --=-,解得:120,x x b ==,∴点M 的坐标为()0,1-,点(),1N b -,∵DMN 为等腰直角三角形,∴DM DN =,且22222MN DM DN DM =+=,∴222222414b b b ⎥⎛⎫+-+ ⎡⎤⎛⎫=+⎢⎥ ⎪⎪⎣⎭⎭⎢⎦⎝⎝,解得:2b =±或0(舍去),即b 的值为2±.故答案为:2±【点睛】本题属于新定义题,是一次函数与几何图形,二次函数与一元二次方程的综合,难度较大,解题的关键是理解新定义,并能灵活运用所学知识进行解答.22.如图,抛物线22y ax bx =++经过点()1,0A -,()4,0B ,交y 轴于点C ;(1)求抛物线的解析式(用一般式表示);(2)点D 为y 轴右侧抛物线上一点,是否存在点D 使23ABC ABD S S =△△?若存在请直接给出点D 坐标;若不存在请说明理由;(3)将直线BC 绕点B 顺时针旋转45︒,与抛物线交于另一点E ,求BE 的长.【答案】(1)213222y x x =-++(2)点D 的坐标为()1,3或()2,3或()5,3-(3)()5,3-【解析】【分析】(1)由,A B 的坐标,利用待定系数法可求得抛物线的解析式;(2)由条件可求得D 到x 轴的距离,即可求得D 的纵坐标,代入抛物线可求得D 点坐标;(3)由条件可证的BC AC ⊥,设直线AC 和BE 交于点F ,过F 作FM x ⊥轴于点M ,则可得BF BC =,利用平行线分线段成比例可求得F 的坐标,利用待定系数法可求得直线BE 的解析式,联立直线BE 和抛物线解析式可求得E 点坐标.【小问1详解】解:由题意得:20,16420,a b a b -+=⎧⎨++=⎩解得1,23,2a b ⎧=-⎪⎪⎨⎪=⎪⎩∴213222y x x =-++.【小问2详解】如答1,连接AC .依题意知:5AB =,2OC =.∴1152522ABC S AB OC =⋅=⨯⨯=△.∵23ABC ABD S S =△△,∴315522ABD S =⨯=△.设213,222D m m m ⎛⎫-++ ⎪⎝⎭(0m >),∵11522ABD D AB y S ==△,∴211315522222m m ⨯⨯-++=,当2132322m m -++=时,解得121,2m m ==;当2132322m m -++=-时,解得32m =-(舍去),45m =.综上所述,点D 的坐标为()1,3或()2,3或()5,3-;【小问3详解】如图2,过C 点作CF BC ⊥,交BE 于点F ,过点F 作y 轴的垂线交y 轴于点H,∵45CBF ∠=︒,90BCF ∠=︒,∴CF CB =.∵90BCF ∠=︒,90FHC ∠=︒,∴90HCF BCO ∠+∠=︒,90HCF HFC ∠+∠=︒,即HFC OCB ∠=∠.在CHF 和BOC 中,∵,,,CHF COB HFC OCB FC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS CHF BOC ≌.∴()2,6F ,设BE 的解析式为y kx c =+,将()()4,0,2,6B F 代入y kx c =+,得4026k c k c +=⎧⎨+=⎩,解得312k c =-⎧⎨=⎩,∴BE 的解析式为312y x =-+.联立2132,22312,y x x y x ⎧=-++⎪⎨⎪=-+⎩解得:15=x ,24x =(舍去),故点E 的坐标为()5,3-.【点睛】本题为二次函数的综合应用,涉及待定系数法,三角形面积,全等三角形的判定和性质,函数图象的交点,等腰直角三角形的性质,方程思想及分类讨论思想等知识.。
深圳市南山区桃源中学数学全等三角形章末练习卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=___________.【答案】40°【解析】【分析】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,根据对称的性质可以证得:∠OP1M=∠OPM=50°,OP1=OP2=OP,根据等腰三角形的性质即可求解.【详解】如图:作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA、OB 的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=50°同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=50°,∴∠P1OP2=180°-2×50°=80°,∴∠AOB=40°,故答案为:40°【点睛】本题考查了对称的性质,正确作出图形,证得△P1OP2是等腰三角形是解题的关键.2.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.3.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【解析】【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒,30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴= ,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒,41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A , 16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =,33312428A B B A ∴===同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n ,∴△556A B A 的边长为5232=.故答案为:32.【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.4.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC 的长________cm .【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC ,∠BAC=120°∴∠B=∠C=30°∵DA ⊥AC ,AD=24 cm∴DC=2AD=48cm ,∵∠BAC=120°,DA ⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.5.如图,在△ABC 中,P ,Q 分别是BC ,AC 上的点,PR ⊥AB ,PS ⊥AC ,垂足分别是R ,S ,若AQ PQ =,PR PS =,那么下面四个结论:①AS AR =;②QP //AR ;③△BRP ≌△QSP ;④BRQS ,其中一定正确的是(填写编号)_____________.【答案】①,②【解析】【分析】连接AP ,根据角平分线性质即可推出①,根据勾股定理即可推出AR=AS ,根据等腰三角形性质推出∠QAP=∠QPA ,推出∠QPA=∠BAP ,根据平行线判定推出QP ∥AB 即可;在Rt △BRP 和Rt △QSP 中,只有PR=PS .无法判断△BRP ≌△QSP 也无法证明BRQS .【详解】解:连接AP①∵PR ⊥AB ,PS ⊥AC ,PR=PS ,∴点P 在∠BAC 的平分线上,∠ARP=∠ASP=90°,∴∠SAP=∠RAP ,在Rt △ARP 和Rt △ASP 中,由勾股定理得:AR 2=AP 2-PR 2,AS 2=AP 2-PS 2,∵AP=AP ,PR=PS ,∴AR=AS ,∴①正确;②∵AQ=QP ,∴∠QAP=∠QPA ,∵∠QAP=∠BAP ,∴∠QPA=∠BAP ,∴QP ∥AR ,∴②正确;③在Rt △BRP 和Rt △QSP 中,只有PR=PS ,不满足三角形全等的条件,故③④错误;故答案为:①②.【点睛】本题主要考查了角平分线的性质与勾股定理的应用,熟练掌握根据垂直与相等得出点在角平分线上是解题的关键.6.等腰三角形一边长等于4,一边长等于9,它的周长是__.【答案】22【解析】【分析】等腰三角形有两条边长为4和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形;【详解】解:因为4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22.故答案为22.【点睛】本题主要考查了等腰三角形的性质和三角形的三边关系;求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.如图,在ABC 中, 90,ACB ABD ︒∠=是ABC 的轴对称图形,点E 在AD 上,点F 在AC 的延长线上.若点B 恰好在EF 的垂直平分线上,并且5AE =,13AF =,则DE =______.【答案】4.【解析】【分析】连接BE ,BF ,根据轴对称的性质可得△ABD ≌△ACB ,进而可得DB=CB ,AD=AC ,∠D=∠BCA=90°,再利用线段垂直平分线的性质可得BE=BF ,然后证明Rt △DBE ≌Rt △CBF 可得DE=CF ,然后可得ED 长.【详解】解:连接BE ,BF ,∵△ABD 是△ABC 的轴对称图形,∴△ABD ≌△ACB ,∴DB=CB ,AD=AC ,∠D=∠BCA=90°,∴∠BCF=90°,∵点B 恰好在EF 的垂直平分线上,∴BE=BF ,在Rt △DBE 和Rt △CBF 中BD BC EB FB =⎧⎨=⎩,∴Rt △DBE ≌Rt △CBF (HL ),∴DE=CF ,设DE=x ,则CF=x ,∵AE=5,AF=13,∴AC=AD=5+x ,∴AF=5+2x ,∴5+2x=13,∴x=4,∴DE=4,故答案为:4.【点睛】此题主要考查了轴对称和线段垂直平分线的性质,关键是掌握成轴对称的两个图形全等.8.在△ABC 中,∠ACB =90º,D 、E 分别在 AC 、AB 边上,把△ADE 沿 DE 翻折得到△FDE ,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形, 则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC 的度数为x ,则∠B=90°-x ,∠EFB =135°-x ,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.9.如图,Rt△ABC 中,AB=AC,∠BAC=90°,AD 是 BC 边上的高,E 是 AD 上的一点。
数学人教版七年级上第三章 一元一次方程单元检测(时间:45分钟,满分:100分)一、选择题(每小题4分,共32分)1.下列方程中是一元一次方程的是( )A .x +3=y +2B .x +3=3-xC .1x =1D .x 2-1=02.方程3x -1=5的解是( )A .x =43B .x =53C .x =18D .x =23.下列方程变形中,正确的是( )A .方程3x -2=2x +1,移项,得3x -2x =-1+2B .方程3-x =2-5(x -1),去括号,得3-x =2-5x -1C .方程2332t =,未知数系数化为1,得t =1 D .方程10.20.5x x --=1化成3x =6 4.日历中同一竖列相邻三个数的和不可能是( )A .78B .26C .21D .45 5.方程232x x +-=9513x -+去分母得( ) A .3(2x +3)-x =2(9x -5)+6B .3(2x +3)-6x =2(9x -5)+1C .3(2x +3)-x =2(9x -5)+1D .3(2x +3)-6x =2(9x -5)+6 6.式子213k -与134k +的值相等时,k 的值为( ) A .7 B .8 C .9 D .107.方程(m -5)x 2+7x n +3=0是一元一次方程,则m 和n 分别为( )A .-5和-2B .5和-2C .-5和2D .5和28.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,某队打了10场比赛,负2场,共得16分,那么这个队胜了( )A .3场B .4场C .5场D .6场二、填空题(每小题4分,共16分)9.已知x =2是方程ax -5x -6=0的解,则a =__________.10.已知|x +1|+(x -y +3)2=0,那么(x +y )2的值是__________.11.当m =__________时,单项式21215m x y -与-8x m +3y 2是同类项. 12.将一个底面半径为6 cm ,高为40 cm 的“瘦长”的圆柱钢材压成底面半径为12 cm 的“矮胖”的圆柱形零件,则它的高变成了__________cm.三、解答题(共52分)13.(16分)解下列方程: (1)21101211364x x x --+-=-; (2)1.5 1.50.62x x --=0.5.14.(8分)当m为何值时,式子5123mm--的值与式子72m-的值的和等于5.15.(8分)某车间有62名工人,生产甲、乙两种零件,每人每天平均能生产甲种零件12个或乙种零件23个,应分配多少人生产甲种零件,多少人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套?(3个甲种零件和2个乙种零件配成一套).16.(10分)自2011年2月9日起上调金融机构人民币存贷款基准利率.金融机构一年期存贷款基准利率分别上调0.25个百分点,其他各档次存贷款基准利率相应调整.李老师在银行里用一年整存整取的方式储蓄人民币50 000元,到期后本息和为51 500元,求这项储蓄的年利率.17.(10分)2011年3月22日是第19个世界水日.此年世界水日的主题是“城市水资源管理”.某市为促进节约用水,提高用水效率,建设节水型城市,将自来水划分为“家居用水”和“非家居用水”.根据新规定,“家居用水”用水量不超过6 t,按每吨1.2元收费;如果超过6 t,未超过部分仍按每吨1.2元收费,而超过部分则按每吨2元收费.如果某用户5月份水费平均为每吨1.4元,那么该用户5月份应交水费多少元?参考答案1.答案:B判断方程是否为一元一次方程,只需两步:(1)判断是否是方程;(2)对方程化简,化简后判断是否只含有一个未知数(元),并且未知数的最高次数是1次.2.答案:D3.答案:D4.答案:B日历中同一竖列相邻三个数的和必须是3的倍数,所以不可能是26.5.答案:D6.答案:B由题意,得213k-=14k+3,解得k=8.7.答案:B由一元一次方程的定义得,m-5=0,且n+3=1,解得m=5,n=-2.8.答案:B设这个队胜了x场,则平了(10-2-x)场,根据题意,得3x+(10-2-x)=16,解得x=4,即这个队胜了4场.9.答案:810.答案:1根据绝对值和平方的非负性,可知x+1=0,且x-y+3=0,解得x=-1,y=2,所以(x+y)2=1.11.答案:4根据同类项的定义,相同字母的指数相同,得2m-1=m+3,解得m=4.12.答案:10设高变成了x cm,根据题意,得π×122×x=π×62×40,解得,x=10.所以圆柱的高变成了10 cm.13.答案:解:(1)去分母,得4(2x-1)-2(10x-1)=3(2x+1)-12.去括号,得8x-4-20x+2=6x+3-12,移项、合并同类项,得-18x=-7.系数化为1,得x=7 18.(2)原方程可化为156x-1.52x-=0.5,即52x-1.52x-=0.5.去分母,得5x-(1.5-x)=1,去括号,得5x-1.5+x=1,移项,合并同类项,得6x=2.5,系数化为1,得x=5 12.14.答案:解:根据题意,得2m-513m-+72m-=5.解这个方程,得m=-7.所以当m=-7时,式子2m-513m-的值与式子72m-的值的和等于5.15.答案:解:设分配x人生产甲种零件,根据题意,得2×12x=3×23×(62-x).解这个方程,得x=46,62-x=16.答:应分配46人生产甲种零件,16人生产乙种零件才能使每天生产的甲种零件和乙种零件刚好配套.16.答案:分析:设这项储蓄的年利率是x,根据本息和=本金+本金×利率×期数,得出方程.解:设这项储蓄的年利率是x,根据题意,得50 000+50 000·x=51 500.解这个方程,得x=0.03,即x=3%.答:这项储蓄的年利率是3%.17.答案:解:设该用户5月份用水x t,根据题意,得1.4x=6×1.2+2(x-6).解这个方程,得x=8.所以8×1.4=11.2(元).答:该用户5月份应交水费11.2元.。
一、选择题1.如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M 所代表的正方形面积可表示为( )A .40064-B .2240064-C .2240064-D .40064+ 2.如图,在平行四边形ABCD 中,90B ∠<︒,BC AB >.作AE BC ⊥于点E ,AF CD ⊥于点F ,记EAF ∠的度数为α,AE a =,AF b =.则以下选项错误的是( )A .::a b CD BC =B .D ∠的度数为αC .若60α=︒,则四边形AECF 的面积为平行四边形ABCD 面积的一半D .若60α=︒,则平行四边形ABCD 的周长为()433a b + 3.顺次连接菱形四边中点得到的四边形一定是( ) A .矩形 B .平行四边形 C .菱形 D .正方形 4.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定四边形ABCD 为平行四边形的是( )A .AB ∥CD ,AD ∥BCB .AD ∥BC ,AB =CD C .OA =OC ,OB =OD D .AB =CD ,AD =BC5.如图,ABCD 的对角线AC BD 、交于点,O DE 平分ADC ∠交AB 于点,60,E BCD ∠=︒12AD AB =,连接OE .下列结论:①ABCD S AD BD =⋅;②DB 平分CDE ∠;③AO DE =;④OE 垂直平分BD .其中正确的个数有( )A .1个B .2个C .3个D .4个6.如图,以平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH ,当()090ADC αα∠=︒<<︒时,有以下结论:①180GCF α∠=︒-;②90HAE α∠=︒+;③HE HG =;④ EH GH ⊥;⑤四边形EFGH 是平行四边形.则结论正确的是( )A .①③④B .②③⑤C .①③④⑤D .②③④⑤ 7.矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,连接AG ,取AG 的中点H ,连接EH .若4AB CF ==,2BC CE ==,则EH =( )A 2B .2C 3D 58.下列结论中,菱形具有而矩形不一定具有的性质是( ) A .对角线相等 B .对角线互相平分 C .对角线互相垂直 D .对边相等且平行 9.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .410.如图,正方形ABCD 的对角线相交于点O ,正方形OMNQ 与ABCD 的边长均为a ,OM 与CD 相交于点E ,OQ 与BC 相交于点F ,且满足DE CF =,则两个正方形重合部分的面积为( )A .212aB .214aC .218a D .2116a 11.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,30ACD ∠=︒,若ABC 的周长比AOB 的周长大10,则AB 的长为( ).A .103B .53C .10D .2012.如图,已知平行四边形ABCD 中,4B A ∠=∠,则C ∠=( )A .18°B .36°C .72°D .144°二、填空题13.如图,在菱形纸片ABCD 中,4AB =,60A ∠=︒,将菱形纸片翻折,使点A 落在CD 边的中点E 处,折痕为FG ,点F 、G 分别在边AB 、AD 上,则GE =_______.14.如图,在菱形ABCD 中,6AC =,5AB =,点E 是直线AB ,CD 之间任意一点,连接AE ,BE ,DE ,CE ,则EAB 和ECD 的面积之和是______.15.生活中,有人喜欢把传送的便条折成形状,折叠过程如图所示(阴影部分表示纸条的反面):已知由信纸折成的长方形纸条(图①)长为25cm ,宽为cm x .如果能折成图④的形状,且为了美观,纸条两端超出点P 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点M 与点A 的距离(用x 表示)为______cm .16.如图:在ABC ∆中,13,12,AB BC ==点D E 、分别是,AB BC 的中点,连接DE CD 、,如果 2.5,DE =那么ABC ∆的周长是___.17.如图,点D 、E 分别是边AB 、AC 上的点,已知点F 、G 、H 分别是DE 、BE 、BC 的中点,连接FG 、GH 、FH ,若BD =8,CE =6,∠FGH =90°,则FH 长为____.18.如图,A B 、两点分别位于山脚的两端,小明想测量A B 、两点间的距离,于是想了个主意,先在地上取一个可以直接达到A B 、两点的点C ,找到AC BC 、的中点D 、E ,并且测出DE 的长为15m ,则A B 、两点间的距离为_________m .19.如图,将一张长方形纸片折叠成一个等腰梯形,则这个梯形的面积是_____cm 2.20.如图(1)所示为长方形纸带,将纸带沿EF 折叠成图(2),再沿BF 折叠成图(3),继续沿EF 折叠成图(4),按此操作,最后一次折叠后恰好完全盖住EFG ;整个过程共折叠了8次,问图(1)中DEF ∠的度数是_________.三、解答题21.如图所示,沿AE 折叠长方形ABCD 使点D 恰好落在BC 边上的点F 处,已知8AB cm =,BC 10cm =.(1)求EC 的长(2)求AFE ∆的面积.22.如图,在ABC 中,AB AC =,10BC =.(1)尺规作图:(要求:保留作图痕迹,不写作法)①作BAC ∠的平分线交BC 于点D ;②作边AC 的中点E ,连接DE ;(2)在(1)所作的图中,若12AD =,则DE 的长为__________.23.我们学习过利用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的.但人们可以通过折纸把一个角三等分,今天我们就通过折纸把一个直角三等分.操作如下:第一步:如图①,对折长方形纸片ABCD ,使AD 与BC 重合,沿EF 对折后,得到折痕EF ,把纸片展平;第二步:如图②,再一次折叠纸片,使点A 落在EF 上(标记为点O ),并使折痕经过点B ;第三步:如图③,再展开纸片,得到折痕BR ,同时连接BO RO 、.这时就可以得到BR BO 、把直角ABC 三等分.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程. 已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是由BAR ∆沿BR 折叠后得到的三角形 ,求证:24.如图,在AOB 和COD △中,OA OB =, OC OD =,90AOB COD ∠=∠=︒,点C 在边AB 上,点 G 是线段AD 的中点.(1)求ABD∠的度数;(2)求证:OG平分AOB∠.25.如图,点E在正方形ABCD的边AB上,点F在边BC的延长线上,且90EDF∠=︒.求证:DE DF=.26.“半角型”问题探究:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.(1)小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE≌△AFG,从而得出结论:(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=12∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,边长为4的正方形ABCD中,点E、F分别在AB、CD上,AE=CF=1,O为EF的中点,动点G、H分别在边AD、BC上,EF与GH的交点P在O、F之间(与O、F不重合),且∠GPE=45°,设AG=m,求m的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】要求图中字母所代表的正方形的面积,根据面积=边长×边长=边长的平方,设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,已知斜边和一直角边的平方,由勾股定理即可求出2a ,即可得到答案.【详解】设M 的边长为a ,直角三角形斜边的长为c ,另一直角边为b ,则2400c =,264b =,如图所示,在该直角三角形中,由勾股定理得:22240064a c b =-=-,故选:A .【点睛】本题主要考查勾股定理的应用和正方形的面积公式,解题的关键在于熟练运用勾股定理求出正方形的边长的平方.2.C解析:C【分析】由平行四边形的性质得出//AD BC ,AD BC =,AB CD =,B D ∠=∠,得出180D C ∠+∠=︒,求出180EAF C ∠+∠=︒,得出B D EAF α∠=∠=∠=;由平行四边形ABCD 的面积得出::a b CD BC =;若60α=︒,则60B D ∠=∠=︒,求出30BAE DAF ∠=∠=︒,由直角三角形的性质得出33BE AE ==,DF ,得出2AB BE =,2AD DF ==,求出平行四边形ABCD 的周长2())AB AD a b =+=+;求出ABE ∆的面积212BE AE =⨯=,ADF ∆的面积2=,平行四边形ABCD 的面积BC AE a =⨯=⨯=,得出四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半;即可得出结论. 【详解】 解:四边形ABCD 是平行四边形,//AD BC ∴,AD BC =,AB CD =,B D ∠=∠,180D C ∴∠+∠=︒,AE BC ⊥于点E ,AF CD ⊥于点F ,360290180EAF C ∴∠+∠=︒-⨯︒=︒,B D EAF α∴∠=∠=∠=;平行四边形ABCD 的面积BC AE CD AF =⨯=⨯,AE a =,AF b =,BC a CD b ∴⨯=⨯,::a b CD BC ∴=;若60α=︒,则60B D ∠=∠=︒,30BAE DAF ∴∠=∠=︒,BE AE ∴==,DF =,2AB BE ∴==,2AD DF ==,∴平行四边形ABCD 的周长2())AB AD a b =+=+;ABE ∆的面积21122BE AE a =⨯=⨯=,ADF ∆的面积21122DF AF b =⨯=⨯,平行四边形ABCD 的面积BC AE a =⨯=⨯=, ∴四边形AECF 的面积=平行四边形ABCD 的面积ABE -∆的面积ADF -∆的面积22)a b =+≠平行四边形ABCD 面积的一半; 综上所述,选项A 、B 、D 不符合题意,选项C 符合题意;故选:C .【点睛】本题考查了平行四边形的性质、直角三角形的性质、三角形面积等知识;熟练掌握平行四边形的性质和直角三角形的性质是解题的关键.3.A解析:A【分析】画出图形,根据菱形的性质得到AC⊥BD,根据三角形中位线定理、矩形的判定定理证明结论.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,∵E,F,G,H是菱形各边的中点,∴EF∥BD,FG∥AC,∴EF⊥FG,同理:FG⊥HG,GH⊥EH,HE⊥EF,∴四边形EFGH是矩形.故选:A.【点睛】本题考查的是中点四边形,掌握菱形的性质定理、矩形的判定定理以及三角形的中位线定理是解题的关键.4.B解析:B【分析】根据平行四边形的判定方法即可判断.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定;B、无法判定,四边形可能是等腰梯形,也可能是平行四边形;C、根据对角线互相平分的四边形是平行四边形,可以判定;D、根据两组对边分别相等的四边形是平行四边形,可以判定;故选:B.【点睛】本题考查平行四边形的判定,解题的关键是掌握平行四边形的判定定理.5.C解析:C【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE ,进而得出DB 平分∠CDE ;依据Rt △AOD 中,AO >AD ,即可得到AO >DE ;依据O 是BD 中点,E 为AB 中点,可得BE=DE ,利用三角形全等即可得OE ⊥BD 且OB=OD .【详解】解:在ABCD 中,∵∠BAD=∠BCD=60°,∠ADC=120°,DE 平分∠ADC ,∴∠ADE=∠DAE=60°=∠AED ,∴△ADE 是等边三角形, 12AD AE AB ∴==, ∴E 是AB 的中点,∴DE=BE ,1302BDE AED ︒∴∠=∠=, ∴∠ADB=90°,即AD ⊥BD ,∴S ▱ABCD =AD•BD ,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠CDB=∠CDE-∠BDE=60°-30°=30°,∴∠CDB=∠BDE ,∴DB 平分∠CDE ,故②正确;∵Rt △AOD 中,AO >AD ,∵AD=DE ,∴AO >DE ,故③错误;∵O 是BD 的中点,∴DO=BO,∵E 是AB 的中点,∴BE=AE=DE∵OE =OE∴△DOE ≌△BOE(SSS)∴∠EOD=∠EOB∵∠EOD+∠EOB=180°∴∠BOE=90°∴OE 垂直平分BD ,故④正确;正确的有3个,故选择:C .【点睛】本题考查了平行四边形的性质,等边三角形的判定和性质,直角三角形的性质,平行四边形的面积公式的综合运用,三角形全等判定与性质,熟练掌握平行四边形的性质,等边三角形的性质,直角三角形的性质定理和等边三角形判定定理,三角形全等判定方法和性质是解题的关键.6.D解析:D【分析】根据平行四边形性质得出∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,根据等腰直角三角形得出BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,求出∠HAE=∠HDG=∠FCG=∠FB E=90°+α,证△FBE ≌△HAE ≌△HDG ≌△FCG ,推出∠BFE=∠GFC ,EF=EH=HG=GF ,求出∠EFG=90°,根据正方形性质得出即可.【详解】解:∵四边形ABCD 是平行四边形,∴∠ABC=∠ADC=α,∠BAD=∠BCD ,AB=CD ,AD=BC ,AD ∥BC ,AB ∥CD ,∵平行四边形ABCD 的边AB 、BC 、CD 、DA 为斜边,分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,∴BE=AE=CG=DG ,AH=DH=BF=CF ,∠ABE=∠EAB=∠FBC=∠FCB=∠GCD=∠GDC=∠HAD=∠EDA=45°,∵AB ∥CD ,∴∠BAD=∠BCD=180°-α,∴∠EAH=360°-45°-45°-(180°-α)=90°+α,∠GCF=360°-45°-45°-(180°-α)=90°+α, ∴①错误;②正确;∠HDG=45°+45°+α=90°+α,∠FBE=45°+45°+α=90°+α,∴∠HAE=∠HDG=∠FCG=∠FBE ,在△FBE 、△HAE 、△HDG 、△FCG 中,BF AH DH CF FBE HAE HDG FCG BE AE DG CG ===⎧⎪∠=∠=∠=∠⎨⎪===⎩,∴△FBE ≌△HAE ≌△HDG ≌△FCG (SAS ),∴∠BFE=∠GFC ,EF=EH=HG=GF ,③正确;∴四边形EFGH 是菱形,∵∠BFC=90°=∠BFE+∠EFC=∠GFC+∠CFE ,∴∠EFG=90°,∴四边形EFGH 是正方形,⑤正确;∴EH ⊥GH ,④正确;故选:D .【点睛】本题考查了等腰直角三角形,全等三角形的性质和判定,正方形的判定,平行四边形的性质,菱形的判定的应用,主要考查学生的推理能力.7.A解析:A【分析】延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N ,先计算出RG=6,∠ARG=90︒,AR=2,根据勾股定理求出210AG =10,利用1122AEG S EG AR AG EN =⋅⋅=⋅⋅,求出210EN =,即可利用勾股定理求出NG 、EH .【详解】如图,延长GE 交AB 于点R ,连接AE ,设AG 交DE 于点M ,过点E 作EN ⊥AG 于N , ∵矩形ABCD 与ECFG 如图放置,点B ,C ,F 共线,点C ,E ,D 共线,∴RG=BF=BC+CF=2+4=6,∠ARG=90︒,AR=AR-CE=4-2=2, ∴222222061AG AR RG =+==+,∵H 是AG 中点,∴10,∵1122AEG S EG AR AG EN =⋅⋅=⋅⋅, ∴21204EN ⨯=, ∴210EN =, 在Rt △ENG 中,22610EG EN NG =-=, ∴105NH NG HG =-=, ∴222NH EH EN +=故选:A .【点睛】此题考查矩形的性质,勾股定理,线段中点的性质,三角形面积法求线段长度,熟记矩形的性质及熟练运用勾股定理是解题的关键.8.C解析:C【分析】根据矩形和菱形的性质即可得出答案.【详解】解:A:因为矩形的对角线相等,故此选项不符合题意;B:因为菱形和矩形的对角线都互相平分,故此选项不符合题意;C:因为对角线互相垂直是菱形具有的性质,故此选项符合题意;D:因为矩形和菱形的对边都相等且平分,故此选项不符合题意;故选:C.【点睛】本题考查矩形和菱形的性质,掌握矩形和菱形性质的区别是解题关键.9.C解析:C【分析】根据HL证明△ADG≌△FDG,根据角的平分线的意义求∠GDE,根据GE=GF+EF=EC+AG,确定△BGE的周长为AB+AC.【详解】根据折叠的意义,得△DEC≌△DEF,∴EF=EC,DF=DC,∠CDE=∠FDE,∵DA=DF,DG=DG,∴Rt△ADG≌Rt△FDG,∴AG=FG,∠ADG=∠FDG,∴∠GDE=∠FDG+∠FDE=12(∠ADF+∠CDF)=45°,∵△BGE的周长=BG+BE+GE,GE=GF+EF=EC+AG,∴△BGE的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.10.B解析:B【分析】由正方形OMNQ 与ABCD 得∠DOC=∠MOQ=90°可推出∠DOE=∠COF 由AC ,BD 是正方形ABCD 的对角线求得∠ODE=∠OCF=45°,可证△DOE ≌△COF (AAS ),利用面积和差S 四边形FOEC = S △EOC +S △DOE =S △DOC =214a 即可. 【详解】∵正方形OMNQ 与ABCD ,∴∠DOC=∠MOQ=90°,∴∠DOE+∠EOC =90º,∠EOC+∠COF=90º,∴∠DOE=∠COF ,又AC ,BD 是正方形ABCD 的对角线,∴∠ODE=∠OCF=45°,∵DE CF ,∴△DOE ≌△COF (AAS ),∴S 四边形FOEC =S △EOC +S △COF = S △EOC +S △DOE =S △DOC ,∵S △DOC =2ABCD 11=44S a 正方形, ∴S 四边形FOEC =214a . 故选择:B .【点睛】 本题考查正方形的性质,全等三角形的判定与性质,掌握正方形的性质,全等三角形的判定与性质是解题关键.11.A解析:A【分析】由矩形的性质和已知条件求出,BC=10,即可得出答案.【详解】解:∵四边形ABCD 是矩形,∴AO=CO=DO=BO ,AD=BC ,∠ABC=90°,AB ∥CD ,∴∠BAC=∠ACD=30°,∴AB=3BC ,∵△ABC 的周长=AB+AC+BC=AB+AO+OC+BC ,△AOB 的周长=AB +AO +BO ,又∵ABC 的周长比△AOB 的周长长10,∴AB+AC+BC-(AB +AO +BO )=BC=10,∴AB=3BC=103;故选:A .【点睛】本题考查了矩形的性质、含30°角的直角三角形的性质等知识,熟练掌握矩形的性质,求出BC 的长是解题的关键.12.B解析:B【分析】利用平行四边形的性质解决问题即可【详解】解:在平行四边形ABCD 中,∵BC ∥AD ,∴∠A+∠B=180°,∵∠B=4∠A ,∴∠A=36°,∴∠C=∠A=36°,故选:B .【点睛】本题考查平行四边形的性质,解题的关键是熟练掌握基本知识,属于中考常考题型.二、填空题13.28【分析】过点作于根据菱形的性质得到继而可证再利用含30°角的直角三角形性质解得结合勾股定理解得的长根据折叠的性质得到最后在中利用勾股定理得据此整理解题即可【详解】过点作于是菱形是中点在中折叠在中 解析:2.8【分析】过点E 作EH AD ⊥于H , 根据菱形的性质,得到//AB CD ,4AD BC CD AB ====,继而可证60A HDE ∠=∠=︒,再利用含30°角的直角三角形性质,解得12DH DE =,结合勾股定理解得HE 的长,根据折叠的性质,得到,AG GE AF EF ==,最后在Rt HGE 中利用勾股定理得222GE GH HE =+,据此整理解题即可.【详解】过点E 作EH AD ⊥于H ,ABCD 是菱形//AB CD ∴,4AD BC CD AB ====60A HDE ∴∠=∠=︒E 是CD 中点2DE ∴=在Rt DHE △中,2DE =HE DH ⊥60HDE ∠=︒30HED ∴∠=︒221,213DH HE ∴==-=折叠,AG GE AF EF ∴==在Rt HGE 中222GE GH HE =+22(41)3GE GE ∴=-++2.8GE ∴=故答案为:2.8.【点睛】本题考查翻折变换、菱形的性质、含30°角的直角三角形等知识,是重要考点,难度较易,掌握相关知识是解题关键.14.12【分析】连接BD 根据菱形对角线的性质利用勾股定理计算BD 的长根据两平行线的距离相等所以△EAB 和△ECD 的面积和等于菱形ABCD 面积的一半再利用菱形面积等于对角线积的一半计算可得结论【详解】如图解析:12【分析】连接BD,根据菱形对角线的性质,利用勾股定理计算BD的长,根据两平行线的距离相等,所以△EAB和△ECD的面积和等于菱形ABCD面积的一半,再利用菱形面积等于对角线积的一半计算可得结论.【详解】如图,连接BD交AC于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=12AC=12×6=3,∵AB=5,由勾股定理得:224AB OA-=,∴BD=2OB=8,∵AB∥CD,∴△EAB和△ECD的高的和等于点C到直线AB的距离,∴△EAB和△ECD的面积和=12×ABCDS菱形=12×12×AC×BD=168=124⨯⨯.故答案为:12.【点睛】本题考查菱形的性质,三角形的面积,平行线的性质,熟知平行线的距离相等,得△EAB 和△ECD的高的和等于点C到直线AB的距离是解题的关键.15.【分析】按图中方式折叠后可得到除去两端纸条使用的长度为5个宽由此解题即可【详解】解:根据折叠的过程发现中间的长度有5个宽则在开始折叠时起点与点的距离为:故答案为:【点睛】本题考查翻折变换(折叠问题)解析:2552x-【分析】按图中方式折叠后,可得到除去两端,纸条使用的长度为5个宽,由此解题即可.【详解】解:根据折叠的过程,发现中间的长度有5个宽,则在开始折叠时起点M与点A的距离为:2552x-,故答案为:2552x-.【点睛】本题考查翻折变换(折叠问题),是重要考点,难度较易,掌握相关知识是解题关键.16.30【分析】根据三角形的中位线性质求出AC的长再求出ΔABC的周长【详解】∵点DE分别是ABBC的中点∴DE是ΔABC的中位线∴DE=AC∵DE=25∴AC=5∵AB=13BC=12∴C△ABC=A解析:30【分析】根据三角形的中位线性质,求出AC的长,再求出ΔABC的周长.【详解】∵点 D 、 E 分别是 AB 、 BC 的中点,∴DE是ΔABC的中位线,∴ DE=12AC ,∵ DE=2.5 ,∴ AC=5 ,∵ AB=13 , BC=12 ,∴ C△ABC=AB+BC+AC=13+12+5=30.故答案为:30.【点睛】本题考查了三角形的中位线性质定理,解题的关键是掌握,三角形的中位线平行于第三边,并且等于第三边的一半.17.5【分析】根据三角形中位线定理分别求出的长度根据勾股定理计算即可得到答案【详解】FG分别是的中点∴∵分别是BEBC的中点∴∵∠FGH=90°∴由勾股定理得故答案为:5【点睛】本题考查的是勾股定理三角解析:5【分析】根据三角形中位线定理分别求出GF、GH的长度,根据勾股定理计算,即可得到答案.【详解】F,G分别是DE,BE的中点,∴142GF BD==,∵G,H分别是BE,BC的中点,∴132GH CE==,∵∠FGH=90°,∴由勾股定理得,2222=+=+=,435FH GF GH故答案为:5.【点睛】本题考查的是勾股定理、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.18.30【分析】由DE分别是边ACAB的中点首先判定DE是三角形的中位线然后根据三角形的中位线定理求得AB的长即可【详解】解:∵DE分别是ACBC 的中点∴DE是△ABC的中位线根据三角形的中位线定理得:解析:30【分析】由D,E分别是边AC,AB的中点,首先判定DE是三角形的中位线,然后根据三角形的中位线定理求得AB的长即可.【详解】解:∵D、E分别是AC、BC的中点,∴DE是△ABC的中位线,根据三角形的中位线定理,得:AB=2DE=30m.故答案为:30.【点睛】本题考查了三角形中位线定理的运用;熟记三角形中位线定理是解决问题的关键.19.40【分析】先由矩形的性质得AD=BC=13cm∠A=∠D=90°AD∥BC再由折叠的性质得AB=AB=4cmAE=AE=3cmCD=CD=4cmDF=DF=3cm求出EF的长然后由梯形面积公式即可解析:40【分析】先由矩形的性质得AD=BC=13cm,∠A=∠D=90°,AD∥BC,再由折叠的性质得AB=A'B=4cm,AE=A'E=3cm,CD=CD'=4cm,DF=D'F=3cm,求出EF的长,然后由梯形面积公式即可得出答案.【详解】解:如图所示:∵四边形ABCD是矩形,∴AD=BC=13cm,∠A=∠D=90°,AD∥BC,∴EF∥BC,AB⊥AD,由折叠的性质得:AB=A'B=4cm,AE=A'E=3cm,CD=CD'=4cm,DF=D'F=3cm,∴EF=AD-AE-DF=13-3-3=7(cm),∴等腰梯形BCFE的面积=12(EF+BC)×AB=12(7+13)×4=40(cm2),故答案为:40.【点睛】本题考查了翻折变换的性质、矩形的性质、等腰梯形的性质等知识;熟练掌握翻折变换和矩形的性质是解题的关键.20.20°【分析】根据最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了8次可得CF与GF重合依据平行线的性质即可得到∠DEF的度数【详解】解:设∠DEF=α在图(1)中∵是长方形纸带∴AD//BC∴解析:20°【分析】根据最后一次折叠后恰好完全盖住∠EFG;整个过程共折叠了8次,可得CF与GF重合,依据平行线的性质,即可得到∠DEF的度数.【详解】解:设∠DEF=α,在图(1)中∵是长方形纸带,∴AD//BC,∴∠EFB=∠DEF =α,∵折叠8次后CF与GF重合,∴∠CFE=8∠EFB=8α,∵CF∥DE,∴∠DEF+∠CFE=180°,∴α+8α=180°,∴α=20°,即∠DEF=20°.故答案为:20°.【点睛】本题考查了翻折变换以及矩形的性质.在本题中应理解∠DEF+∠CFE=180°.解决该题型题目时,根据翻折变换找出相等的边角关系是关键.三、解答题21.(1)3EC cm;(2)25cm2【分析】(1)根据矩形的性质得DC=8cm,AD=10cm,再根据折叠的性质得到AF=AD=10cm,DE=EF,在Rt△ABF中,利用勾股定理易得BF=6cm,设DE=xcm,则EF=xcm,EC=(8-x)cm,在Rt△CEF中,利用勾股定理可求出x的值,进一步得到EC的长;(2)根据三角形面积公式计算即可求解.【详解】(1)∵AB=8cm,BC=10cm,∴DC=8cm,AD=10cm,又∵将△ADE折叠使点D恰好落在BC边上的点F,∴AF=AD=10cm,DE=EF,在Rt△ABF中,AB=8cm,AF=10cm,∴BF=22221086AF AB(cm),∴FC=10-6=4(cm),设DE=xcm,则EF=xcm,EC=(8-x)cm,在Rt△CEF中,EF2=FC2+EC2,即x2=42+(8-x)2,解得x=5,即DE的长为5cm,EC=8-x=8-5=3,即EC的长为3cm;(2)S△AEF=12EF×AF=12×5×10=25(cm2).故△AFE的面积是25cm2.【点睛】本题考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应线段相等.也考查了矩形的性质以及勾股定理.22.(1)①见解析;②见解析;(2)6.5【分析】(1)①以A为圆心,小于AB的长度为半径画圆,交AB、AC于两个点,再分别以这两个点为圆心,一样的半径画弧,交于一点,连接这个点与点A,即可得到BAC∠的平分线,再画出它与BC的交点D;②作线段AC的垂直平分线,即可找到线段AC的中点E,连接DE;(2)由等腰三角形“三线合一”的性质得152BD BC==,AD BC⊥,用勾股定理求出AB的长,再根据中位线的性质得到DE的长.【详解】解:(1)①如图所示:②如图所示:(2)∵AB AC =,AD 平分BAC ∠, ∴152BD BC ==,AD BC ⊥, 在Rt ABD △中,2213AB AD BD =+=, ∵E 、D 分别是AC 和BC 的中点, ∴1 6.52DE AB ==, 故答案是:6.5.【点睛】 本题考查等腰三角形的性质,中位线的定理,以及角平分线和垂直平分线的作法,解题的关键是熟练掌握这些几何的性质定理以及作图方法.23.点O 在折痕EF 上,BR BO 、把ABC ∠三等分,见解析【分析】如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上;连接AO , 根据折叠的性质可得△AOB 为等边三角形,然后结合矩形的性质即可求证所求问题.【详解】解:已知:如图④,线段EF 是长方形ABCD 对折后的折痕,BOR ∆是BAR ∆沿BR 折叠后得到的三角形,点O 在折痕EF 上.求证:BR BO 、把ABC ∠三等分证明:连接AO线段EF 是长方形ABCD 对折后的折痕∴EF 垂直平分AB 又点O 在对称轴EF 上AO BO ∴=BOR ∆是BAR ∆沿BR 折叠后得到的三角形,12BO AB ∴=∠=∠AO BO AB ∴==ABO ∴∆是等边三角形60ABO ︒∴∠=又12ABO ∠+∠=∠1230︒∴∠=∠= 又90ABC ︒∠= 330ABC ABO ︒∴∠=∠-∠=123∴∠=∠=∠BR BO ∴、把ABC ∠三等分.【点睛】本题主要考查矩形的性质及等边三角形的性质和判定,还考查了学生的观察力和动手能力,动手操作一下,问题更容易解决.24.(1)∠ABD=90°;(2)证明见解析.【分析】(1)只需要证明△BOD ≌△AOC ,再根据等腰直角三角形的性质即可得出∠OBD=∠OAB=∠OBA=45°,从而求得ABD ∠的度数;(2)延长BD 与AO 的延长线交于E ,可证明△OBE ≌△OBA ,得出OA=OE ,从而得出OG 为△ADE 的中位线,根据三角形中位线的性质可求得∠AOG=∠E=45°,继而证明结论.【详解】解:(1)∵∠AOB=∠COD=90°,OA OB =,∴∠OBA=∠OAB=45°,∠AOB-∠BOC=∠COD-∠BOC ,即∠AOC=∠BOD ,又∵OA OB =,OC OD =,∴△BOD ≌△AOC (SAS ),∴∠OBD=∠OAB=45°,∴∠ABD=∠OBA+∠OBD=90°;(2)延长BD 与AO 的延长线交于E ,∵∠AOB=90°,∴∠BOE=90°,又∵OB=OB ,∠OBD=∠OBA=45°,∴△OBE ≌△OBA (SAS ),∴∠E=∠OAB=45°,EO=OA ,又∵G 为AD 的中点,∴OG 为△ADE 的中位线,即OG//ED ,∴∠AOG=∠E=45°,即12AOG AOB ∠=∠ ,∴OG 平分AOB ∠.【点睛】本题考查全等三角形的性质和判定,三角形中位线定理,等腰直角三角形的性质.(1)中掌握全等三角形的判定定理,并能结合题意选择合适的定理作为依据证明是解题关键;(2)中正确作出辅助线是解题关键.25.见解析【分析】利用ASA 证明△ADE ≌△CDF 即可得到结论.【详解】 证明:四边形ABCD 是正方形,AD CD ∴=,90A DCF ADC ∠=∠=∠=︒,又90EDF ∠=︒,ADC EDC EDF EDC ∴∠-∠=∠-∠.ADE CDF .在ADE 与CDF 中,ADE CDF AD CDA DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()ADE CDF ASA ∴△≌△.DE DF ∴=.【点睛】此题考查全等三角形的判定及性质,正方形的性质,熟记正方形的性质是解题的关键. 26.(1)见详解;(2)见详解;(3)4833m <≤ 【分析】(1)根据旋转变换及三角形全等即可得解;(2)延长FD 到点G ,使DG=BE ,连接AG ,通过,ABE ADG △≌△AEF AGF ≌即可得解;(3)根据题意分两种情况∶P 与O 重合,H 与C 重合,通过构造全等三角形,求得MN=NQ ,再设BM=a ,则CM=4-a ,MN=QN=a+2,根据222MN CM CN =+,得出222(2)(4)2a a +=-+,进而得到a=43,求得AG 的长为于43;根据BM=43,可得48'433AG CM ==-=,进而分析计算即可得出m 的取值范围 . 【详解】解∶ (1)结论∶ EF=BE+FD .理由如下 ∶由旋转及题意知,F ,D ,G 三点共线,BE=DG ,AE=AG ,∠BAE=∠DAG ,∠EAF=12∠BAD, ∴∠GAF=∠DAF+∠DAG=∠DAF+∠BAE=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中, AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF AGF ≌∴.EF=FG , 又∵FG=DG+DF=BE+DF ,∴EF=BE+DF.(2)结论EF=BE+DF 仍然成立.理由如下 ∶延长FD 到点G ,使DG=BE ,连接AG ,如图所示∶∵∠B+∠ADC =180°,180ADF ADG ∠+∠=︒ ,∴B ADG ∠=∠,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,,ABE ADG ∴△≌△∴AE=AG ,∠BAE=∠DAG , 12EAF BAD ∠=∠ GAF DAF DAG FAD BAE BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠ , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴,AEF AGF △≌△∴.EF=FG.又 ∴FG=DG+DF=BE+DF ,∴EF=BE+DF .(3)①假设P 与O 重合, 如图,∵O 为EF 的中点,∴O 为正方形ABCD 的对称中心,过A 作AN //EF 交CD 于N ,则NF=AE=1,∴DN=CN=2,过O 作''//G H GH 交AD 于'G ,交BC 于'H ,''AG CH ∴=,''DG BH = ,过A 作//''AM G H 交BC 于M ,∴''AG MH = ,'45G OE ∠=︒ ,∴∠MAN=45°,延长CD 到Q ,使DQ=BM ,由AB=AD ,∠B=∠ADQ ,BM=DQ ,可得△ABM ≌△ADQ ,∴AM=AQ,∠BAM=∠DAQ∵∠MAN=45°,∠BAD=90°,∴∠BAM+∠DAN=45°=∠DAQ+∠DAN=∠QAN,∴∠MAN= ∠QAN由AM=AQ ,∠MAN=∠QAN ,AN=AN ,可得△MAN ≌△QAN ,∴MN=NQ设BM=a ,则CM=4-a ,MN=QN=a+2,∵222MN CM CN =+,()()222242a a ∴+=-+ ,解得∶a=43, ∴ BM=43, CM=83又∵'''AG CH MH ==,814'323AG ∴=⨯=, ②当H 与C 重合时,如图由①知BM=43 48''433AG CM ==-=∴, ∴m 的取值范围为∶4833m <≤ . 【点睛】 本题考查了全等三角形的判定和性质,旋转变换以及正方形的性质,熟练掌握相关各个性质并作辅助线构造出全等三角形是解题的关键.。
一、选择题1.如图,每个圆纸片的面积都是30,圆纸片A 与B ,B 与C ,C 与A 的重叠面积分别为6,8,5,三个圆纸片覆盖的总面积为73,则图中阴影部分面积为( )A .54B .56C .58D .692.若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .323.下列各等式的变形中,等式的性质运用正确的是( )A .由02x =,得2x =B .由14x -=,得5x =C .由23a =,得23a =D .由a b =,得a b c c= 4.已知5x =是关于x 的方程4231x m x +=+的解,则方程3261x m x +=+的解是_________.A .53B .53-C .-2D .15.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则x 的值为( ) 16x 1115 12A .39B .13C .14D .9 6.方程6x+12x-9x=10-12-16的解为( )A .x=2B .x=1C .x=3D .x=-2 7.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元8.某种商品的标价为120元,若以九折降价出售,相对于进价仍获利20%,则该商品的进价是( ).A .95元B .90元C .85元D .80元 9.下列方程中,其解为﹣1的方程是( ) A .2y=﹣1+yB .3﹣y=2C .x ﹣4=3D .﹣2x ﹣2=4 10.将方程2152132x x -+=-去分母,得( ) A .()()211352x x -=-+ B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+ 11.某项工作甲单独做4天完成,乙单独做6天完成,若甲先做1天,然后甲、乙合作完成此项工作,若甲一共做了x 天,则所列方程为( )A .1146x x ++=B .1146x x ++=C .1146x x -+=D .111446x x +++= 12.宜宾某机械厂加工车间有34名工人,平均每名工人每天加工小齿轮20个或大齿轮15个.已知3个小齿轮和2个大齿轮配成一套,问分别安排多少名工人加工大、小齿轮,才能使每天生产的齿轮刚好配套?若设加工小齿轮的工人有x 名,则可列方程为( ) A .2015(34)x x =-B .220315(34)x x ⨯=⨯-C .320215(34)x x ⨯=⨯-D .320(34)215x x ⨯-=⨯ 13.某种高端品牌的家用电器,若按标价打八折销售该电器一件,则可获纯利润500元,其利润率为20%,则该电器的标价为( )A .3750元B .4000元C .4250元D .3500元 14.书架上,第一层书的数量是第二层书的数量的2倍,从第一层抽8本书到第二层,这时第一层剩下的书的数量恰好比第二层书的数量的一半多3本.设第二层原有x 本书,则可列方程为( )A .2x -8=12(x +8)+3 B .2x =12(x +8)+3 C .2x -8=12x +3 D .2x =12x +3 15.某工厂一、二月份共完成生产任务57吨,其中二月份比一月份的23多13吨,设一月份完成x 吨,则下列所列方程正确的是( )A .x +23x −13=57B .x +23x +13=57C .x +23x =57+13D .3x +2x =57−13二、填空题16.美术馆举办的一次画展中,展出的油画作品和国画作品共有100幅,其中油画作品数量是国画作品数量的2倍多7幅,则展出的油画作品有______________幅.17.某信用卡上的号码由17位数字组成,每一位数字写在下面的一个方格中,如果任何相邻的三个数字之和都等于20,则x+y 的值等于______.18.桐桐的爸爸三年前在银行办理了一份3000元的定期存款,今年到期时的本息和为3243元,请你帮桐桐的爸爸算一算这种储蓄的年利率,若设年利率为x%,则可列方程为________________.(前一年的利息不计入下一年本金)19.用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________.20.一条船顺流航行,每小时行驶20千米;逆流航行,每小时行驶16千米若水的流速与船在静水中的速度都是不变的,则轮船在静水中的速度为______________千米/小时. 21.定义一种运算:1(1)(1)x a b a b a b *=++++,若设5213*=,则34*=________. 22.对于实数a ,b ,c ,d ,规定一种运算 a bc d =ad -bc ,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x x x x ++--=27时,则x =_____.23.某商店有两种进价不同的计算器都卖了64元,其中一种盈利60%,另一种亏本20%,在这次买卖中,这家商店的盈亏情况为____________.24.(1)由等式325x x =+的两边都________,得到等式5x =,这是根据____________;(2)由等式1338x -=的两边都______,得到等式x=_____,这是根据__________________. 25.甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.若甲队胜场是平场的2倍,平场比负场多一场,共得了21分,则甲队胜了______场,平了______场,负了______场.26.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.三、解答题27.某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话图片,解决下面两个问题: ()1求小明原计划购买文具袋多少个?()2学校决定,再次购买钢笔和签字笔共50支作为补充奖品,其中钢笔标价每支8元,签字笔标价每支6元.经过沟通,这次老板给予8折优惠,合计272元.问小明购买了钢笔和签字笔各多少支?28.一天,某客运公司的甲、乙两辆客车分别从相距380千米的A、B两地同时出发相向而行,并以各自的速度匀速行驶,两车行驶2小时时甲车先到达服务区C地,此时两车相距20千米,甲车在服务区C地休息了20分钟,然后按原速度开往B地;乙车行驶2小时15分钟时也经过C地,未停留继续开往A地.(友情提醒:画出线段图帮助分析)(l)乙车的速度是千米/小时,B、C两地的距离是千米,A、C两地的距离是千米;(2)甲车的速度是千米/小时;(3)这一天,乙车出发多长时间,两车相距200千米?29.由于施工,需要拆除学校图书馆,七年级同学主动承担图书馆整理图书的任务,如果由一个人单独做要用30小时完成,现先安排一部分人用1小时整理,随后又增加6人和他们一起又做了2小时,恰好完成整理工作,假设每个人的工作效率相同,那么先按排整理的人员有多少?30.江南生态食品加工厂收购了一批质量为10000kg的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加的这种山货质量比粗加工的质量的3倍还多2000kg,求粗加工的这种山货的质量.。
一、选择题1.(0分)关于测量,下列说法中正确的是()A.用体温计可以测量开水的温度B.使用停表测同学百米跑成绩前,先按复位钮清零C.裁切窗玻璃前,用分度值为厘米的卷尺测量窗户的宽度D.零刻线磨损的刻度尺不能测量任何物体的长度解析:BA.体温计的测温范围为35℃~42℃,开水的温度高于体温计所能测的最高温度,用体温计直接测量开水的温度,会损坏体温计;故A错误;B.使用停表测同学百米跑成绩前,先按复位纽清零,再开始计时;故B正确;C.窗户玻璃的宽度达几十厘米,甚至一米,且要求准确到毫米,应该用分度值为毫米的刻度尺测量;故C错误;D.零刻线磨损的刻度尺,可以选用其它的整数刻度作为临时的“零刻线”,在读数时再减去这一刻度值,即零刻线磨损的刻度尺也能测量物体的长度,故D错误。
故选B。
2.(0分)下列估计值最接近实际的是()A.洗澡水的温度大约是60℃B.中学生百米赛跑的速度是10m/sC.吃饭用的筷子长度约为2.2dm D.我国国歌演奏的时间是4分06秒解析:CA.人体正常体温在37℃左右,洗澡水的温度应该略高于体温,在40℃左右,不可能达到60℃。
故A不符合题意;B.优秀运动员百米赛跑的速度约为10m/s,故B不符合题意;C.中学生伸开手掌,大拇指指尖到中指指尖的距离大约18cm。
筷子的长度大于18cm在22cm=2.2dm左右,故C符合题意;D.我国的国歌长度较小,完整播放一遍中华人民共和国国歌所需的时间不到1min,在47s左右,故D不符合题意。
故选C。
3.(0分)如图所示的四种现象中,其物态变化属于液化的是()A.树叶上的霜B.护目镜上的“水雾”C.湿衣服晾干D.冰雪消融解析:BA.树叶上的霜,是空气中的水蒸气遇冷凝华成的小冰晶,故A不符合题意;B.护目镜上的“水雾”,是水蒸气遇到冷的镜片液化成的小水珠,故B符合题意;C.湿衣服晾干,是衣服上的水分汽化成了水蒸气,故C不符合题意;D.冰雪消融,是冰熔化成了水,故D不符合题意。
一、初二物理质量与密度实验易错压轴题(难)1.为了研究物质的某种特性,某同学分别用甲、乙、丙三种不同的金属做实验。
实验时,他用量筒和天平分别测出甲(或乙或丙)金属在不同体积时的质量。
下表记录的是实验测得的数据。
表一(甲金属)表二(乙金属)表三(丙金属)(1)分析上表中的实验序号1、2、3(或4、5、6或7、8、9)的体积及质量变化的倍数关系,可归纳出的结论是_________;(2)分析比较实验序号_________在体积相同时,不同金属的质量关系,可得出的初步结论是:相同体积的不同金属,它们的质量是不相同的;(3)进一步综合分析比较表一、表二、表三中的数据,可得出的结论是:(a)_________;(b)_________;(4)由以上分析可初步认为_________表示物质的一种特性,为此我们引入_________概念。
【答案】同种物质,质量与体积成正比 1、4、7或2、8或3、6 分析表一或表二或表三,同种物质,质量与体积的比值相同不同种物质,质量与体积的比值不同质量与体积的比值密度【解析】【分析】【详解】(1)[1]分析表一、二、三可知,同种物质,质量与体积成正比。
(2)[2]比较实验序号1、4、7或2、8或3、6可得:相同体积的不同金属,它们的质量不相同。
(3)[3][4]分析表一、二、三知,各表中的金属的质量与体积之比分别为27、78、89,所以可得出结论是:同种物质,质量与体积的比值相同;不同种物质,质量与体积的比值不同。
(4)[6][7]由以上分析可知,质量与体积的比值表示物质的一种特性,为此引入了密度的概念。
2.小明和小丽测量鹅卵石的密度:(1)小明的测量方法如图A所示,其步骤:①在测鹅卵石的质量时,他将天平放在水平台面上,再将游码调到“0”刻度线处,发现指针停在如图甲所示的位置。
要使天平平衡,应将平衡螺母向__________(选填“左”或“右”)调,调好天平后,他进行了正确的操作,砝码和游码的位置如图乙所示,鹅卵石的质量为__________g。
2011—2012年桃园中学九年级数学证明(三)单元测试题
姓名________ 班级 ______ 得分 ____
一、选择题(每小题4分,共40分)
1. 下列给出的条件中,能判断四边形ABCD 是平行四边形的是 ( ) A 、AB ∥CD ,AD = BC ; B 、∠B = ∠C ;∠A = ∠D , C 、AB =AD , CB = CD ; D 、AB = CD , AD = BC
2. 下列性质平行四边形具有而一般四边形不具有的 ( ) A 、不稳定性; B 、对角线互相平分 C 、外角和等于360° D 、内角和等于360°
3. 在平行四边形ABCD 中,AB = 6,BC = 10,∠A =150°,则平行四边形ABCD 的面积是( )
A 、15;
B 、18 ;
C 、30;
D 、60 4. 两条对角线相等的平行四边形一定是 ( )
A 、矩形;
B 、菱形
C 、矩形或正方形
D 、正方形 5. 如图:在等腰梯形ABCD 中,AB ∥CD ,DC = 3 cm ,∠A =60°,BD 平分 ∠ABC ,则这个梯形的周长是 ( ) A 、21 cm ; B 、18 cm ; C 、15cm ; D 、12 cm ;
6、顺次连结等腰梯形四边中点得到一个四边形,再顺次连结所得四边形四边 中点得到的图形是 ( )
A 、等腰梯形
B 、直角梯形
C 、菱形
D 、矩形 7、下列命题中,真命题是 ( )
A 、两条对角线相等的四边形是矩形
B 、两条对角线互相垂直的四边形是菱形
C 、两条对角线互相垂直且相等的四边形是正方形
D 、两条对角线互相平分的四边形是平行四边形
8、如图,四边形ABCD 中,DE ⊥AB ,DF ⊥BC ,垂足分别为E 、F ,∠EDF =60°,AE =2cm , 则AD = ( )
A
B
C
D
A
B
E
F
C
D
D
E
C
C'
B
F A
A 、4cm
B 、5cm
C 、6cm
D 、7cm
9、在直角三角形ABC 中,∠ACB =90°,∠A =30°, AC =cm 3,则AB 边上的中线长为( )
A 、cm 1
B 、cm 2
C 、cm 5.1
D 、cm 3
10、矩形纸片ABCD 中, AD = 4cm , AB = 10cm , 按如图方式折叠,使点B 与点D 重合, 折痕为EF ,则DE =( )cm ; A 、5.8 B 、6 C 、5 D 、8
二、 填空题(每空4分,共32分)
1. 在平行四边形ABCD 中,∠A +∠C =200°,那么∠A =____度,∠B =_____度.
2. 如果平行四边形ABCD 的周长是80,且AB ∶BC = 3∶5,那么AB =____,BC =____
3. 如果直角三角形两条直角边分别是9cm 和12cm ,那么斜边上的中线=____cm
4. 已知菱形的周长为40cm ,两个相邻角度数比为1∶2,则较短的对角线长为______cm .
5. 顺次连接矩形各边中点所得的四边形是______ ;顺次连接对角线互相垂直的四边形各边中点所得的四边形是________.
6. 如图:在平行四边形ABCD 中,对角线相交于点O ,AC ⊥CD , AO = 6,BO = 10,则CD =______,AD =________
7. 菱形的对角线长分别为6cm 和8cm ,则此菱形的面积为________平方厘米。
8. 如图:已知四边形ABCD 是菱形,则只须补充条件
_________________________(用字母表示)就可以判定 四边形ABCD 是正方形. 三、解答题(每题8分,共48分)
1、 一个菱形的一条对角线长是36cm ,周长是120cm , 求:(1)另一条对角线的长度;(2) 这个菱形的面积。
A
B
C
D O
A
B
C
D
2.、如图:在平行四边形ABCD 中,E 、F 是AC 上的两点,且AE = CF . 求证:DE = BF .
3、 证明:依次连接菱形各边中点所得的四边形是矩形.
4、 已知,如图:AD 是△ABC 的角平分线,DE ∥AC ,AF =ED . 求证:四边形AEDF 是菱形
D
A
B
C
E
F
A
B
C
D E
F
5、 如图:在等腰梯形ABCD 中,AB ∥CD ,P 是梯形内一点,且PC =PD . 求证:PA =PB 。
6、如图,以正方形ABCD 的DC 边为一边向外作一个等边三角形。
①求证:△ABE 是等腰三角形; ②求∠BAE 的度数。
A
B
C
D
P
A
B C
D
E。