浙教版七上数学教案全集---~章教案2
- 格式:doc
- 大小:366.00 KB
- 文档页数:67
2.1有理教的加法(一)教学目标月日总第课时1、通过实例经历加法法则的产生过程;2、掌握有理数的加法法则;3、会利用加法法则求两个有理数的和,会在数轴上表示两个有理数相加。
重点与难点重点:有理数的加法法则。
难点:有理数加法法则的发生过程比较复杂,异号两数相加包括绝对值相减、确定和的符号,学生不易掌握,容易发生差错,是本节数学的难点。
教学过程一、引入中国国家足球队在两场友谊比赛中,第一场净胜2球,第二场净负1球,请问两场比赛后,中国国家足球队合计胜几球?你能否用一个算式来表示最终结果?如何表示?这个算式与小学时学过的加法有何不同?由此引出课题。
二、讲授新课1、出示课本中的引例,请两位同学分别说出星期一和星期二这两天水泥进货的合计数量、出货的合计数量,并列出算式.根据学生列出的算式及结果,分组讨论,用自己的语言叙述同号两数相加的方法,教师归纳法则.2、继续考虑引例中星期一、星期二每一天的实际库存是增加了还是减少了?是多少?怎么用算式表示?类比于同号两数相加法则,由学生讨论、归纳异号两数相加法则,教师可对确定符号和确定绝对值的值两部分作适当的提示,启发学生观察和的符号,绝对值和两个加数的符号与绝对值的关系。
教师归纳法则,并进一步提出问题:两个有理数相加,除了同号、异号两种情况外,还有什么情形?引导学生从数的正、零、负三类情形进行讨论.教师完整地板书有理数的加法法则,并指出建立有理数加法的必要性和法则的合理性.然后让学生朗读法则,口答课本中“做一做”的练习.3、用引例的数据讲述有理数加法的数轴表示,更直观地反映有理数加法法则的合理性.4、例题.例1 计算下列各式:(1) (一11)+(一9); (2) (一3.5)+(+7);(3)(一1.08)+0; (4)(23+)+(23-)教师注意解答过程的示范,然后完成课本的“课内练习”,其中第3题要求学生板演,再由学生订正错误。
例2在数轴上表示下列有理数的运算,并求出计算结果.(1)(一3)+(4); (2)4+(一5).本题要求学生按要求在数轴上表示求解后,再用法则计算复查.例3(补充)小慧原来在银行存有零用钱350元,上个月取出了120元,这个月计划再存人50元,请用有理数的加法计算:(1)到上月底小慧在银行还有多少存款?(2)到这个月底小慧将有多少存款?5.课内练习(补充)计算:(1)(一1.37)+0;(2)(-68)+(-42)(3)(一27)+(+102);(4)(-4.2)+(+2.5)(5)(+14)+(-34); (6)(-256)+(+313)三、小结1.有理数的加法法则:2.有理数加法的数轴表示;3.有理数相加,先确定符号,再算绝对值;4.有理数的加法运算,和不一定大于加数.四、布置作业2.1 有理数的加法(二)教学目的月日总第课时1.通过合作学习,体验探索数学规律的思想和方法.2.理解加法的运算律.3.掌握多个有理数相加的顺序和方法,探索利用运算律简化运算过程.4.灵活运用有理数的加法解决简单实际问题.教学分析重点:加法运算律和多个有理数相加的顺序与方法.难点:例3的第(2)、(3)题,项较多,涉及分数运算,如何应用运算律需要较多的思考。
2.1有理数的加法(一)教学目标:1、通过实例经历加法法则的产生过程。
2、掌握有理数的加法法则。
3、会利用加法法规,求两个有理数的和,会在数轴上表示两个有理数相加。
情感和价值观要求:1、通过师生交流、探索,进一步激发学生的学习兴趣、求知欲望,养成良好的数学思维品质。
2、培养学生联系变化的观点和应用数学的意识。
教学重点:有理数的加法法则教学难点;有理数的加法法则的发生过程比较复杂,异号两数相加涉及绝对值相减,确定和的符号,学生不易理解,教学方法:引导—分类——归纳教师在给学生创设熟悉的情景中,引导他们画数轴,观察它的符号及其绝对值与两个加数的符号,培养学生的分类、归纳、概括的能力。
教学过程:1、创设情景,引入新课师:数的概念的发展产生于实际的需要,为了表示具有反意义的量,引进了负数和正数,前面我们讨论了有理数的意义,知道要确定一个数,一是符号,二是绝对值,即由符号和绝对值可以确定一个数。
同学们喜欢看足球吗?这里有一个问题,中国国家足球队在两场友谊比赛中,第一场净胜2球,第二场净负1球,请问两场后,中国国家足球队合计胜几球?引例:一建筑工地仓库记录星期一和星期二的水泥的进货和出货数量如下,其中进货为正,出货为负(单位:吨):你能列出表示这两某某泥进货和出货的合计数量,并算出结果吗?(-2)+(-4)==(+5)+(+3)=你能得出两个同号有理数相加的法则吗?(让学生说出)同号两数相加,取加数的符号,并把绝对值相加,用数轴表示如图示:(+3)+(—4)=(+5)+(—2)=5 -4-1 0 1 2 3 4 0 1 2 3 4 5 异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。
互为相反数的两个数相加得零,一个数同零相加,仍得这个数。
教师小结:两个有理数的任何一种运算都可归结为确定结果的符号与结果的绝对值两部分,这与小学运算是不同的。
例题讲解: 确定结果的符号1、解: (1) (-11)+(-9)= -(11+9 )= -20确定结果的绝对值(2)、(3)、(4)题让学生说出,教师书写。
1.2数轴知识与技能:通过温度计的类比认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;会求一个有理数的相反数。
过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。
情感与态度:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性。
教学重点与难点教学重点。
能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
教学难点:了解数形结合与转化的思想。
教学过程一) 创设情景,引入新课师:用幻灯机展示一个温度计(课件)上面标着同一天悉尼、莫斯科、北京三个城市的气温。
问:有没有哪位同学可以为大家播报一下今天这三座城市的气温?学生通过观察温度计便可以很快读出这三个城市的气温。
师:那你能说出这三个城市中哪个温度最高,哪个温度最低?温度计上的刻度可让学生直观地判断温度的高低,让学生感受到温度计的便利性和直观性。
问:如何直观的描绘有理数呢?这就是本节课我们要讨论的一种数形相结合的工具——数轴(导题)二)师生互动,讲授新课师:那何为数轴呢?我们不妨以常见的实际生活中的温度计进行探索。
问:温度计为什么能表示温度呢?(引导学生仔细观察温度计)原因在:1)它有表示零的刻度线 2)规定了零上为正,也就是说规定了方向3)有间隔相等的刻度线,也就是说给定了单位长度师:由此说明我们可以用直线上的点表示有理数,那么怎么表示呢?其方法步骤为(边板画示范边说明)1)画一直线(一般画成水平)在直线上取一点O为原点表示02)规定直线的一个方向(一般取从左向右的方向)为正方向(用箭头表示)3)再取适当的长度为单位长度问:由此,用直线上的点表示有理数应具备哪些要素?生:原点(o rigin)、单位长度(uint length)、正方向(positive direction)师:对,我们数学上就把具备这三要素的直线叫数轴(number line)。
第一章有理数【1.1正数和负数】第1课时正数和负数教课目的:1.认识正数与负数是实质生活的需要.2.会判断一个数是正数仍是负数.3.会用正负数表示互为相反意义的量.教课要点:会判断正数、负数,运用正负数表示拥有相反意义的量,理解表示拥有相反意义的量的意义.教课难点:负数的引入.教与学互动设计:(一)创建情境,导入新课课件展现珠穆朗玛峰和吐鲁番盆地,让同学感觉高于水平面和低于水平面的不一样状况.(二)合作沟通,解读研究举出一些生活中常碰到的拥有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想想以上都是一些拥有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些平时生活中拥有相反意义的量吗?该如何表示它们呢?为了用数表示拥有相反意义的量,我们把拥有此中一种意义的量,如零上温度、行进、收入、上升、超出等规定为正的,而把拥有与它意义相反的量,如零下温度、退后、支出、降落、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前方加上“-”(读作负)号来表示(零除外).1/15活动每组同学之间相互合作沟通,一起学说出有关相反意义的两个量,由其余同学用正负数表示.议论什么样的数是负数?什么样的数是正数?0是正数仍是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前方加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁徙,稳固提高【例1】举出几对拥有相反意义的量,并分别用正、负数表示.【提示】拥有相反意义的量有“上升”与“降落”,前“”与“后”、“高于”与“低于”、“获取”与“失掉”、“收入”与“支出”等.【例2】在某次乒乓球检测中,一只乒乓球超出标准质量0.02g,记作+0.02g,那么-0.03g表示什么?【例3】某项科学研究以45分钟为1个时间单位,并记为每日上午10时为推,上午7:45应记为()【点拨】读懂题意是解决此题的要点.7:45与10:00相差135分钟.(四)总结反省,拓展升华为了表示现实生活中拥有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不可以说“有正号的数是正数,有负号的数是负数”另.外,0既不是正数,也不是负数.(存入记为“+”):礼拜日一二三四五六2/15(1)本周小张一共用掉了多少钱?存进了多少钱?(2)积蓄罐中的钱与本来对比是多了仍是少了?(3)假如不用正、负数的方法记账,你还能够如何记账?比较各样记账的好坏.2.数学游戏:4个同学站或蹲成一排,从左到右每一个人编上号:1,2,3,4.用“+表”示“站”-,”(“负号)表示“蹲”.(1)由一个同学高声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,而后再高声喊:-1,-2,+3,+4,假如第2、第4个同学中有改变姿势的,则表示输了,作小小的“处罚”;(2)增添游戏难度,把4个同学次序调整一下,但每一个人记作自己本来的编号,再重复(1)中的游戏.(五)讲堂追踪反应夯实基础1.填空题:(1)假如节俭用水30吨记为+30吨,那么浪费20吨记为吨.(2)假如4年后记作+4年,那么8年前记作年.(3)假如运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增添了3kg,记作+3kg;小阳体重减少了2kg,则小阳增添了.2.正午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上升了1米,下午5时,水位又上升了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比正午12时水位高多少?提高能力3/153.粮食每袋标准重量是 50公斤,现测得甲、乙、丙三袋粮食重量以下:52公斤,49公斤,49.8公斤.假如超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不够数.(六)课时小结1.与从前对比,0的意义又多了哪些内容?2.如何用正数和负数表示拥有相反意义的量?(用正数表示此中拥有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教课目的:1.经过对“零”的意义的商讨,进一步理解正数和负数的观点,能利用正负数正确表示拥有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的宽泛应用,提高解决实质问题的能力 .教课要点:深入对正负数观点的理解.教课难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回首和理解经过对上节课的学习,我们知道在实质生产和生活中存在着拥有两种不一样意义的量,为了划分它们,我们用正数和负数来分别表示它们.[问题1]:零“”为何既不是正数也不是负数呢 ?学生思虑议论,借助举例说明.参照例子:用正数、负数和零表示零上温度、零下温度和零度.思虑“0在”实质问题中有什么意义?概括“0在”实质问题中不单表示“没有”的意思,它还拥有必定的实质意义.4/15如:水位不升不降时的水位变化,记作:0m.[问题2]:引入负数后,数依据“拥有两种相反意义的量”来分,能够分红几类?分别是什么?(二)深入理解,解决问题[问题3]:(课本P3例题)【例1】(1)一个月内,小明体重增添2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增添值;【例2】(2)某年,以下国家的商品出入口总数比上年的变化状况是:减少6.4%,xx增添1.3%,减少2.4%,xx减少3.5%,xx增添0.2%,xx增添7.5%.写出这些国家这一年商品出入口总数的增添率.解后语:在同一个问题中,分别用正数和负数表示的量拥有相反的意义.写出体重的增添值和出入口的增添率就示意着用正数来表示增添的量.近似的还有水位上升、收入上升等等.我们要在解决问题时注意领会这些指明方向的量,正确地用正负数表示它们.稳固练习1.经过例题(2)提示学生审题时要注意要求 ,题中求的是增添率,不是增添值.2.让学生再举出一些常有的拥有相反意义的量 .3.1990~1995年以下国家年均匀丛林面积(单位:千米2)的变化状况是:减少866,xx增添72,xx减少130,xx增添434,5/15xx减少3247,xx减少88.(1)用正数和负数表示这六国1990~1995年均匀丛林面积的增添量;(2)如何表示丛林面积减少许,所得结果与增添量有什么关系?(3)哪个国家丛林面积减少最多?(4)经过对这些数据的剖析,你想到了什么?阅读与思虑(课本P6)用正数和负数表示加工赞同偏差 .问题:1.直径为30.032mm和直径为29.97mm的部件能否合格?2.你知道还有哪些事件能够用正负数表示赞同偏差吗?请举例.(三)应用迁徙,稳固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.2.一种部件的内径尺寸在图纸上是9±0.05(单位:mm),表示这类部件的标准尺寸是9mm,加工要求不超出标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每日生产250辆摩托车,因为工人推行轮休,每日上班的人数不必定相等,实质每日生产量(与计划量对比)的增减值以下表:礼拜一二三四增减-5+7-3+4依据上边的记录,问:哪几日生产的摩托车比计划量多?礼拜几生产的摩托车最多,是多少辆?礼拜几生产的摩托车最少,是多少辆?类比率题,要修业生注意书写格式,领会正负数的应用.(四)课时小结(xx共同达成)【1.2有理数】6/15第1有理数教课目:1.理解有理数的意.2.能把出的有理数按要求分.3.认识0在有理数分中的作用.教课要点:会把所的各数填入它所在的数集里.教课点:掌握有理数的两种分.教与学互:(一)情境,入新沟通在,同学都已知道除了我小学里所学的数以外,有另一种形式的数,即数.大家一下,到当前止,你已了哪些型的数.(二)合作沟通,解研究⋯一你能些数的特色?学生回答,并相互充:有小学学的正整数、0、分数,也有整数、分数.明我把全部的些数称有理数.一你能以上各样型的数作出一分表?有理数做一做以上按整数和分数来分 ,那可不可以够按性(正数、数)来分呢,一.有理数7/15数的会合把全部正数构成的会合 ,叫做正数会合.试一试一试着概括总结,什么是负数会合、整数会合、分数会合、有理数会合.(三)应用迁徙,稳固提高【例1】把以下各数填入相应的会合内 :,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89【例2】以下是两位同学的分类方法,你以为他们分类的结果正确吗?为什么?有理数有理数(四)总结反省,拓展升华发问:今日你获取了哪些知识?由学生自己小结,而后教师总结:今日我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0的”正确说法.下边两个圈分别表示负数会合和分数会合,你能说出两个图的重叠部分表示什么数的会合吗?(五)讲堂追踪反应夯实基础1.把以下各数填入相应的大括号内 :(1)整数会合{};(3)负分数会合{};8/15(5)有理数会合{}.2.以下说法中正确的选项是()D.0是整数,而不是正数提高能力3.字母a能够表示数,在我们此刻所学的范围内,你可否试着说明a能够表示什么样的数?第2课时数轴教课目的:1.掌握数轴三因素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教课要点:数轴的观点.教课难点:从直观认识到理性认识,进而成立数轴观点.教与学互动设计:(一)创建情境,导入新课课件展现课本P7的“问题”(学生绘图)(二)合作沟通,解读研究9/15师:比较大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用向来线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.【点拨】(1)指引学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左侧为负方向).第三步:选择适合的长度为单位长度(据状况而定).第四步:取出教课温度计,由学生察看温度计的构造和数轴的构造能否有共同之处.对照思虑原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们能够来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?议论若a是一个正数,则数轴上表示数a的点在原点的什么地点上?与原点相距多少个单位长度?表示-a的点在原点的什么地点上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,全部的都能够用数轴上的点表示;都在原点的左侧,都在原点的右侧.(三)应用迁徙,稳固提高【例1】以下所画数轴对不对?假如不对,指犯错在哪里?【例2】试一试:用你画的数轴上的点表示4,1.5,-3,-,0.10/15【例3】以下语句:①数轴上的点只好表示整数;②数轴是一条直线;③数轴上的一个点只好表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()【例4】在数轴上表示-2和1,并依据数轴指出全部大于-2而小于1的整数.【例5】数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长为2000cm的线段AB,则线段AB遮住的整点有()(四)总结反省,拓展升华数轴是特别重要的工具,它使数和直线上的点成立了一一对应的关系.它揭露了数和形的内在联系,为我们此后进一步研究问题供给了新方法和新思想.大家要掌握数轴的三因素,正确画出数轴.提示大家,全部的有理数都能够用数轴上的有关点来表示,但反过来其实不行立,即数轴上的点其实不都表示有理数.(五)讲堂追踪反应夯实基础1.规定了、、的直线叫做数轴,全部的有理数都可从用上的点来表示 .2.P从数轴上原点开始,向右挪动2个单位长度,再向左移5个单位长度,此时P点所表示的数是.3.把数轴上表示2的点挪动5个单位长度后,所得的对应点表示的数是 ()11/154.在数轴上,原点及原点左侧的点所表示的数是()6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把以下数表示在数轴上 :+2,-3,0.5,0,-4.5,4,3.开放研究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.以下四个数中,在-2到0之间的数是()第3课时相反数教课目的:1.借助数轴认识相反数的观点,知道互为相反数的地点关系.2.给一个数,能求出它的相反数.教课要点:理解相反数的意义.教课难点:理解和掌握两重符号简化的规律 .教与学互动设计:(一)创建情境,导入新课12/15活动请一个学生到讲台前方对大家,向前走5步,向后走5步.沟通假如向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作沟通,解读研究1.察看以下数:6和-6,2和-2,7和-7,和-,并把它们在数轴上标出.想想(1)上述各对数有什么特色?(2)表示这四对数的点在数轴上有什么特色?(3)你能够写出拥有上述特色的n组数吗?察看像这样只有符号不一样的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,而且与原点距离相等的两个点.即:我们把a的相反数记为-a,而且规定0的相反数就是零.总结在正数前方添上一个“-”号,就获取这个正数的相反数,是一个负数;把负数前的“-”号去掉,就获取这个负数的相反数,是一个正数.2.在任意一个数前方添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁徙,稳固提高【例1】填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它自己.【例2】以下判断不正确的有()①互为相反数的两个数必定不相等;②互为相反数的数在数轴上的点必定在原点的两边;③全部的有理数都有相反数;④相反数是符号相反的两个点.【例3】化简以下各符号:13/15(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-⋯-(-6)}⋯共}(n个号).【】化的律是:有偶数个号,果正;有奇数个号,果.【例4】数上A点表示+4,B、C 两点所表示的数是相互反数,且C到A的距离2,点B和点C各什么数?(四)反省,拓展升【】(1)相反数的观点及表示方法.(2)相反数的代数意和几何意 .(3)符号的化.(五)堂追踪反夯基(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它相互反数.()(4)符号不一样的两个数相互反数.()2.分写出以下各数的相反数,并把它在数上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,个数必定是()4.一个数比它的相反数小,个数是()14/154,则这两个数是.提高能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上地点以下图,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<连”接起来.15/15。
浙教版七年级数学上册课本教案浙教版七年级数学上册课本教案第一章有理数1.1正数和负数第1课时正数和负数教学目标:1.了解正数与负数是实际生活的需要.2.会判断一个数是正数还是负数.3.会用正负数表示互为相反意义的量.教学重点:会判断正数、负数,运用正负数表示具有相反意义的量,理解表示具有相反意义的量的意义.教学难点:负数的引入.教与学互动设计:(一)创设情境,导入新课课件展示珠穆朗玛峰和吐鲁番盆地,让同学感受高于水平面和低于水平面的不同情况.(二)合作交流,解读探究举出一些生活中常遇到的具有相反意义的量,如温度是零上7℃和零下5℃,买进90张课桌与卖出80张课桌,汽车向东行50米和向西行120米等.想一想以上都是一些具有相反意义的量,你能用小学算术中的数来表示出每一对量吗?你能再举一些日常生活中具有相反意义的量吗?该如何表示它们呢?为了用数表示具有相反意义的量,我们把具有其中一种意义的量,如零上温度、前进、收入、上升、高出等规定为正的,而把具有与它意义相反的量,如零下温度、后退、支出、下降、低于等规定为负的,正的量用算术里学过的数表示,负的量用学过的数前面加上“-”(读作负)号来表示(零除外).活动每组同学之间相互合作交流,一同学说出有关相反意义的两个量,由其他同学用正负数表示.讨论什么样的数是负数?什么样的数是正数?0是正数还是负数?自己列举正数、负数.总结正数是大于0的数,负数是在正数前面加“-”号的数,0既不是正数,也不是负数,是正数与负数的分界点.(三)应用迁移,巩固提高例1举出几对具有相反意义的量,并分别用正、负数表示.提示具有相反意义的量有“上升”与“下降”,“前”与“后”、“高于”与“低于”、“得到”与“失去”、“收入”与“支出”等.例2在某次乒乓球检测中,一只乒乓球超过标准质量0.02g,记作+0.02g,那么-0.03g表示什么?例3某项科学研究以45分钟为1个时间单位,并记为每天上午10时为0,10时以前记为负,10时以后记为正.例如,9:15记为-1,10:45记为1等等.依此类推,上午7:45应记为()A.3B.-3C.-2.5D.-7.45点拨读懂题意是解决本题的关键.7:45与10:00相差135分钟.(四)总结反思,拓展升华为了表示现实生活中具有相反意义的量引进了负数.正数就是我们过去学过(除零外)的数,在正数前加上“-”号就是负数,不能说“有正号的数是正数,有负号的数是负数”.另外,0既不是正数,也不是负数.1.下表是小张同学一周中简记储蓄罐中钱的进出情况表(存入记为“+”):星期日一二三四五六(元)+16+5.0-1.2-2.1-0.9+10-2.6(1)本周小张一共用掉了多少钱?存进了多少钱?(2)储蓄罐中的钱与原来相比是多了还是少了?(3)如果不用正、负数的方法记账,你还可以怎样记账?比较各种记账的优劣.2.数学游戏:4个同学站或蹲成一排,从左到右每个人编上号:1,2,3,4.用“+”表示“站”,“-”(负号)表示“蹲”.(1)由一个同学大声喊:+1,-2,-3,+4,则第1、第4个同学站,第2、第3个同学蹲,并保持这个姿势,然后再大声喊:-1,-2,+3,+4,如果第2、第4个同学中有改变姿势的,则表示输了,作小小的“惩罚”;(2)增加游戏难度,把4个同学顺序调整一下,但每个人记作自己原来的编号,再重复(1)中的游戏.(五)课堂跟踪反馈夯实基础1.填空题:(1)如果节约用水30吨记为+30吨,那么浪费20吨记为吨.(2)如果4年后记作+4年,那么8年前记作年.(3)如果运出货物7吨记作-7吨,那么+100吨表示.(4)一年内,小亮体重增加了3kg,记作+3kg;小阳体重减少了2kg,则小阳增加了.2.中午12时,水位低于标准水位0.5米,记作-0.5米,下午1时,水位上涨了1米,下午5时,水位又上涨了0.5米.(1)用正数或负数记录下午1时和下午5时的水位;(2)下午5时的水位比中午12时水位高多少?提升能力3.粮食每袋标准重量是50公斤,现测得甲、乙、丙三袋粮食重量如下:52公斤,49公斤,49.8公斤.如果超重部分用正数表示,请用正数和负数记录甲、乙、丙三袋粮食的超重数和不足数.(六)课时小结1.与以前相比,0的意义又多了哪些内容?2.怎样用正数和负数表示具有相反意义的量?(用正数表示其中具有一种意义的量,另一种量用负数表示)第2课时正数和负数的应用教学目标:1.通过对“零”的意义的探讨,进一步理解正数和负数的概念,能利用正负数正确表示具有相反意义的量(规定了向指定方向变化的量);2.进一步体验正负数在生产生活中的广泛应用,提高解决实际问题的能力.教学重点:深化对正负数概念的理解.教学难点:正确理解和表示向指定方向变化的量.教与学互动设计:(一)知识回顾和理解通过对上节课的学习,我们知道在实际生产和生活中存在着具有两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.[问题1]:“零”为什么既不是正数也不是负数呢?学生思考讨论,借助举例说明.参考例子:用正数、负数和零表示零上温度、零下温度和零度.思考“0”在实际问题中有什么意义?归纳“0”在实际问题中不仅表示“没有”的意思,它还具有一定的实际意义.如:水位不升不降时的水位变化,记作:0m.[问题2]:引入负数后,数按照“具有两种相反意义的量”来分,可以分成几类?分别是什么?(二)深化理解,解决问题[问题3]:(课本P3例题)例1(1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;例2(2)某年,下列国家的商品进出口总额比上年的变化情况是:美国减少6.4%,德国增长1.3%,法国减少2.4%,英国减少3.5%,意大利增长0.2%,中国增长7.5%.写出这些国家这一年商品进出口总额的增长率.解后语:在同一个问题中,分别用正数和负数表示的量具有相反的意义.写出体重的增长值和进出口的增长率就暗示着用正数来表示增长的量.类似的还有水位上升、收入上涨等等.我们要在解决问题时注意体会这些指明方向的量,正确地用正负数表示它们.巩固练习1.通过例题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.2.让学生再举出一些常见的具有相反意义的量.3.1990~1995年下列国家年平均森林面积(单位:千米2)的变化情况是:中国减少866,印度增长72,韩国减少130,新西兰增长434,泰国减少3247,孟加拉减少88.(1)用正数和负数表示这六国1990~1995年平均森林面积的增长量;(2)如何表示森林面积减少量,所得结果与增长量有什么关系?(3)哪个国家森林面积减少最多?(4)通过对这些数据的分析,你想到了什么?阅读与思考(课本P6)用正数和负数表示加工允许误差.问题:1.直径为30.032mm和直径为29.97mm的零件是否合格?2.你知道还有哪些事件可以用正负数表示允许误差吗?请举例.(三)应用迁移,巩固提高1.甲冷库的温度是-12℃,乙冷库的温度比甲冷库低5℃,则乙冷库的温度是.2.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求不超过标准尺寸多少?最小不小于标准尺寸多少?3.摩托车厂本周计划每天生产250辆摩托车,由于工人实行轮休,每天上班的人数不一定相等,实际每天生产量(与计划量相比)的增减值如下表:星期一二三四增减-5+7-3+4根据上面的记录,问:哪几天生产的摩托车比计划量多?星期几生产的摩托车最多,是多少辆?星期几生产的摩托车最少,是多少辆?类比例题,要求学生注意书写格式,体会正负数的应用.(四)课时小结(师生共同完成)1.2有理数第1课时有理数教学目标:1.理解有理数的意义.2.能把给出的有理数按要求分类.3.了解0在有理数分类中的作用.教学重点:会把所给的各数填入它所在的数集图里.教学难点:掌握有理数的两种分类.教与学互动设计:(一)创设情境,导入新课讨论交流现在,同学们都已经知道除了我们小学里所学的数之外,还有另一种形式的数,即负数.大家讨论一下,到目前为止,你已经认识了哪些类型的数.(二)合作交流,解读探究3,5.7,-7,-9,-10,0,,,-3,-7.4,5.2…议一议你能说说这些数的特点吗?学生回答,并相互补充:有小学学过的正整数、0、分数,也有负整数、负分数.说明我们把所有的这些数统称为有理数.试一试你能对以上各种类型的数作出一张分类表吗?有理数做一做以上按整数和分数来分,那可不可以按性质(正数、负数)来分呢,试一试.有理数数的集合把所有正数组成的集合,叫做正数集合.试一试试着归纳总结,什么是负数集合、整数集合、分数集合、有理数集合.(三)应用迁移,巩固提高例1把下列各数填入相应的集合内:,3.1416,0,2004,-,-0.23456,10%,10.1,0.67,-89例2以下是两位同学的分类方法,你认为他们分类的结果正确吗?为什么?有理数有理数(四)总结反思,拓展升华提问:今天你获得了哪些知识?由学生自己小结,然后教师总结:今天我们学习了有理数的定义和两种分类的方法.我们要能正确地判断一个数属于哪一类,要特别注意“0”的正确说法.下面两个圈分别表示负数集合和分数集合,你能说出两个图的重叠部分表示什么数的集合吗?(五)课堂跟踪反馈夯实基础1.把下列各数填入相应的大括号内:-7,0.125,,-3,3,0,50%,-0.3(1)整数集合{};(2)分数集合{};(3)负分数集合{};(4)非负数集合{};(5)有理数集合{}.2.下列说法中正确的是()A.整数就是自然数B.0不是自然数C.正数和负数统称为有理数D.0是整数,而不是正数提升能力3.字母a可以表示数,在我们现在所学的范围内,你能否试着说明a可以表示什么样的数?第2课时数轴教学目标:1.掌握数轴三要素,能正确画出数轴.2.能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数.教学重点:数轴的概念.教学难点:从直观认识到理性认识,从而建立数轴概念.教与学互动设计:(一)创设情境,导入新课课件展示课本P7的“问题”(学生画图)(二)合作交流,解读探究师:对照大家画的图,为了使表达更清楚,我们把0左右两边的数分别用正数和负数来表示,即用一直线上的点把正数、负数、0都表示出来,也就是本节要学的内容——数轴.点拨(1)引导学生学会画数轴.第一步:画直线,定原点.第二步:规定从原点向右的方向为正(左边为负方向).第三步:选择适当的长度为单位长度(据情况而定).第四步:拿出教学温度计,由学生观察温度计的结构和数轴的结构是否有共同之处.对比思考原点相当于什么;正方向与什么一致;单位长度又是什么?(2)有了以上基础,我们可以来试着定义数轴:规定了原点、正方向和单位长度的直线叫数轴.做一做学生自己练习画出数轴.试一试你能利用你自己画的数轴上的点来表示数4,1.5,-3,-2,0吗?讨论若a是一个正数,则数轴上表示数a的点在原点的什么位置上?与原点相距多少个单位长度?表示-a的点在原点的什么位置上?与原点又相距多少个单位长度?小结整数在数轴上都能找到点表示吗?分数呢?可见,所有的都可以用数轴上的点表示;都在原点的左边,都在原点的右边.(三)应用迁移,巩固提高例1下列所画数轴对不对?如果不对,指出错在哪里?例2试一试:用你画的数轴上的点表示4,1.5,-3,-,0.例3下列语句:①数轴上的点只能表示整数;②数轴是一条直线;③数轴上的一个点只能表示一个数;④数轴上找不到既不表示正数,又不表示负数的点;⑤数轴上的点所表示的数都是有理数.正确的说法有()A.1个B.2个C.3个D.4个例4在数轴上表示-2和1,并根据数轴指出所有大于-2而小于1的整数.例5数轴上表示整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上随意画出一条长为2000cm的线段AB,则线段AB盖住的整点有()A.1998个或1999个B.1999个或2000个C.2000个或2001个D.2001个或2002个(四)总结反思,拓展升华数轴是非常重要的工具,它使数和直线上的点建立了一一对应的关系.它揭示了数和形的内在联系,为我们今后进一步研究问题提供了新方法和新思想.大家要掌握数轴的三要素,正确画出数轴.提醒大家,所有的有理数都可以用数轴上的相关点来表示,但反过来并不成立,即数轴上的点并不都表示有理数.(五)课堂跟踪反馈夯实基础1.规定了、、的直线叫做数轴,所有的有理数都可从用上的点来表示.2.P从数轴上原点开始,向右移动2个单位长度,再向左移5个单位长度,此时P 点所表示的数是.3.把数轴上表示2的点移动5个单位长度后,所得的对应点表示的数是()A.7B.-3C.7或-3D.不能确定4.在数轴上,原点及原点左边的点所表示的数是()A.正数B.负数C.不是负数D.不是正数5.数轴上表示5和-5的点离开原点的距离是,但它们分别表示.提升能力6.与原点距离为3.5个单位长度的点有2个,它们分别是和.7.画出一条数轴,并把下列数表示在数轴上:+2,-3,0.5,0,-4.5,4,3.开放探究8.在数轴上与-1相距3个单位长度的点有个,为;长为3个单位长度的木条放在数轴上,最多能覆盖个整数点.9.下列四个数中,在-2到0之间的数是()A.-1B.1C.-3D.3第3课时相反数教学目标:1.借助数轴了解相反数的概念,知道互为相反数的位置关系.2.给一个数,能求出它的相反数.教学重点:理解相反数的意义.教学难点:理解和掌握双重符号简化的规律.教与学互动设计:(一)创设情境,导入新课活动请一个学生到讲台前面对大家,向前走5步,向后走5步.交流如果向前走为正,那向前走5步与向后走5步分别记作什么?(二)合作交流,解读探究1.观察下列数:6和-6,2和-2,7和-7,和-,并把它们在数轴上标出.想一想(1)上述各对数有什么特点?(2)表示这四对数的点在数轴上有什么特点?(3)你能够写出具有上述特点的n组数吗?观察像这样只有符号不同的两个数叫相反数.互为相反数的两个数在数轴上的对应点(0除外)是在原点两旁,并且与原点距离相等的两个点.即:我们把a的相反数记为-a,并且规定0的相反数就是零.总结在正数前面添上一个“-”号,就得到这个正数的相反数,是一个负数;把负数前的“-”号去掉,就得到这个负数的相反数,是一个正数.2.在任意一个数前面添上“-”号,新的数就是原数的相反数.如-(+5)=-5,表示+5的相反数为-5;-(-5)=5,表示-5的相反数是5;-0=0,表示0的相反数是0.(三)应用迁移,巩固提高例1填空(1)-5.8是的相反数,的相反数是-(+3),a的相反数是;a-b的相反数是,0的相反数是.(2)正数的相反数是,负数的相反数是,的相反数是它本身.例2下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个例3化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)}…}(共n个负号).归纳化简的规律是:有偶数个负号,结果为正;有奇数个负号,结果为负.例4数轴上A点表示+4,B、C两点所表示的数是互为相反数,且C到A的距离为2,则点B和点C各对应什么数?(四)总结反思,拓展升华归纳(1)相反数的概念及表示方法.(2)相反数的代数意义和几何意义.(3)符号的化简.(五)课堂跟踪反馈夯实基础1.判断题(1)-3是相反数.()(2)-7和7是相反数.()(3)-a的相反数是a,它们互为相反数.()(4)符号不同的两个数互为相反数.()2.分别写出下列各数的相反数,并把它们在数轴上表示出来.1,-2,0,4.5,-2.5,33.若一个数的相反数不是正数,则这个数一定是()A.正数B.正数或0C.负数D.负数或04.一个数比它的相反数小,这个数是()A.正数B.负数C.非负数D.非正数5.数轴上表示互为相反数的两个点之间的距离为4,则这两个数是.提升能力6.若a与a-2互为相反数,则a的相反数是.7.已知有理数m、-3、n在数轴上位置如图所示,将m、-3、n的相反数在数轴上表示出来,并将这6个数用“<”连接起来.。
课题:浙教版初中数学备课教案教学内容:本节课主要内容是浙教版初中数学七年级上册第二章《有理数》的第一节《有理数的概念与运算》。
本节课的主要目标是让学生理解有理数的定义,掌握有理数的加减乘除运算方法,并能够运用有理数解决实际问题。
教学目标:1. 知识与技能目标:让学生掌握有理数的定义,了解有理数的分类,能够进行有理数的加减乘除运算,并能够解决实际问题。
2. 过程与方法目标:通过自主学习、合作交流的方式,培养学生的数学思维能力和解决问题的能力。
3. 情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。
教学重点:1. 有理数的定义和分类。
2. 有理数的加减乘除运算方法。
3. 运用有理数解决实际问题。
教学难点:1. 有理数的乘除运算。
2. 运用有理数解决实际问题。
教学过程:一、导入新课(5分钟)1. 复习旧知识:回顾小学学过的整数和小数,引导学生发现整数和小数都可以表示成分数的形式。
2. 提问:那么,有没有一种数,它既不是整数,也不是小数,但是它可以表示成分数的形式呢?二、自主学习(15分钟)1. 让学生阅读教材,理解有理数的定义。
2. 让学生通过举例,了解有理数的分类。
3. 让学生自学有理数的加减乘除运算方法。
三、合作交流(15分钟)1. 让学生分组讨论,总结有理数的加减乘除运算方法。
2. 让学生通过实际例题,运用有理数解决实际问题。
四、巩固练习(15分钟)1. 让学生完成教材中的练习题。
2. 让学生回答课堂提问。
五、课堂小结(5分钟)1. 教师引导学生总结本节课所学内容。
2. 教师强调有理数在实际生活中的应用。
教学反思:本节课通过自主学习、合作交流的方式,让学生掌握了有理数的定义和分类,了解了有理数的加减乘除运算方法,并能够运用有理数解决实际问题。
在教学过程中,要注意引导学生克服有理数乘除运算的困难,培养学生的数学思维能力和解决问题的能力。
同时,要激发学生对数学的兴趣,培养学生的自信心和克服困难的勇气。
1.2数轴知识与技能:通过温度计的类比认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;会求一个有理数的相反数。
过程与方法:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念。
情感与态度:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性。
教学重点与难点教学重点。
能将已知数在数轴上表示出来,说出数轴上已知点所表示的数。
教学难点:了解数形结合与转化的思想。
教学过程一) 创设情景,引入新课师:用幻灯机展示一个温度计(课件)上面标着同一天悉尼、莫斯科、北京三个城市的气温。
问:有没有哪位同学可以为大家播报一下今天这三座城市的气温?学生通过观察温度计便可以很快读出这三个城市的气温。
师:那你能说出这三个城市中哪个温度最高,哪个温度最低?温度计上的刻度可让学生直观地判断温度的高低,让学生感受到温度计的便利性和直观性。
问:如何直观的描绘有理数呢?这就是本节课我们要讨论的一种数形相结合的工具——数轴(导题)二)师生互动,讲授新课师:那何为数轴呢?我们不妨以常见的实际生活中的温度计进行探索。
问:温度计为什么能表示温度呢?(引导学生仔细观察温度计)原因在:1)它有表示零的刻度线 2)规定了零上为正,也就是说规定了方向3)有间隔相等的刻度线,也就是说给定了单位长度师:由此说明我们可以用直线上的点表示有理数,那么怎么表示呢?其方法步骤为(边板画示范边说明)1)画一直线(一般画成水平)在直线上取一点O为原点表示02)规定直线的一个方向(一般取从左向右的方向)为正方向(用箭头表示)3)再取适当的长度为单位长度问:由此,用直线上的点表示有理数应具备哪些要素?生:原点(o rigin)、单位长度(uint length)、正方向(positive direction)师:对,我们数学上就把具备这三要素的直线叫数轴(number line)。
1.1从自然数到有理数一、教学目标1 .理解有理数产生的必然性、合理性及有理数的分类;2 .能辨别正、负数,感受规定正、负的相对性;3 .体验中国古代在数的发展方面的贡献。
二、教学重点和难点重点:有理数的概念难点:建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。
三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一)从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.(三)介绍有理数的有关概念。
2.5 有理数的乘方1教学目标1.理解有理数的乘方、幂、底数、指数的概念及其相互间的关系,会进行乘方的运算;2.在生动的情境中让学生获得有理数乘方的初步经验;3.培养学生观察、分析、归纳、概括的能力;4.经历从乘法到乘方的推广的过程,从中感受化归的数学思想,体会数学的简洁美。
2学情分析学生在学习了有理数的加法、减法、乘法、除法后,对于原本小学已学的四则运算也在一定程度上回顾和推广,在此基础上,学习有理数的乘方,水到渠成。
3重点难点【教学重点】:乘方的相关概念及运算方法。
【教学难点】:理解有理数的乘方、幂、底数、指数的概念及其相互间的关系。
4教学过程活动1【导入】新课引入灰太狼说:每天给我10元,一共给20年,我就不吃你。
喜羊羊说:如果你第一天给我1元,第二天给我2元,第三天给我4元,以此类推,一直给20天,我就答应你!你觉得灰太狼能吃了喜羊羊吗?〖设计意图〗:吸引学生的注意力,唤起学生的好奇心,激发学生兴趣和主动学习的欲望,引出课题。
活动2【讲授】新课讲解问题1:(1)边长为5的正方形的面积是什么?(2)棱长为5的正方体的体积是什么?式子为:(1)5×5=52(2)5×5×5=53请同学们用类似的方法表示下面的式子。
5×5×5×5×5=555×5×5×5×5×5×5×5×5×5=510象这样的运算就是我们今天要学习的乘方运算。
给出乘方的定义。
乘方:把几个相同的因数相乘的运算叫做乘方,乘方的结果叫做幂。
〖设计意图〗:让学生体会到问题的存在性和引入新的表示方法——乘方的必要性!定义分析实质:是特殊的乘法运算特点:各因数相同幂的表示:an读作:a的n次方,也叫做a的n次幂,a叫做幂的底数,n叫做幂的指数。
an的意义:表示n个a相乘。
〖设计意图〗:承上启下,与小学所学知识联系,让学生体会乘方的表示方法的得出过程及这样表示的合理性,为定义得出作铺垫。
有理数一.教学目标知识与技能:学习正数、负数、有理数的概念,会用正、负数表示具有相反意义的量,能正确地将有理数进行分类.过程与方法:通过观察节前图,分析、讨论出用正、负数表示具有相反意义的量的方法,了解有理数的产生的必要性、合理性.情感与态度:要求学生树立勇于探索、积极实践的学习态度,通过合作交流培养协作精神,撰写小论文进一步了解数的发展历史.二.教学重点和难点教学重点:正数、负数的概念对有理数的建立起关键性的作用,是本节课重点.教学难点:正数、负数的概念的建立是学生从来未经历过的数学的抽象过程,是本节的难点.三.,四.教学过程1.创设情景,引入新课同学们你们还记不记上一节课老师请你们举了一些生活当中的例子,这些例子用自然数,分数,小数是不能解决的,当时我们都举了哪些例子啊我记得同学们好象讲到了温度计当中零下的温度,还有地下室,还有欠银行的钱如何表示,还有路标向东向西,扣分如何表示等等等等.那么温度的零上、零下,路程的向东、向西,钱的收入和支出,得分和扣分这些量是不是相互对立的因此我们称它们为具有相反意义的量,那么如何把这些具有相反意义的量表示出来呢2.合作探索,寻求新知师:为了表示具有相反意义的量,我们把一种意义的量规定为正,比如我们会把零上的温度规定为正,路程当中会把向东方向规定为正方向,钱的收入规定为正,把另一种与之意义相反的量规定为负,而这些规定为正的量一般比较容易表示,比如规定向东为正,则向东22千米,记作22千米,而与之相反的量就不好表示,如果也记作22千米,别人一看就分不清是向东还是向西,所以我们必须引进新的数来表示这些相反意义的量.师:把过去学过的数(除零外)规定为正数,如123,15,2/3等,正数前面有时也可以放上“+”(读做正号);在这些数的前面放上“-”(读做负号)就表示负数,如-123,-15,-2/3等.负数是在正数的前面加上“—”得到的,大家现在来举一队正数和负数那下面老师来举一个例子:0是正数,-1是负数,对吗那么1是正数,0是负数.正数里有没有包括0,负数会不会包括0,所以零既不是正数,也不是负数.(强调)有了负数,相反意义的量就好表示了,规定向东为正,则向东22千米,记作22千米,向西走50米,就记作-50米.那现在我来问大家:如果上升8米,记作+8,那么下降5米,应该怎么记呢做一做:第二题】这样我们学过的数中,又增加了新的数,我们以前学的整数如1,2,3,4,更准确地说是正整数,那么-1,-2,-3,-4应该称为什么1/2,3/2,为正分数,则-1/2,-3/2,为.(这里老师要提示一下:凡是能化为分数的小数都算做是分数){ {{正整数整数零负整数有理数正分数分数负分数3.练习反馈,巩固新知例:下列给出的各数中哪些是正数、负数哪些是整数、分数哪些是有理数,22,+17/6,,0,-3/5,-9.先让学生做,总结学生出现的一些问题分析:同学们我们在分类的时候,只要根据前面这个分类图来分就会很简单.再提一下正有理数.由教师来演示.本例主要考察学生对于数的不同分类,加强学生的分类意识.·课内练习第8页1,24.回顾小结强调负数的由来,及有理数的分类.5.布置作业五.教学反思昨天的作业情况很不理想,特别是12班,还有今天上课12、13班的纪律情况还是不行,今天在这个班级上课的教学任务完成的不好,我甚至抓不住教学时间,我得好好反思一下.有些同学喜欢跟老师抬杠,这让我非常苦恼,还有上课随意插话,如李正一,许小斌,周贤达,还有同学上课说话如王翔.17,18班的情况比12,13班好,但也有一些同学上课讲话.>数轴教学目标知识与技能目标:通过温度计的类比认识数轴,会用数轴上的点表示有理数;借助数轴理解相反数的概念,知道互为相反数的一对数在数轴上的位置关系;会求一个有理数的相反数.过程与方法目标:经历从现实问题中建立数学模型,从数形两个侧面理解与解决问题,使学生认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念.情感与态度目标:从学生熟悉的现实情境中学习数轴,体会数学知识与现实世界的联系;体会数学充满探索性.教学重点与难点教学重点.能将已知数在数轴上表示出来,说出数轴上已知点所表示的数.,教学难点:了解数形结合与转化的思想.教学过程一) 创设情景,引入新课师:教师用幻灯机展示一个温度计(课件)上面标着同一天悉尼、莫斯科、北京三个城市的气温.问:有没有哪位同学可以为大家播报一下今天这三座城市的气温学生通过观察温度计便可以很快读出这三个城市的气温.师:那你能说出这三个城市中哪个温度最高,哪个温度最低温度计上的刻度可以让学生直观地判断温度的高低,让学生感受到温度计的便利性和直观性.·问:如何直观的描绘有理数呢这就是本节课我们要讨论的一种数形相结合的工具——数轴(导题)二)师生互动,讲授新课师:那何为数轴呢我们不妨以常见的实际生活中的温度计进行探索.问:温度计为什么能表示温度呢(引导学生仔细观察温度计)原因在:1)它有表示零的刻度线2)规定了零上为正,也就是说规定了方向&3)有间隔相等的刻度线,也就是说给定了单位长度师:由此说明我们可以用直线上的点表示有理数,那么怎么表示呢其方法步骤为(边板画示范边说明)1)画一直线(一般画成水平)在直线上取一点O为原点表示02)规定直线的一个方向(一般取从左向右的方向)为正方向(用箭头表示)3)再取适当的长度为单位长度问:由此,用直线上的点表示有理数应具备哪些要素生:原点(origin)、单位长度(uint length)、正方向(positive direction)#师:对,我们数学上就把具备这三要素的直线叫数轴(number line).强调:一画(直线),二定(原点),三选(正方向),四统一(单位长度).考一考:下列哪一个表示数轴AB-11-2CD-112)通过判断,加深对数轴概念理解,掌握正确的画法.例1 如图,数轴上点A,B,C,D分别表示什么数BCA D由数轴的直观性,学生可以很快地读出A,B,C,D四点所表示的数.读出数轴上的点所表示的数是“形”→“数”的过程.例2 在数轴上表示下列各数:(1) ,-5∕2,0,-4,5∕2,-,1,4;(2)200,-150,-50,100,-100;分析例题注意:1.要让学生感受到任何一个有理数都可以用数轴上的点表示.]2.要根据题意来选择单位长度的大小.3.教师要引导学生观察数轴,从而引出相反数的概念及位置关系.将已知数在数轴上表示出来是“数”→“形”的过程,例1、例2从两个侧面体现了数形结合思想.师:-4与4有什么相同与不同之处从数的表现形式来看:只是符号不同,其他都相同.从而引出相反数的概念:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数(opposite number),也称这两个数互为相反数.因为零不带任何符号,所以零的相反数还是零.那么,-5∕2的相反数是5∕2,4是-4的相反数.然后再引导学生去观察这些互为相反数的数在数轴上的位置关系,于是可以概括出:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且到原点的距离相等.这里要让学生感受到数形结合的巧妙,例如,表示-100和100的点分别位于原点的左侧和右侧,到原点的距离都是100个单位长度.三)练习反馈,巩固新知1.在下表的空格中填入适当的数,并把这些数都表示在数轴上:-13∕30:aa的相反数+,2.如图,数轴上的点A,B,C,D,E分别表示什么数其中哪些数是互为相反数A B C D E-3四)梳理知识,总结收获本节课我们学习了数轴,知道了任意有理数都可以在数轴上表示出来,其次我们还学习了相反数的概念,并且知道了互为相反数的两个数在数轴上的位置关系,体现了数形结合的思想,这些应有学生自己去总结,谈出本节课的所学.!五)布置作业,知识拓展教学反思本节课通过类比温度计引出数轴,让学生认识到数学来源于生活.在教学时为了让生更好的理解数轴这个抽象过程较高的数形相结合的概念,师要多设计问题让学生合作交流,以达到真正感悟.为今后更进一步的学习作铺垫.七年级数学上册教案绝对值●教学目标1.'2.知识与能力:借助于数轴,初步理解绝对值的概念,能求一个数的绝对值,初步学会求绝对值等于某一个正数的有理数.3.过程与方法:通过从数形两个侧面理解绝对值的意义,初步了解数形结合的思想方法.通过应用绝对值解决实际问题,体会绝对值的意义.4.情感态度与价值观:通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,使学生能积极参与数学学习活动,对数学有好奇心与求知欲.●教学重点与难点教学重点:绝对值的概念和求一个数的绝对值教学难点:绝对值的几何意义及求绝对值等于某一个正数的有理数.●教学过程一、创设问题情境:1、两位同学在书店O处购买书籍后坐出租车回家,甲车向东行驶了10公里到达A处,乙车向西行驶了10公里到达B处.若规定向东为正,则A处记做__________,B处记做-__________.(请学生口答)以O为原点,取适当的单位长度画数轴,并标出A、B的位置.(请学生作图)2、这两辆出租车在行驶的过程中,有没有共同的地方在数轴上的A、B两点又有什么特征(学生观察思考交流后答).3、在数轴上找到-5和5的点,它们到原点的距离分别是多少表示-3 4和34的点呢小结:在实际生活中,有时存在这样的情况,无需考虑数的正负性质,比如:在计算出租车行驶的路程中,与出租车行驶的方向无关,这时所走的路程只需用正数,这样就必须引进一个新的概念———绝对值.二、建立数学模型1、绝对值的概念!我们发现,一对相反数虽然分别在原点两边,但它们到原点的距离是相等的.如果我们不考虑这两点在原点的那一边,只考虑它们离开原点的距离,这个距离叫这两个数的绝对值.(借助于数轴这一工具,师生共同讨论,引出绝对值的概念)绝对值的几何定义:一个数在数轴上对应的点到原点的距离叫做这个数的绝对值.比如:数轴上表示-5的点到原点的距离是5,所以-5的绝对值是5,记|-5|=5;5的绝对值是5,记做|5|=5.注意:①与原点的关系②是个距离的概念2、练习1:请学生举一个生活中的实际例子,说明解决有的问题只需考虑的数绝对值.三、应用深化知识1、例题求解例1、求下列各数的绝对值-, 85, 0, -10, +10)学生观察思考交流,请学生口答教师板书.解:|-|= | 85|=85| 0 |=0|-10 |=10 |+10 |=102、练习2:填表(学生口答)相反数绝对值*100079:-7 9-1000: -3、根据上述题目,让学生观察思考一个数的绝对值与这个数有什么关系并让学生归纳总结绝对值的特点.(教师进行补充小结)求绝对值的法则:1、一个正数的绝对值是它本身…2、一个负数的绝对值是它的相反数3、零的绝对值是零4、互为相反数的两个数的绝对值相等上述三条用字母可表述成:(1)如果a>0,那么a a = (2)如果a<0,那么a =-a (3)如果a=0,那么a =0.即0≥a (非负数) 4、练习3:回答下列问题(1)一个数的绝对值是它本身,这个数是什么数 (2)一个数的绝对值是它的相反数,这个数是什么数$(3)一个数的绝对值一定是正数吗(4)一个数的绝对值不可能是负数,对吗(5)绝对值是同一个正数的数有两个,它们互为相反数,这句话对吗5、例2、求绝对值等于4的数.(让学生考虑这样的数有几个,是怎样得出这个结果的呢对后一个问题由学生去讨论,启发学生从数与形两个方面考虑,培养学生的发散思维能力.) 分析: ①从数字上分析∵|+4|=4, |-4|=4 ∴绝对值等于4的数是+4和-4\②从几何意义上分析,画一个数轴(如下图)∵数轴上到原点的距离等于4个单位长度的点有两个,即表示+4的点P 和表示-4的点M ∴绝对值等于4的数是+4和-44个单位长度 4个单位长度M ··注意:说明符号“∵”读作“因为”,“∴”读作“所以”6、作业四、归纳小结1、`2、本节课我们学习了什么知识3、你觉得本节课有什么收获4、由学生自行总结在自主探究,合作学习中的体会.课题:§有理数的大小比较教学目标:1、掌握有理数大小的比较法则:的数大,数轴上表示的两个有理数,右边的数总比左边的数大;正数都大于零,负数都小于零;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.!2、会比较有理数的大小,并能正确地使用“>”或“<”号连结.3、初步会进行有理数大小比较的推理和书写.教学重、难点:教学重点:有理数的大小比较法则.教学难点:1、两个负数比较大小的绝对值法则.2、例2第(3)题中两个负分数比较大小的推理过程.教学设计过程:一、创设情境:<(多媒体演示)下面是一组图片,表示某一天我国5个城市的最低气温.(见P17图1-10)比较这一天下列两个城市间最低气温的高低(填“高于”或“低于”):广州(10℃)上海(0℃);上海(0℃)北京(-10℃);武汉(5℃)广州(10℃);哈尔滨(-20℃)武汉(5℃);北京(-10℃)哈尔滨(-20℃).同学们的答案是否正确呢这就需要数学知识“有理数的大小比较”(点出课题).二、探究新知:把表示上述5个城市最低气温的数表示在数轴上.观察这5个数在数轴上的位置,你发现了什么温度的高低与相应的数在数轴上的位置有什么关系(教师与学生一起合作完成).(结论:在数轴表示的数的位置与气温的高低有关.气温越高,在数轴上表示的数就越靠右.)· 一般地,我们有:在数轴上表示的两个数,右边的数总比左边的数大.(教师板书,学生记忆)例 1 在数轴上表示数5,0,-4,-1,并比较它们大小,将它们按从小到大的顺序用“<”号连接.(师生合作完成) 解:如图,将它们按从小到大的顺序排列为:-4<-1<0<5.我们知道:有理数可分为正数、负数和零三类,(教师提出问题)那么两个有理数的大小比较有哪几种情况呢(两个有理数的大小比较有如下几种情况:一正一零;一负一零;两负;一正一负;两正.)结合例1,请同学们观察数轴思考一下:正数、零和负数三者的大小关系如何正数大于零,负数小于零,正数大于负数.(教师板书,学生记忆)|那么,同号(同正或同负)的两数的大小关系又如何呢(若学生有困难,则提示:求例1中同号(同正或同负)各数的绝对值,并比较它们的大小,然后说明它们的大小与它们的绝对值的大小有什么关系)引导学生归纳得出:两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.(教师板书,学生记忆).例2 比较下列每对数的大小,并说明理由:(1)1与-10; (2)-与0; (3)3243与- . -4-1 5 0 %解:(1)1>10(正数大于一切负数);(2)<0(负数都小于零);! (3)∵1283232,1294343==-==-, ∴3243-〉-, ∴-43<-32(两个负数比较大小,绝对值大的数反而小).例2的讲解思路:(1)、(2)两题,要告诉学生,比较两个有理数的大小时可直接运用法则得出;对于第(3)题.先复习小学时所学异分母分数的大小比较,然后指出:要比较的是两个负数大小,应先比较什么(他们的绝对值);这两个数的绝对值分别等于多少指定一个学生边回答边板书(教师在板书时要规范地书写表述过程,并把推理依据注在结论后面的括号内.)三、巩固练习:)1、P 19 “课内练习”1(指定两名成绩中下学生板演)2、P 19 “课内练习”2,3(口答,采用抢答形式完成,对于第3题,教师作适当解释:除了0的绝对值是0外.其余有理数的绝对值都是正数,因此绝对值最小的有理数是0,负整数﹣1,﹣2,﹣3…,的绝对值分别是1,2,3…因此绝对值最小的负整数是﹣1.)3、P 19 “课内练习”4(指定一名学习成绩中等的学生板演,其余学生在草稿上完成,然后师生互动完成.)四、小结:!通过这节课的学习,你有哪些收获(比较有理数大小的两种方法:一、数轴比较法;二、绝对值法.两个数比较时,常用绝对值法;多个数比较时,常用数轴比较法.)五、作业:1、作业本§2、P 19 “作业题A 组”3,4;“作业题B 组”63、有理数a ,b ,c 在数轴上的位置如图所示,请比较a ,b ,-c 的大小,并用“<”号连接:@^七年级上册2.有理数的加法一、教学目标:1、 知识目标:有理数加法的运算律2、 能力目标:掌握简便运算的常用策略,渗透字母表示数的意识.学会画图分析法.3、 情感目标:体验数学公式的简洁美,对称美.感受数学与生活的密切联系.增强自信.》二、教学重点:有理数加法的交换律,结合律.教学难点:例2综合性较强,为难点. 三、教学过程:(一)、复习引入:要求学生回忆上节课的内容.师:有理数加法与小学里的算术数加法有何异同生1:从运算法则上看,有理数加法要先分类,再确定和的符号,最后进行绝对值的加减运算;小学里只有正数的加法.生2:从和与加数的关系上看,小学里的“和”比两个加数都大(或相等),有理数的“和”可能比两个加数都大,可能比两个加数都小,可能大于其中一个而小于另一个加数.(或相等)上述两方面的比较,若学生答不出,教师可做适当引导,第3点是关于运算律的比较,学生较难联系,可从小学里的简便运算入手:@师:你会计算下列式子吗83618565+++ o b学生口答.(二)、合作探究:师:小学里学的加法运算律对有理数是否适用呢你会验证吗在小组里一起交流. 让小组代表发言,师板书:在有理数的运算中,加法交换律和结合律仍成立. 加法交换律:两个数相加,交换加数的位置,和不变 a+b=b+a加法结合律:三个数相加,先把前两个数相加,或则先把后两个数相加,和不变.(a+b )+c=a+(b+c )(三)、举例应用`例1、计算:(1) 15+(-13)+18;(2) (-2.48)+4.33+(-7.52)+(-4.33)(3) 65+(-71)+(-61)+(-76) 师生共同完成.小结:1、任意若干个数相加,无论各数相加的先后次序如何,其和不变. 2、简便运算的常用策略:可以把正数或负数分别结合在一起相加有相反数的先把相反数相加能凑整的先凑整有分母相同的,先把同分母的数相加?练一练:P 29 2、用简便方法计算,并说明有关理由:(1)(+14)+(-4)+(-1)+(+16)+(-5)(2)(-18.65)+(-7.25)+18.75+7.25(3)(-2.25)+(-85)+(-43)+0.125 (4)(-3.5)+[3+(-1.5)]解决实际问题例2、小明遥控一辆玩具赛车,让它从A 地出发,先向东行驶15m ,再向西行驶25m ,然后又向东行驶20m ,再向西行驶35m ,问玩具赛车最后停在何处一共行驶了多少米师:这两问中,你有把握解决哪一问[师:第一问包含几个意思生:两个,要求方向和距离.师:介绍画图分析法:要求学生列式计算,完整解答.小结:第一问求方位,要求两个方面的内容.( 第二问求路程,即求各路程绝对值的和.练一练:P 29 3(略)补充练习:是非题:(1) 若两个数的和是0,则这两个数都是0;(2) 任何两数相加,和不小于任何一个加数.(3) a+b+c+d=(a+c )+(b+d ) 小结:谈谈你的收获作业:见课后分层作业,P 30 A 组必做,B 、C 组选做$板书设计: 2.1.2有理数加法例1例2 有理数的加法算术数的加法 运算法则 - 和与加数的关系运算律 加法交换律: 加法结合律: )、七年级上册2.2.1有理数的减法【教学目标】知识目标:掌握有理数的减法法则,熟练地进行有理数的减法运算.能力目标:培养学生观察、归纳的数学能力及初步掌握数学学习转化的数学思想.情感目标:过积极参与探索有理数的减法法则及其应用的数学活动,体会相应的数学思想、数学与现实生活的紧密联系,增强应用意识,提高学生的学习兴趣.【教学重点、难点】,重点:有理数的减法的运算法则,以及法则的应用.难点:在实际生活中,正、负关系的确定以及原有知识的掌握.【教学方法】观察、归纳、合作交流、对比、类比等.【教学过程】一、创设情境,激发兴趣一天, 厦门的最高温度是9℃,哈尔滨的最高气温是-7℃,那么这一天厦门的最高温度比哈尔滨的最高气温高多少摄氏度列出算式.由学生回答结果,在学生回答的基础上,让学生用式子加以表示:9-(-7)=16.提出问题:怎么进行这里的减法运算呢有理数的减法法则是什么二、]三、合作学习,共同归纳1.不妨我们看一个简单的问题:9 -(-7)=16. 9+()=16.大家注意观察上面的两个算式,你能发现什么规律先个人研究,而后交流.比较两式,可以发现:9“减去-7”与“加上+7”结果是相等的,即减法变加法9 -(-7)=9+7. 变相反数^2.归纳:全班交流,从上述结果我们可以发现规律:减去一个数,等于加上这个数的相反数.这就是有理数减法法则,由此可见,有理数的减法运算实质转化为加法运算.三、实践应用,拓展延伸应用1: 计算:(1)5-(-5) (2)0-7-5 (3)(-)-(-)(4)113 -212 (5)(-6)+(-5)在学生口答的基础上,由教师引导归纳::(1)有理数减法是转化为有理数加法实施的.在进行减法运算时,首先应弄清减数的符号(是“+”号,还是“-”号);%(2)将有理数减法转化为加法时,要同时改变两个符号:一个是运算符号由“-”变以“+”号;另一个是减数的性质符号.应用2:某天北京中午的气温是零上3℃,到午夜气温下降了9℃,那么北京午夜的气温是多少摄氏度此例说明,在有理数范围内,不存在“不够减”的减法.四、尝试反馈,巩固练习1.计算(1)(-- (2)14 -(-12 ) (3)(-1)-(-4)-3(4)138 -214 (5)[8+(-7)]-152.填空:-(1)温度3℃比-8℃高___________; (2)温度-9℃比-1℃低_____________;(3)海拔-20m 比-30m 高________; (4)从海拔22m 到-10m ,下降了______.3.已知一个数与3的和是-10,求这个数.4.求出下列每对数在数轴上对应点之间的距离:(1)3与- (2)412 与214 (3)-4与- (4)-312 与213你能发现所得的距离与这两数的差有什么关系吗 五、交流反思,形成结构(师生共同完成)1. 通过上面的练习,你能总结出有理数减法与小学里学过的减法的不同点吗?(1)被减数可以小于减数.如: 1-5 ;(2)差可以大于被减数,如:(+3)-(-2);(3)有理数相减,差仍为有理数;(4)大数减小数,差为正数;小数减大数,差为负数;2. 根据有理数减法的法则,一切加法和减法的运算,都可以统一成加法运算.六、布置作业《初中数学七年级上册.1 有理数的乘法一、教学目标1、关注学生学习的过程,多让学生经历知识发生、规律发现的过程,尽可能让学生活动。
1.1从自然数到分数一、教学目标:1 .回顾小学中关于“数”的知识;2 .理解自然数、分数的产生和发展的实际背景和必然性;3 .体验自然数与分数的意义和在计数、测量、排序、编号等方面的应用。
二、教学重点和难点重点:认识数的发展过程,感受由于生活与生产实践的需要,数还需从自然数和分数作进一步的扩展。
难点:本节的“合作学习”中的第2题学生不易理解。
三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一)自然数的由来和作用。
请阅读下面这段报道:世界上最长的跨海大桥——杭州湾跨海大桥于2003年6月8日奠基,计划在5年后建成通车,这座设计日通车量为8万辆,全长36千米的6车道公路斜拉桥,将是中国大陆的第一座跨海大桥。
你在这段报道中看到了哪些数?它们都属于哪一类数?在小学里我们已经学过自然数0,1,3,4,5…自然数是人类历史上最早出现的数。
自然数在计数和测量中有着广泛的应用,如5年后建成通车,日通车量为8万辆,全长36千米等。
人们还常常用自然数来给事物标号和排序,如城市的公共汽车路线,门牌号码,邮政编码,上述报道中的2003年,第一座跨还大桥等。
计数简单的理解,可以看成用来统计的结果的自然数。
而测量的结果的自然数是用工具测量。
让学生举出一些实际生活的例子,并说明这些自然数起的作用。
练习,并有学生回答,及时校对。
做一做:下列语句中用到的数,哪些属于计数?哪些表示测量结果?哪些属于标号和排序?(1)2002年全国共有高等学校2003所;(2)小明哥哥乘1425次列车从北京到天津;(3)香港特别行政区的中国银行大厦高368米,地上70层,至1993年为止,是世界第5高楼。
(二)讲解分数的由来及应用。
在小学里,我们还学习了分数和小数,它们是由于测量和分配等实际需要而产生的。
在解答下列问题时,你会选用哪一类数?为什么?(1)小华和她的7位朋友一起过生日,要平均分享一块生日蛋糕,每人可得多少蛋糕?(2)小明的身高是168厘米,如果改用米作单位,应怎样表示?分数可以看作两个整数相除,例如,=3/5=0.6,=0.3,1.31=,0.0062==。
伴随着数的概念而来的是数的运算,数的运算是人们分析、判断和解决实际问题的重要手段。
完成“合作学习”(见课本)你能帮小慧列出算式吗?如果利用自然数怎样列算式?用分数呢?2、某市民政局举行一次福利彩票销售活动,销售总额度为4000万元。
其中发行成本占总额度的15%,1400万元作为社会福利资金,其余作为中奖着奖金。
(1)你能算出奖金总额是多少吗?你是怎样算的?(2)为了使福利资金提高10%,而发行的成本保持不变,有人提出把奖金总额减小6%。
你认为这个方案可行吗?你是怎样获得结论的?上面问题2中的第(2)题可以用如下算式求解:2000³6%-1400³10%=算式中被减数小于减数,在这种情况下,能否进行运算?能否用我们已经学过的自然数和分数来表示结果?看来数还需作进一步的扩展。
目的:一是让学生进一步体验数的运算是人们分析、判断、解决实际问题的重要工具;二是从解决实际问题的过程中让学生感受到,光有自然数和分数仍是不够的,数需作进一步的扩展。
(三)课堂小节让学生谈谈学了本节课后,对数的认识和了解。
(1)自然数在实际应用中,有计数,测量结果,标号,排序的作用。
(2)分数在实际应用中,起着分配和测量结果的作用。
(四)布置作业见作业本。
1.2有理数一、教学目标1 .理解有理数产生的必然性、合理性及有理数的分类;2 .能辨别正、负数,感受规定正、负的相对性;3 .体验中国古代在数的发展方面的贡献。
二、教学重点和难点重点:有理数的概念难点:建立正数、负数的概念对学生来说是数学抽象思维一次重大飞跃。
三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一)从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.“运进”和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,³5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.(三)介绍有理数的有关概念。
1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数。
2.给出有理数概念整数和分数统称为有理数。
3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零。
并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.(四)运用举例变式练习例下列给出的各数,哪些是正数?哪些是负数?哪些是整数?哪些是分数?哪些是有理数?-8.4,22,+,0.33,0,-,-9课堂练习见课本第8-9页(五)小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.六、练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.在以下说法中,正确的是 [ ]A.非负有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?七、教学后记这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化1.3数轴一、教学目标1 .理解数轴、相反数的概念;2 .掌握数轴的画法、数轴上的点与有理数的关系;3 .会用数轴上的点表示相反数,探索他们的位置关系;4 .感受数形结合与转化。
二、教学重点和难点重点:初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.难点:正确理解有理数与数轴上点的对应关系.三、教学手段现代课堂教学手段四、教学方法启发式教学五、教学过程(一)从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.(二)讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.(三)运用举例变式练习例1 指出数轴上A,B,C,D,E各点分别表示什么数.1O例2 画一个数轴,并在数轴上画出表示下列各数的点:(1)0.5,-,0,-0.5,-4,,1.4;(2)200,-150,-50,100,-100.想一想:-4与4有什么相同和不同之处?它们在数轴上的位置有什么关系?-与,-0.5与0.5呢?(四)介绍相反数的概念和性质。