北大数学分析
- 格式:pdf
- 大小:38.98 KB
- 文档页数:1
北大数学分析考研用书推荐
以下是几本适合北大数学分析考研使用的教材推荐:
1. 《数学分析教程》(第二版)作者:卫京,庄加宁:这本教材内容丰富,结构严谨,覆盖了数学分析的基础知识和常用工具,适合考研使用。
2. 《数学分析习题与解答》作者:周民强:这本书以解题为主线,适合考研学生巩固分析知识和提高解题能力。
3. 《数学分析基础教程》作者:日本数学会:这本书由日本数学会编写,注重理论推导和证明方法的训练,适合对分析理论感兴趣的考生。
4. 《数学分析习题集》作者:罗穆桐:这本书是考研数学分析的经典习题集,包含大量习题和详细解答,适合考生进行大量练习和巩固知识。
5. 《数学分析教程与习题精解》作者:张福慧,杨昆:这本书内容系统全面,既包含了教程,也有配套的习题精解,适合考生系统学习和巩固知识。
需要注意的是,选择适合自己的教材是很重要的,可以根据个人的情况和学习风格选择合适的教材进行学习。
数学分析参考书1.《微积分学教程》菲赫金哥尔茨人民教育出版社推荐理由:经典的数学分析的百科全书, 论述严谨, 内容全面, 例题丰富, 对希望全面掌握数学分析理论的学生是一本较好的参考书。
2.《数学分析》华东师大数学系高等教育出版社推荐理由:本书是教育部推荐的优秀教材,内容安排自然合理,读者容易接受,选学内容加了“*”适合多层次的需求;读者可以通过附录1和附录2了解微积分的发展线索记实数理论。
3.《数学分析》北大数学系方企勤、沈燮昌、廖可人等高等教育出版社推荐理由:本书阐述细致,引进概念注意讲清实际背景,定理证明、公式推演作了必要的分析,并提出一些值得思考的问题;通过大量不同类型例题,介绍解题基本方法和特殊技巧。
全书还配有习题集一册,其中有不少难度较大的题目。
适合要求进一步提高数学分析素养的同学。
4. 《数学分析》李成章黄玉民科学出版社推荐理由:总体内容与华东师大教材相仿. 书中有大量的习题可作为补充练习题.5. 《数学分析》陈纪修等高等教育出版社推荐理由:书中对三角级数阐述的较为详细,可供参考.6. 《数学分析习题精解》吴良森等高等教育出版社推荐理由:书中题型丰富,可供较为优秀的学生选7. 《数学分析习题课讲义》谢惠民等高等教育出版社推荐理由:李大潜院士是这样评价此书的“它的着眼点,不像现在充斥市面的各种各样的习题解答那样,消极地为读者提供一些习题的解答,而是引导学生理解课程内容,启发学生深入思考,扩大学生知识视野,力求使学生达到举一反三,由小见大,由表及里的境界,较快的高等数学的思想方法,迈进高等数学的广阔天地。
对于学生,这是一本富有启发性且颇有新意的辅导读物。
”8. 《数学分析中的典型问题与方法》裴礼文高等教育出版社推荐理由:本书收录了大量的研究生数学分析入学试题,前苏联高校竞赛题。
选题具有很强的典型性,灵活性,启发性,趣味性和综合性,对培养学生的能力极为有益。
8. 《Calculus(微积分)》Howard Anton, Irl Bivens, Stephen Davis郭镜明改编高等教育出版社推荐理由:本书为高等教育出版社“世界优秀教材中国版”系列教材之一。
北大数学分析考研用书
北大数学分析考研用书推荐:
1. 《数学分析导引》- 张筱雨
这本教材是国内数学分析教材的经典之作,语言简洁明了,适合初学者入门。
内容包括实数与其序理论、数列与收敛理论、函数与连续理论、无穷级数等基本概念和定理。
2. 《数学分析》- 汤家凤
这是一套由北大数学系编写的教材,深入浅出地阐述了数学分析的各个方面,包括实数与数列、一致连续性、上极限与下极限、函数的极限、连续性、间断点与连续函数等内容。
3. 《数学分析教程》- 南京大学数学系编著
这本教材注重培养学生的数学思维和证明能力,内容全面、详细,适合系统学习数学分析。
包括实数与复数、极限与连续、一元函数微分学、空间中的向量值函数微分学等内容。
4. 《数学分析》- 同济大学数学系编著
这本教材以基础理论与应用分析相结合的方式讲解数学分析,内容涵盖实数与函数、数列与级数、一元函数微分学、一元函数积分学等知识点。
适合辅导复习和强化训练。
5. 《数学分析教程》-北京师范大学数学系编著
这本教材为全面介绍数学分析的常规内容,包括实数和实数系、数列和函数的极限、连续与界、微分学等。
书中还配有大量的例题和习题,便于学生巩固所学知识。
以上是几本北大数学分析考研用书的推荐,它们都是经典教材,对于备考考研的同学来说是很好的选择。
另外一个版本:北大数学科学学院本科生课程课程号 00130011 课程名数学分析(一)课程号 00130012 课程名数学分析(二)课程号 00130013 课程名数学分析(三)课程号 00130031 课程名高等代数(上)课程号 00130032 课程名高等代数(下)课程号 00130051 课程名解析几何课程号 00130061 课程名解析几何习题课课程号 00130072 课程名初等数论课程号 00130081 课程名常微分方程课程号 00130091 课程名计算机原理与算法语言课程号 0013010. 课程名计算机实习课程号 00130110 课程名复变函数课程号 00130120 课程名微分几何学课程号 00130130 课程名抽象代数(A)课程号 00130140 课程名实变函数论课程号 00130150 课程名偏微分方程课程号 00130161 课程名拓朴学(一)课程号 00130162 课程名拓朴学(二)课程号 00130170 课程名泛函分析课程号 00130180 课程名数学模型学课程号 00130190 课程名微分流形课程号 00130201 课程名高等数学(B)(一)课程号 00130202 课程名高等数学(B)(二)课程号 00130203 课程名高等数学(B)(三)课程号 00130221 课程名高等数学(C)(一)课程号 00130222 课程名高等数学(C)(二)课程号 00130241 课程名高等数学(D)(一)课程号 00130242 课程名高等数学(D)(二)课程号 00130250 课程名高等数学(E)课程号 00130260 课程名线性代数(B)课程号 00130270 课程名线性代数(C)课程号 00130280 课程名计算方法课程号 00130290 课程名汇编语言课程号 00130300 课程名数理逻辑及其在人工智能中的应用课程号 00130310 课程名数据结构课程号 00130320 课程名计算机图形学课程号 00130330 课程名数字信号处理课程号 00130340 课程名编译原理课程号 00130350 课程名抽象代数(B)课程号 00130360 课程名代数数论基础课程号 00130370 课程名有限群课程号 00130380 课程名代数选讲课程号 00130390 课程名图论课程号 00230010 课程名概率统计(A)课程号 00230020 课程名概率统计(B)课程号 00230030 课程名概率统计(C)课程号 00230040 课程名普通统计学课程号 00230050 课程名概率论课程号 00230060 课程名数理统计课程号 00230070 课程名测度论和概率论基础课程号 00230080 课程名应用多元统计分析课程号 00230090 课程名应用随机过程课程号 00230100 课程名应用时间序列分析课程号 00230110 课程名保险统计学课程号 00230120 课程名决策分析课程号 00230130 课程名抽样调查课程号 00230140 课程名试验设计课程号 00230150 课程名统计计算课程号 00230160 课程名算法分析与数据结构课程号 00230170 课程名图论( 离散数学 ) 课程号 00230180 课程名保险风险模型课程号 00230190 课程名运筹学课程号 00230200 课程名复变函数课程号 00230210 课程名 FORTRAN课程号 00230220 课程名热力学与统计物理。