理论力学-刚体的基本运动
- 格式:ppt
- 大小:1.79 MB
- 文档页数:56
理论力学中的刚体运动与角速度的计算刚体是指具有一定形状和大小,其内部各点间相对位置不会发生改变的物体。
在理论力学研究中,刚体运动是一个重要且常见的问题,其中角速度的计算是关键的一部分。
本文将介绍刚体运动的基本概念和相关计算方法。
一、刚体运动的基本概念刚体的运动可以分为平动和转动两种形式。
平动是指刚体整体沿直线运动,而转动则是刚体围绕某个轴旋转运动。
在刚体转动的过程中,角速度是一个重要的物理量。
角速度表示刚体某一点在单位时间内绕轴旋转的角度。
通常用符号ω表示,计量单位是弧度/秒。
二、角速度的计算方法1. 定义式计算:对于旋转角速度恒定的情况,可以通过定义式计算角速度。
角速度ω等于单位时间内转过的弧长与转动所需时间的比值。
ω = Δθ / Δt其中,Δθ是转过的弧长,Δt是转动所需时间。
2. 瞬时角速度计算:在某一时刻的瞬时角速度等于通过该点的切线所确定的线速度与该点到轴的距离之比。
即,ω = v / r其中,v表示质点在切线方向上的线速度,r表示质点到该轴的距离。
3. 利用转动惯量计算:转动惯量是刚体抵抗转动的特性参数。
利用转动惯量的计算公式,可以推导出角速度的表达式。
比如,对于圆盘形刚体绕垂直于其平面并通过质心的轴转动的情况,转动惯量I和角速度的关系公式为:Iω = L其中,I表示转动惯量,L表示刚体的角动量。
三、刚体运动与角速度的应用角速度的计算在刚体运动的分析和应用中发挥着重要作用。
下面以两个实例介绍其应用。
实例一:自转的地球地球自转是一个典型的刚体运动问题。
地球自转一周的周期是24小时。
将地球看作一个近似的刚体,其转动惯量与角速度的乘积等于地球的角动量。
通过计算地球的转动惯量和已知的角动量,可以求得地球的角速度。
实例二:陀螺稳定陀螺是另一个常见的刚体运动问题。
陀螺的稳定性与其角速度密切相关。
通过计算陀螺的角速度,可以分析陀螺的稳定性,并设计出能够保持平衡的陀螺。
总结:刚体运动与角速度的计算是理论力学中的重要内容。
运动学重要知识点一、刚体的简单运动知识点总结1.刚体运动的最简单形式为平行移动和绕定轴转动。
2.刚体平行移动。
·刚体内任一直线段在运动过程中,始终与它的最初位置平行,此种运动称为刚体平行移动,或平移。
·刚体作平移时,刚体内各点的轨迹形状完全相同,各点的轨迹可能是直线,也可能是曲线。
·刚体作平移时,在同一瞬时刚体内各点的速度和加速度大小、方向都相同。
3.刚体绕定轴转动。
•刚体运动时,其中有两点保持不动,此运动称为刚体绕定轴转动,或转动。
•刚体的转动方程φ=f(t)表示刚体的位置随时间的变化规律。
•角速度ω表示刚体转动快慢程度和转向,是代数量,。
角速度也可以用矢量表示,。
•角加速度表示角速度对时间的变化率,是代数量,,当α与ω同号时,刚体作匀加速转动;当α与ω异号时,刚体作匀减速转动。
角加速度也可以用矢量表示,。
•绕定轴转动刚体上点的速度、加速度与角速度、角加速度的关系:。
速度、加速度的代数值为。
•传动比。
一、点的运动合成知识点总结1.点的绝对运动为点的牵连运动和相对运动的合成结果。
•绝对运动:动点相对于定参考系的运动;•相对运动:动点相对于动参考系的运动;• 牵连运动:动参考系相对于定参考系的运动。
2.点的速度合成定理。
•绝对速度:动点相对于定参考系运动的速度;•相对速度:动点相对于动参考系运动的速度;•牵连速度:动参考系上与动点相重合的那一点相对于定参考系运动的速度。
3.点的加速度合成定理。
•绝对加速度:动点相对于定参考系运动的加速度;•相对加速度:动点相对于动参考系运动的加速度;•牵连加速度:动参考系上与动点相重合的那一点相对于定参考系运动的加速度;•科氏加速度:牵连运动为转动时,牵连运动和相对运动相互影响而出现的一项附加的加速度。
•当动参考系作平移或= 0 ,或与平行时, = 0 。
该部分知识点常见问题有问题一牵连速度和牵连加速度的意义。
问题二应用速度合成定理时要画速度矢量图。
理论力学知识点总结理论力学是一门研究物体机械运动一般规律的学科,它是许多工程技术领域的基础。
以下是对理论力学一些重要知识点的总结。
一、静力学静力学主要研究物体在力系作用下的平衡问题。
1、力的基本概念力是物体之间的相互作用,具有大小、方向和作用点三个要素。
力的表示方法包括矢量表示和解析表示。
2、约束与约束力约束是限制物体运动的条件,约束力则是约束对物体的作用力。
常见的约束类型有柔索约束、光滑接触面约束、光滑圆柱铰链约束等,每种约束对应的约束力具有特定的方向和特点。
3、受力分析对物体进行受力分析是解决静力学问题的关键步骤。
要明确研究对象,画出其隔离体,逐个分析作用在物体上的力,包括主动力和约束力,并画出受力图。
4、力系的简化力系可以通过平移和合成等方法进行简化,得到一个合力或合力偶。
力的平移定理指出,力可以平移到另一点,但必须附加一个力偶。
5、平面力系的平衡方程平面任意力系的平衡方程有三个:∑Fx = 0,∑Fy = 0,∑Mo(F) =0。
对于平面汇交力系和平面力偶系,平衡方程分别有所简化。
6、空间力系的平衡方程空间力系的平衡方程数量增多,需要考虑三个方向的力平衡和三个方向的力矩平衡。
二、运动学运动学研究物体的运动而不考虑引起运动的力。
1、点的运动学描述点的运动可以使用矢量法、直角坐标法和自然法。
在自然法中,引入了弧坐标、切向加速度和法向加速度的概念。
2、刚体的基本运动刚体的基本运动包括平动和定轴转动。
平动时,刚体上各点的运动轨迹相同、速度和加速度相同;定轴转动时,刚体上各点的角速度和角加速度相同。
3、点的合成运动点的合成运动是指一个动点相对于两个不同参考系的运动。
通过选取合适的动点、动系和定系,运用速度合成定理和加速度合成定理来求解问题。
4、刚体的平面运动刚体平面运动可以分解为随基点的平动和绕基点的转动。
平面运动刚体上各点的速度可以用基点法、速度投影定理和瞬心法求解,加速度则可以用基点法求解。
三、动力学动力学研究物体的运动与作用力之间的关系。
第六章 刚体的基本运动 习题全解[习题6-1] 物体绕定轴转动的运动方程为334t t -=ϕ(ϕ以rad 计,t 以s 计)。
试求物体内与转动轴相距m r 5.0=的一点,在00=t 与s t 11=时的速度和加速度的大小,并问物体在什么时刻改变它的转向? 解:角速度: 2394)34(t t t dt ddt d -=-==ϕω 角加速度:t t dtddt d 18)94(2-=-==ωα速度: )94(2t r r v -==ω)/(2)094(5.0|20s m r v t =⨯-⨯===ω)/(5.2)194(5.0|21s m v t -=⨯-⨯==切向加速度:rt t r a t 18)18(-=-==ρα法向加速度:22222)94()]94([t r rt r v a n -=-==ρ 加速度: 422222222)94(324])94([)18(t t r t r rt n a a n t -+=-+-=+=)/(8165.0)094(0324|24220s m r a t =⨯=⨯-+⨯== )/(405.1581.305.0)194(1324|24221s m r a t =⨯=⨯-+⨯== 物体改变方向时,速度等于零。
即:0)94(2=-=t r v )(667.0)(32s s t ==[习题6-2] 飞轮边缘上一点M,以匀速v=10m/s运动。
后因刹车,该点以)/(1.02s m t a t =作减速运动。
设轮半径R=0.4m,求M点在减速运动过程中的运动方程及t=2s时的速度、切向加速度与法向加速度。
解:t dtd a t 1.04.022-===ϕρα (作减速运动,角加速度为负)t dt d 25.022-=ϕ12125.0C t dtd +-=ϕ2130417.0C t C t ++-=ϕ12124.005.0)125.0(4.0C t C t dtd R v +-=+-⨯==ϕ104.0005.0|120=+⨯-==C v t图题46-251=C0000417.0|2130=+⨯+⨯-==C C t ϕ 02=C ,故运动方程为: t t 250417.03+=ϕt t t t R s 100167.0)250417.0(4.033+-=+-==ϕ速度方程:1005.02+-=t v)/(8.910205.0|22s m v t =+⨯-== 切向加速度:)/(2.021.01.0|22s m t a t t -=⨯-=-== 法向加速度:222)25125.0(4.0+-⨯==t a n ρω)/(1.240)252125.0(4.0|2222s m a t n =+⨯-⨯==[习题6-3] 当起动陀螺罗盘时,其转子的角加速度从零开始与时间成正比地增大。