人教版高三数学《导数及应用》专题复习资料
- 格式:doc
- 大小:115.77 KB
- 文档页数:4
1.5 定积分的概念1.5.1 曲边梯形的面积 1.5.2 汽车行驶的路程 1.5.3 定积分的概念学习目标:、1.了解定积分的概念(难点).2.理解定积分的几何意义.(重点、易错点).3.通过求曲边梯形面积的过程和解决有关汽车行驶路程问题的过程,了解“以直代曲”“以不变代变”的思想(难点).4.能用定积分的定义求简单的定积分(重点).[自 主 预 习·探 新 知]1.曲边梯形的面积和汽车行驶的路程 (1)曲边梯形的面积①曲线梯形:由直线x =a ,x =b (a ≠b ),y =0和曲线y =f (x )所围成的图形称为曲边梯形(如图151①所示).②求曲边梯形面积的方法把区间[a ,b ]分成许多小区间,进而把曲边梯形拆分为一些小曲边梯形,对每个小曲边梯形“以直代曲”,即用矩形的面积近似代替小曲边梯形的面积,得到每个小曲边梯形面积的近似值,对这些近似值求和,就得到曲边梯形面积的近似值(如图151②所示).图① 图②图151③求曲边梯形面积的步骤:分割,近似代替,求和,取极限. (2)求变速直线运动的(位移)路程如果物体做变速直线运动,速度函数v =v (t ),那么也可以采用分割,近似代替,求和,取极限的方法,求出它在a ≤t ≤b 内所作的位移s .2.定积分的概念如果函数f (x )在区间[a ,b ]上连续,用分点a =x 0<x 1<…<x i -1<x i <…<x n =b 将区间[a ,b ]等分成n 个小区间,在每个小区间[x i -1,x i ]上任取一点ξi (i =1,2,…,n )作和式∑n i =1f (ξi )Δx =∑n i =1 b -a nf (ξi ),当n →∞时,上述和式无限接近某个常数,这个常数叫做函数f (x )在区间[a ,b ]上的定积分,记作⎠⎛a b f (x )d x ,即⎠⎛a b f (x )d x =lim n→∞∑n i =1 b -anξ.其中a 与b 分别叫做积分下限与积分上限,区间[a ,b ]叫做积分区间,函数f (x )叫做被积函数,x 叫做积分变量,f (x )d x 叫做被积式.思考:⎠⎛a b f (x )d x 是一个常数还是一个变量?⎠⎛a b f (x )d x 与积分变量有关系吗?[提示]由定义可得定积分⎠⎛a b f (x )d x 是一个常数,它的值仅取决于被积函数与积分上、下限,而与积分变量没有关系,即⎠⎛a b f (x )d x =⎠⎛a b f (t )d t =⎠⎛ab f (u )d u .3.定积分的几何意义与性质 (1)定积分的几何意义由直线x =a ,x =b (a <b ),x 轴及一条曲线y =f (x )所围成的曲边梯形的面积设为S ,则有:① ② ③图152①在区间[a ,b ]上,若f (x )≥0,则S =⎠⎛a b f (x )d x ,如图152①所示,即⎠⎛a b f (x )d x=S .②在区间[a ,b ]上,若f (x )≤0,则S =-⎠⎛a b f (x )d x ,如图152②所示,即⎠⎛a b f (x )d x =-S .③若在区间[a ,c ]上,f (x )≥0,在区间[c ,b ]上,f (x )≤0,则S =⎠⎛a c f (x )d x -⎠⎛cbf (x )d x ,如图152③所示,即⎠⎛ab=SA -SB(S A ,S B 表示所在区域的面积).(2)定积分的性质①⎠⎛a b kf (x )d x =k ⎠⎛ab f (x )d x (k 为常数); ②⎠⎛a b [f 1(x )±f 2(x )]d x =⎠⎛a b f 1(x )d x ±⎠⎛ab f 2(x )d x ;③⎠⎛a b f (x )d x =⎠⎛a c f (x )d x +⎠⎛cb f (x )d x (其中a <c <b ). [基础自测]1.思考辨析(1)⎠⎛a b f (x )d x =⎠⎛ab f (t )d t .( ) (2)⎠⎛a b f (x )d x 的值一定是一个正数.( ) (3)⎠⎛012xd x <⎠⎛022xd x ( ) [答案] (1)√ (2)× (3)√2.在“近似代替”中,函数f (x )在区间[x i ,x i +1]上的近似值( ) A .只能是左端点的函数值f (x i ) B .只能是右端点的函数值f (x i +1)C .可以是该区间内任一点的函数值f (ξi )(ξi ∈[x i ,x i +1])D .以上答案均正确C [作近似计算时,Δx =x i +1-x i 很小,误差可忽略,所以f (x )可以是[x i ,x i +1]上任一值f (ξi ).]3.图153中阴影部分的面积用定积分表示为( )图153A.⎠⎛012xd x B.⎠⎛01(2x -1)d x C.⎠⎛01(2x +1)d x D.⎠⎛01(1-2x )d x B [根据定积分的几何意义,阴影部分的面积为⎠⎛012xd x -⎠⎛011d x =⎠⎛01(2x-1)d x .]4.已知⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,则⎠⎛02(x 2+1)d x =________.【导学号:31062080】[解析] ∵⎠⎛01x 2d x =13,⎠⎛12x 2d x =73,⎠⎛021d x =2,∴⎠⎛02(x 2+1)d x =⎠⎛01x 2d x +⎠⎛12x 2d x +⎠⎛021d x=13+73+2 =83+2=143. [答案]143[合 作 探 究·攻 重 难]图154[解] (1)分割将曲边梯形分割成n 个小曲边梯形,用分点1n ,2n ,…,n -1n 把区间[0,1]等分成n 个小区间:⎣⎢⎡⎦⎥⎤0,1n ,⎣⎢⎡⎦⎥⎤1n ,2n ,…,⎣⎢⎡⎦⎥⎤i -1n ,i n ,…,⎣⎢⎡⎦⎥⎤n -1n ,n n ,简写作⎣⎢⎡⎦⎥⎤i -1n,i n (i =1,2,…,n ).每个小区间的长度为Δx =i n -i -1n =1n .过各分点作x 轴的垂线,把曲边梯形分成n个小曲边梯形,它们的面积分别记作:ΔS 1,ΔS 2,…,ΔS i ,…,ΔS n .(2)近似代替用小矩形面积近似代替小曲边梯形面积,在小区间⎣⎢⎡⎦⎥⎤i -1n ,i n 上任取一点ξi(i =1,2,…,n ),为了计算方便,取ξi 为小区间的左端点,用f (ξi )的相反数-f (ξi )=-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1为其一边长,以小区间长度Δx =1n 为另一边长的小矩形对应的面积近似代替第i 个小曲边梯形面积,可以近似地表示为ΔS i ≈-f (ξi )Δx =-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n (i =1,2,…,n ).(3)求和因为每一个小矩形的面积都可以作为相应小曲边梯形面积的近似值,所以n 个小矩形面积的和就是曲边梯形面积S 的近似值,即S =∑i =1nΔS i ≈-∑i =1nf(ξi)Δx=∑i =1n⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫i -1n ⎝ ⎛⎭⎪⎫i -1n -1·1n=-1n3[02+12+22+…+(n -1)2]+1n2[0+1+2+…+(n -1)]=-1n3·16n (n -1)(2n -1)+1n2·-2=--n2+16n2=-16⎝ ⎛⎭⎪⎫1n2-1. (4)取极限当分割无限变细,即Δx 趋向于0时,n 趋向于∞, 此时-16⎝ ⎛⎭⎪⎫1n2-1趋向于S .从而有 S =lim n→∞ ⎣⎢⎡⎦⎥⎤-16⎝ ⎛⎭⎪⎫1n2-1=16.所以由直线x =0,x =1,y =0和曲线y =x (x -1)围成的图形面积为16.[规律方法] 求曲边梯形的面积 (1)思想:以直代曲.(2)步骤:分割→近似代替→求和→取极限. (3)关键:近似代替.(4)结果:分割越细,面积越精确. (5)求和时可用到一些常见的求和公式,如1+2+3+…+n =+2,12+22+32+…+n 2=++6,13+23+33+…+n 3=⎣⎢⎡⎦⎥⎤+22. [跟踪训练]1.求由抛物线y =x 2与直线y =4所围成的曲边梯形的面积.【导学号:31062081】[解] ∵y =x 2为偶函数,图象关于y 轴对称,∴所求曲边梯形的面积应为抛物线y =x 2(x ≥0)与直线x =0,y =4所围图形面积S阴影的2倍,下面求S 阴影.由⎩⎪⎨⎪⎧y =,y =4,得交点为(2,4),如图所示,先求由直线x =0,x =2,y =0和曲线y =x 2围成的曲边梯形的面积.(1)分割将区间[0,2]n 等分, 则Δx =2n ,取ξi =-n.(2)近似代替求和S n =∑ni =1 ⎣⎢⎡⎦⎥⎤-n2·2n =8n3[12+22+32+…+(n -1)2] =83⎝ ⎛⎭⎪⎫1-1n ⎝ ⎛⎭⎪⎫1-12n .(3)取极限S =lim n→∞S n =lim n→∞ 83⎝⎛⎭⎪⎫1-1n ⎝⎛⎭⎪⎫1-12n=83.∴所求平面图形的面积为S 阴影=2×4-83=163.∴2S 阴影=323,即抛物线y =x 2与直线y =4所围成的图形面积为323.(单位:km/h),求它在1≤t ≤2这段时间行驶的路程是多少?[解] 将时间区间[1,2]等分成n 个小区间,则第i 个小区间为⎣⎢⎡⎦⎥⎤1+i -1n ,1+i n , 在第i 个时间段的路程近似为Δs i =v ⎝ ⎛⎭⎪⎫1+i n Δt =⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n,i =1,2,…,n .所以s n =∑n i =1Δs i =∑n i =1 ⎣⎢⎡⎦⎥⎤-⎝ ⎛⎭⎪⎫1+i n 2+2⎝ ⎛⎭⎪⎫1+i n ·1n=-1n3[(n +1)2+(n +2)2+(n +3)2+…+(2n )2]+2n2[(n +1)+(n +2)+…+2n ]=-1n3⎣⎢⎡⎦⎥⎤++6-++6+2n2·+1+2=-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n,s =lim n→∞s n =lim n→∞⎣⎢⎡⎦⎥⎤-13⎝ ⎛⎭⎪⎫2+1n ⎝ ⎛⎭⎪⎫4+1n +16⎝ ⎛⎭⎪⎫1+1n ⎝ ⎛⎭⎪⎫2+1n +3+1n =23,所以这段时间行驶的路程为23 km.[规律方法]求变速直线运动路程的问题,方法和步骤类似于求曲边梯形的面积,用“以直代曲”“逼近”的思想求解.求解过程为:分割、近似代替、求和、取极限.应特别注意变速直线运动的时间区间.[跟踪训练]2.一物体自200 m 高空自由落下,求它在开始下落后的第3秒至第6秒之间的距离.(g =9.8 m/s 2)【导学号:31062082】[解] 自由落体的下落速度为v (t )=gt . 将[3,6]等分成n 个小区间,每个区间的长度为3n.在第i 个小区间⎣⎢⎡⎦⎥⎤3+-n,3+3i n (i =1,2,…,n )上,以左端点函数值作为该区间的速度.所以s n =∑n i =1v ⎣⎢⎡⎦⎥⎤3+-n3n=∑n i =1⎣⎢⎡⎦⎥⎤3g +3g n -·3n =⎩⎨⎧⎭⎬⎫3ng +3gn [1+2+…+-·3n =9g +9gn2·-2=9g +92g ·⎝⎛⎭⎪⎫1-1n .所以s =lim n→∞s n =lim n→∞ ⎣⎢⎡⎦⎥⎤9g +92g·⎝ ⎛⎭⎪⎫1-1n =9g +92g =272×9.8=132.3(m).故该物体在下落后第3 s 至第6 s 之间的距离是132.3 m.1.在定积分的几何意义中f (x )≥0,如果f (x )<0,⎠⎛ab f (x )d x 表示什么?提示:如果在区间[a ,b ]上,函数f (x )<0,那么曲边梯形位于x 轴的下方(如图所示),由于Δx i >0,f (ξi )<0,故f (ξi )·Δx i <0,从而定积分⎠⎛a b f (x )d x <0,这时它等于图中所示曲边梯形面积的相反数,即⎠⎛a b f (x )d x =-S 或S =-⎠⎛a b f (x )d x . 2.⎠⎛024-x2d x 的几何意义是什么? 提示:是由直线x =0,x =2,y =0和曲线y =4-x2所围成的曲边梯形面积,即以原点为圆心,2为半径的14圆的面积即⎠⎛024-x2d x =π.3.若f (x )为[-a ,a ]上的偶函数,则f (x )d x 与f (x )d x 存在什么关系?若f (x )为[-a ,a ]上的奇函数,则f (x )d x 等于多少?提示:若f (x )为偶函数,则f (x )d x =2f (x )d x ;若f (x )为奇函数,则f (x )d x=0.说明下列定积分所表示的意义,并根据其意义求出定积分的值. (1)⎠⎛012d x ;(2)⎠⎛12x d x ; (3)1-x2d x .[解] (1)⎠⎛012d x 表示的是图①中阴影部分所示的长方形的面积,由于这个长方形的面积为2,所以⎠⎛012d x =2.① ② ③(2)⎠⎛12x d x 表示的是图②中阴影部分所示的梯形的面积,由于这个梯形的面积为32,所以⎠⎛12x d x =32. (3)1-x2d x 表示的是图③中阴影部分所示的半径为1的半圆的面积,其值为π2,所以1-x2d x =π2.母题探究:1.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011-x2d x .[解]⎠⎛011-x2d x 表示的是图④中阴影部分所示半径为1的圆的14的面积,其值为π4, ∴⎠⎛011-x2d x =π4.2.(变条件)将例3(3)改为利用定积分的几何意义求⎠⎛011--d x .[解] ⎠⎛011--d x 表示的是图⑤中阴影部分所示半径为1的14圆的面积,其值为π4,∴⎠⎛011--d x =π4.3.(变条件)将例3(3)改为利用定积分的几何意义求 (x +1-x2)d x .[解] 由定积分的性质得,(x +1-x2)d x = x d x +1-x2d x .∵y =x 是奇函数,∴x d x =0.由例3(3)知1-x2d x =π2.∴(x +1-x2)d x =π2.[当 堂 达 标·固 双 基]1.把区间[1,3]n 等分,所得n 个小区间中每个小区间的长度为( ) A.1n B.2n C.3nD.12nB [区间长度为2,n 等分后每个小区间的长度都是2n ,故选B.]2.定积分⎠⎛ab f (x )d x 的大小( )A .与f (x )和积分区间[a ,b ]有关,与ξi 的取法无关B .与f (x )有关,与区间[a ,b ]以及ξi 的取法无关C .与f (x )以及ξi 的取法有关,与区间[a ,b ]无关D .与f (x )、积分区间[a ,b ]和ξi 的取法都有关A [由定积分的定义可知A 正确.]3.由y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式是________. 【导学号:31062083】[解析] ∵0<x <π2, ∴sin x >0.∴y =sin x ,x =0,x =π2,y =0所围成图形的面积写成定积分的形式为sin x d x .[答案] sin x d x4.已知某物体运动的速度为v =t ,t ∈[0,10],若把区间10等分,取每个小区间右端点处的函数值为近似小矩形的高,则物体运动的路程近似值为__________.[解析] ∵把区间[0,10]10等分后,每个小区间右端点处的函数值为n (n =1,2,…,10),每个小区间的长度为1.∴物体运动的路程近似值s =1×(1+2+…+10)=55.[答案] 555.计算: (2-5sin x )d x . 【导学号:31062084】[解] 由定积分的几何意义得,2d x =⎝ ⎛⎭⎪⎫3π2-π2×2=2π. 由定积分的几何意义得,sin x d x =0. 所以 (2-5sin x )d x=2d x-5sin x d x=2π.。
导数专题复习一、知识要点1.求导的公式2.导数的几何意义3.利用导数求极值与最值二、填空1. x e x x f )2()(-=的增区间为____________2. x x x f cos 2)(+=在]2,0[π的最大值为___________3. x x y ln 232-=单调增区间为__________________4. a x x x f --=3)(3在]3,0[最大值为M,最小值为N,则=-N M ____________5. c bx x y ++-=22在)1,2(-处的切线为3-=x y 求=+c b ___________________6. x y ln =上的点到直线22+=x y 距离最小值为______________________________7. x ax x x f 3)(23++=在3-=x 取得极值,则=a ___________________________ 8. 1)(23++=ax x x f 无极值,求a 的范围为_________________________________三、选择题9. 方程069323=---x x x 有______个实根 A.无 B.一个 C.二个 D.三个 10.直线b x y +=21为曲线)0(ln >=x x y 的一条切线则=b _______________ A. 1 B. 2 C. 12+ D.12ln -11.若函数)(3x x a y -=减区间为)33,33(-则a 的范围为________________A.0>aB.01<<-aC.1>aD.0<a12.ax x x f -=3)(在],1[+∞为增函数,求a 的最大值为____________________A. 4B. 3C. 2D. 113.设)(),(x g x f 分别为定义在R上的奇函数和偶函数当0<x 时,0)()()()(>'+'x g x f x g x f且0)3(=-g 则不等式0)(),(<x g x f 解集为A.)0,3(- B.)3,0()0,3(⋃- C. ),3()3,(+∞⋃--∞D.)3,0()3,(⋃--∞四、解答题14.已知d cx ax x f ++=3)(为R上奇函数,当1=x 时)(x f 取得极值为—21.求单调区间和极大值2.求证对任意)1,1(,21-∈x x ,不等式4)()(21<-x f x f 恒成立15.已知x x x f ln 21)(2+=1. 求)(x f 在[]e ,1的值域2. 求证1>x 时,332)(x x f <16.a x x x x f +--=23)(1. 求)(x f 极值2. 当a 在什么范围内时,曲线)(x f y =与x 轴仅一个交点。
《导数及其应用》复习导学案一、知识梳理二、典例剖析题型一、导数的概念及运算1.在求平均变化率时,自变量的增量为( )A .0x ∆>B .0x ∆<C .0x ∆=D . 0x ∆≠ 【答案】D2.函数f (x )=2x 2-1在区间[1,1+Δx ]上的平均变化率ΔyΔx等于( )A .4B .4+2ΔxC .4+2(Δx )2D .4x 变式.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是__________.3. 下列求导正确的是 ( ) 【答案】BA.(x+x 1)′=1+21x B. (log2x)′=ln21x C. (3x)′=3xlog3xD. (x2cosx)′=-2xsinx4.下列说法正确的是( )A .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处就没有切线;B .若曲线)(x f y =在点()00,()x f x 有切线,则)(0x f '必存在;C .若)(0x f '不存在,则曲线)(x f y =在点()00,()x f x 处的切线斜率不存在;D .若曲线)(x f y =在点()00,()x f x 处的切线斜率不存在,则曲线在该点处没有切线。
【答案】C5.设,M m 分别是()f x 在区间[],a b 上的最大值和最小值,则()()()bam b a f x dx M b a -≤≤-⎰,由上述估值定理,估计定积分2212x dx --⎰的取值范围是 .【解析】:因为当12x -≤≤ 时,204x ≤≤ ,所以,212116x -≤≤所以由估值定理得:()()221121212116x dx --⨯--≤≤⨯--⎡⎤⎡⎤⎣⎦⎣⎦⎰, 即22132316x dx --≤≤⎰,所以答案应填:3,316⎡⎤⎢⎥⎣⎦. 6.211dx x +=⎰⎰.【答案】ln 24π+ 题型二、导数的几何意义7.已知曲线y =2x 2上一点A (2,8),则曲线在点A 处的切线斜率为( )A .4B .16C .8D .2 8.求过点P (-1,2)且与曲线y =3x 2-4x +2在点M (1,1)处的切线平行的直线.变式1.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(a +2)x +1相切,则a =________.变式2.已知函数f (x )=-13x 3+2x 2+2x ,若存在满足0≤x 0≤3的实数x 0,使得曲线y =f (x )在点(x 0,f (x 0))处的切线与直线x +my -10=0垂直,则实数m 的取值范围是( )A .[6,+∞)B .(-∞,2]C .[2,6]D .[5,6] 变式 3.已知曲线2()xf x x e m =+-在0x =处的切线与坐标轴围成的三角形的面积为16,则实数m 的值为 .9.已知抛物线y =x 2,直线l :x -y -2=0,则抛物线上的点到直线l 的最短距离是 . 变式.点P 是曲线2ln y x x =-,则点P 到直线40x y --=的距离的最小值是 .题型三、导数的综合应用 类型1:导数的运算性质10.设()f x ,()g x 分别是定义在R 上的奇函数和偶函数,当0x <时,'()()()'()0f x g x f x g x +>,且(3)0f -=,则不等式()()0f x g x <的解集是( )A .(3,0)(3,)-+∞ B .(3,0)(0,3)- C .(,3)(3,)-∞-+∞ D .(,3)(0,3)-∞-变式1.函数f (x )在定义域R 内可导,若f (x )=f (2-x )且当x ∈(-∞,1)时,(x -1)f ′(x )<0.设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系是______ .变式2.设函数F (x )=f (x )e x 是定义在R 上的函数,其中f (x )的导函数f ′(x )满足f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (2)>e 2f (0),f (2 016)>e 2 016f (0)B .f (2)<e 2f (0),f (2 016)>e 2 016f (0)C .f (2)<e 2f (0),f (2 016)<e 2 016f (0)D .f (2)>e 2f (0),f (2 016)<e 2 016f (0)变式3.已知函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为____________. 变式4.定义在R 上的偶函数f x 的导函数为()f x ',若对任意的实数x ,都有()()22f x xf x '+<恒成立,则使()()2211x f x f x -<-成立的实数x 的集合为( )A .{}1x x ≠±B .()(),11,-∞-+∞C .()1,1-D .()()1,00,1-【解析】:当0x >时,由()()220f x xf x +'-<可知:两边同乘以x 得: ()()2220xf x x f x x -'-< 设:()()22g x x f x x =-,则()()()2220g x xf x x f x x '=+'-<,恒成立:∴()g x 在(0)+∞,单调递减,由()()2211x f x f x -<-∴()()2211x f x x f -<-,即()()1g x g <,即1x >;当0x <时,函数是偶函数,同理得:1x <-;综上可知:实数x 的取值范围为()()11-∞-⋃+∞,,,故选:B变式5.函数()f x 的定义域是R ,(0)3f =,对任意,()()1x R f x f x ∈+>/,则不等式()2x xe f x e ⋅>+的解集为( )A .{|0}x x <B .{|0}x x >C .{|1,}x x x <->或1D .{|1,1}x x x <-<<或0 【解析】∵()()1f x f x +>/,∴()()0xxxe f x e f x e +>>/,∴[()1]()0xxe f x e f x -+>/,即{[()1]}0x e f x '->,∴函数()[()1]x F x e f x =-在R 上单调递增,且0(0)[(0)1]2F e f =-=∴ ()2[()1]2x x x e f x e e f x ⋅>+⇔->,∴x>0,故选B类型2:单调性问题11.函数()()3x f x x e =-的单调递增区间是( )DA .(-∞,2)B .(0,3)C .(1,4)D .(2,+∞) 变式1.已知()21ln 2f x x a x =-在区间()0,2上不单调,实数a 的取值范围是( ) A .()()2,00,2- B .()()4,00,4- C .()0,2 D .()0,4【答案】D变式2.已知函数()f x 的导函数图象如图所示,若ABC ∆为锐角三角形,则下列结论一定成立的是( )A .()()sin cos f A fB > B .()()sin cos f A f B <C .()()sin sin f A f B >D .()()cos cos f A f B < 12.(全国Ⅱ卷)若函数f (x )=kx -ln x 在区间(1,+∞)内单调递增,则k 的取值范围是( )A .(-∞,-2]B .(-∞,-1]C .[2,+∞)D .[1,+∞)变式1.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是_____________.变式2.已知a ≥0,函数f (x )=(x 2-2ax )e x .设f (x )在区间[-1,1]上是单调函数,求a 的取值范围.变式3.函数32y x ax bx =++在(,1)-∞-上单调递增,在()1,2-上单调递减,在()2,+∞上递增,则,a b 的值为( ) AA 、3,62a b =-=-B 、36,2a b =-=- C 、3,2a b == D 、3,6a b =-=-变式4.若函数y =a (x 3-x )的单调减区间为⎝⎛⎭⎫-33, 33,则a 的取值范围是( )A .(0,+∞)B .(-1,0)C .(1,+∞)D .(0,1)13.已知f(x)=e x -ax-1.(1)求f(x)的单调增区间; (2)若f(x )在定义域R 内单调递增,求a 的取值范围;(3)是否存在a,使f(x)在(-∞,0]上单调递减,在[0,+∞)上单调递增?若存在,求出a 的值;若不存在,说明理由.【答案】解 : f ′(x)= e x -a.(1)若a ≤0,f ′(x)= e x -a ≥0恒成立,即f(x)在R 上递增. 若a >0, e x -a ≥0,∴e x ≥a,x ≥lna. ∴f(x)的递增区间为(lna ,+∞).(2)∵f (x )在R 内单调递增,∴f ′(x)≥0在R 上恒成立. ∴e x -a ≥0,即a ≤e x 在R 上恒成立.∴a ≤(e x )min ,又∵e x >0,∴a ≤0.[来源:Z §xx §] (3)由题意知e x -a ≤0在(-∞,0]上恒成立. ∴a ≥e x 在(-∞,0]上恒成立. ∵e x 在(-∞,0]上为增函数. ∴x=0时,e x 最大为1.∴a ≥1.同理可知e x -a ≥0在[0,+∞)上恒成立. ∴a ≤e x 在[0,+∞)上恒成立. ∴a≤1,∴a=1.14.设函数2e (),1axf x a x R =∈+. (Ⅰ)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)求函数)(x f 单调区间. 【答案】解:因为2e (),1ax f x x =+所以222e (2)()(1)ax ax x a f x x -+'=+.(Ⅰ)当1a =时, 2e ()1xf x x =+,222e (21)()(1)x x x f x x -+'=+,所以(0)1,f = (0)1f '=.所以曲线()y f x =在点(0,(0))f 处的切线方程为10x y -+=. ……………4分(Ⅱ)因为222222e (2)e ()(2)(1)(1)ax axax x a f x ax x a x x -+'==-+++, ……………5分 (1)当0a =时,由()0f x '>得0x <;由()0f x '<得0x >.[所以函数()f x 在区间(,0)-∞单调递增, 在区间(0,)+∞单调递减. ……………6分 (2)当0a ≠时, 设2()2g x ax x a =-+,方程2()20g x ax x a =-+=的判别式2444(1)(1),a a a ∆=-=-+ ……………7分①当01a <<时,此时0∆>.由()0f x '>得211a x a --<,或211a x a +->;由()0f x '<得221111a a x a a--+-<<. 所以函数()f x 单调递增区间是211(,)a a ---∞和211(,)a a +-+∞, 单调递减区间221111(,)a a a a--+-. ……………9分 ②当1a ≥时,此时0∆≤.所以()0f x '≥,所以函数()f x 单调递增区间是(,)-∞+∞. ……………10分 ③当10a -<<时,此时0∆>.由()0f x '>得221111a a x a a +---<<; 由()0f x '<得211a x a +-<,或211a x a-->.所以当10a -<<时,函数()f x 单调递减区间是211(,)a a +--∞和211(,)a a --+∞, 单调递增区间221111(,)a a a a+---. ……………12分 ④当1a ≤-时, 此时0∆≤,()0f x '≤,所以函数()f x 单调递减区间是(,)-∞+∞.类型3:图像问题15.如右图所示是某一容器的三视图,现向容器中匀速注水,容器中水面的高度h 随时间t 变化的可能图象是( )A .B .C . D.【解析】:由三视图可知该几何体是圆锥,顶点朝下,底面圆的上面,随之时间的推移,注水量的增加高度在增加,所以函数是增函数,刚开始时截面面积较小,高度变化较快,随着注水量的增加,高度变化量减慢,综上可知B 正确16.函数()f x 的导函数()'f x 在区间(,)a b 内的图象如图所示, 则 ()f x 在(,)a b 内的极大值点有( )BA. 1个B. 2个C. 3个D. 4个变式1.如果函数()y f x =的图象如图,那么导函数()y f x '=的图象可能( )O thh t O h t O O t h变式2.设f ′(x )是函数f (x )的导函数,y =f ′(x )的图象如图所示,则y =f (x )的图象最有可能的是( )类型4:极值(最值)问题17.已知函数()313f x x ax b =-+在y 轴上的截距为1,且曲线上一点02, 2p y ⎛⎫⎪ ⎪⎝⎭处的切线斜率为13. (1)曲线在P 点处的切线方程; (2)求函数()f x 的极大值和极小值【答案】解:(1)因为函数()313f x x ax b=-+在y 轴上的截距为1,所以1b = 又'2y x a =-,所以2211 236a a ⎛⎫-=∴= ⎪ ⎪⎝⎭()311 136f x x x ∴=-+ 所以0212y f ⎛⎫== ⎪ ⎪⎝⎭,故点2,12P ⎛⎫ ⎪ ⎪⎝⎭,所以切线方程为12132y x ⎛⎫-=- ⎪ ⎪⎝⎭ 即26620x y -+-=(2)由题意可得,令()'2106f x x =-=得66x =±列表如下:x6,6⎛⎫-∞- ⎪ ⎪⎝⎭66- 66,66⎛⎫- ⎪ ⎪⎝⎭666,6⎛⎫+∞ ⎪ ⎪⎝⎭()'f x+- 0 + ()f x增区间极大 减区间极小增区间所以函数的极大值为661f ⎛=+ ⎝⎭, 极小值为661f =⎝⎭18.已知函数c bx x ax x f -+=44ln )()0(>x 在1=x 处取得极值c --3,其中c b a ,,为常数.(1)求b a ,的值; (2)求函数)(x f 的单调区间;(3)若对任意0>x ,不等式02)(2≥+c x f 恒成立,求c 的取值范围.解:(1))4ln 4()(3/b a x a x x f ++=,0)1(='f ,∴04=+b a ,又c f --=3)1(,∴3,12-==b a ; 经检验合题意;………4分(2)x x x f ln 48)(3/=()0>x ∴由0)(/=x f 得1=x ,当0)(/<x f 时,10<<x ,)(x f 单调递减;当0)(/>x f 时,1>x ,)(x f 单调递增;∴)(x f 单调递减区间为)1,0(,单调递增区间为),1(+∞ ……8分 (3)由(2)可知,1=x 时,)(x f 取极小值也是最小值c f --=3)1(,列表略 依题意,只需0232≥+--c c ,解得23≥c 或1-≤c ………………12分 19.已知函数()()xf x x k e =-. (1)求()f x 的单调区间; (2)求()f x 在区间]2,1[上的最小值;(3)设)(')()(x f x f x g +=,当2523≤≤k 时,对任意]1,0[∈x ,都有λ≥)(x g 成立,求实数λ的范围。
人教版高中数学选修2-2知识点梳理重点题型(常考知识点)巩固练习《导数及其应用》全章复习与巩固【学习目标】1. 会利用导数解决曲线的切线的问题.2. 会利用导数解决函数的单调性等有关问题.3. 会利用导数解决函数的极值、最值等有关问题.4. 能通过运用导数这一工具解决生活中的一些优化问题:例如利润最大、用料最省、效率最高等问题【知识网络】【要点梳理】要点一:有关切线问题直线与曲线相切,我们要抓住三点: ①切点在切线上; ②切点在曲线上;③切线斜率等于曲线在切点处的导数值. 要点诠释:通过以上三点可以看出,抓住切点是解决此类题的关键,有切点直接求,无切点则设切点,布列方程组.要点二:有关函数单调性的问题设函数()y f x =在区间(a ,b )内可导,(1)如果恒有'()0f x >,则函数()f x 在(a ,b )内为增函数; (2)如果恒有'()0f x <,则函数()f x 在(a ,b )内为减函数; (3)如果恒有'()0f x =,则函数()f x 在(a ,b )内为常数函数. 要点诠释:(1)若函数()f x 在区间(a ,b )内单调递增,则'()0f x ≥,若函数()f x 在(a ,b )内单调递减,则'()0f x ≤.(2)'()0f x ≥或'()0f x ≤恒成立,求参数值的范围的方法: ① 分离参数法:()m g x ≥或()m g x ≤.② 若不能隔离参数,就是求含参函数(,)f x m 的最小值min (,)f x m ,使min (,)0f x m ≥. (或是求含参函数(,)f x m 的最大值max (,)f x m ,使max (,)0f x m ≤) 要点三:函数极值、最值的问题 函数极值的问题(1)确定函数的定义域; (2)求导数)(x f '; (3)求方程0)(='x f 的根;(4)检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点诠释: ①先求出定义域②一般都要列表:然后看在每个根附近导数符号的变化:若由正变负,则该点为极大值点; 若由负变正,则该点为极小值点.注意:无定义的点不用在表中列出③根据表格给出结论:注意一定指出在哪取得极值. 函数最值的问题若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下:(1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根;(3)求在),(b a 内所有使0)(='x f 的的点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数()y f x =在闭区间],[b a 上的最小值.要点诠释:①求函数的最值时,不需要对导数为0的点讨论其是极大还是极小值,只需将导数为0的点和端点的函数值进行比较即可.②若)(x f 在开区间),(b a 内可导,且有唯一的极大(小)值,则这一极大(小)值即为最大(小)值. 要点四:优化问题在实际生活中用料最省、利润最大、效率最高等问题,常常可以归结为函数的最大值问题,从而可用导数来解决.我们知道,导数是求函数最大(小)值的有力工具,导数在实际生活中的应用主要是解决有关函数最大值、最小值的实际问题.利用导数解决实际问题中的最值的一般步骤:(1) 分析实际问题中各量之间的关系,找出实际问题的数学模型,写出实际问题中变量之间的函数关系式()y f x =;(2) 求函数的导数'()f x ,解方程'()0f x =;(3) 比较函数在区间端点和极值点的函数值大小,最大(小)者为最大(小)值. 要点诠释:①解决优化问题的方法:首先是需要分析问题中各个变量之间的关系,建立适当的函数关系,并确定函数的定义域,通过创造在闭区间内求函数取值的情境,即核心问题是建立适当的函数关系.再通过研究相应函数的性质,提出优化方案,使问题得以解决,在这个过程中,导数是一个有力的工具. 利用导数解决优化问题的基本思路:②得出变量之间的关系()y f x =后,必须由实际意义确定自变量x 的取值范围;③在实际问题中,有时会遇到函数在区间内只有一个点使'()0f x =的情形,如果函数在这点有极大(小)值,那么不与端点值比较,也可以知道这就是最大(小)值.④在求实际问题的最大(小)值时,一定要注意考虑实际问题的意义,不符合实际意义的值应舍去. 要点五:定积分的概念如果函数=()y f x 在区间[]a b ,上连续,用分点0121i i n a x x x x x x b -=<<<<<<<=将区间[]a b ,等分成n 个小区间,在每个小区间[]1,i i x x -上取点()1,2,,i i n =ξ,作和式:11()()nnn i i i i b aS f x f n==-=∆=∑∑ξξ.当n →+∞时,上述和式n S 无限趋近于常数,那么称该常数为函数()f x 在区间[,]a b 上的定积分,记作:()baf x dx ⎰,即+1()lim()nbi an i b af x dx f n→∞=-=∑⎰ξ.要点诠释: (1)定积分()baf x dx ⎰是一个常数,即n S 无限趋近的常数S (n →+∞时),记为()baf x dx ⎰,而不是n S .(2) 定积分是一个数值(极限值),它的值仅仅取决于被积函数与积分的上、下限,而与积分变量用什么字母表示无关,即()()()bbbaaaf x dx f u du f t dt ===⎰⎰⎰(称为积分形式的不变性),另外定积分()()baf x d x ⎰与积分区间[a ,b ]息息相关,不同的积分区间,定积分的积分上下限不同,所得的值也就不同,例如120(1)x dx +⎰与320(1)x dx +⎰的值就不同.要点六:定积分的几何意义要点诠释:(1)当()0f x ≤时,由()y f x =、x =a 、x =b 与x 轴所围成的曲边梯形位于x 轴的下方,积分()d baf x x⎰在几何上表示上述曲边梯形面积的相反数(负数).所以[()]d ()bbaaS f x x f x S =-=-=-⎰⎰,即()d baf x x S =-⎰,如图(b ).(2)当()f x 在区间[a ,b ]上有正有负时,积分()d b af x x ⎰在几何上表示几个小曲边梯形面积的代数和(x 轴上方面积取正号,x 轴下方面积取负号).在如图(c )所示的图象中,定积分132()d baf x x S S S =+-⎰.要点七:定积分的运算性质 性质1:()d ()bba ak f x x k f x kS ==⎰⎰;性质2:[()g()]d ()g()d bb baaaf x x x f x x x ±=±⎰⎰⎰;性质3:定积分关于积分区间具有可加性。
第二章 函数、导数及其应用 2.11 导数在研究函数中的应用练习 理[A 组·基础达标练]1.函数f (x )=x 4-4x 3+4x 2的极值点是( ) A .x =0 B .x =1C .x =2D .x =0,x =1和x =2 答案 D解析 f ′(x )=4x 3-12x 2+8x =4x (x 2-3x +2)=4x (x -1)(x -2),则结合列表可得f (x )的极值点为x =0,x =1和x =2.2.[2015·某某一检]已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示.则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞) 答案 B解析 依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5),选B.3.[2016·某某师大附中月考]若函数f (x )=x 3-tx 2+3x 在区间[1,4]上单调递减,则实数t 的取值X 围是( )A.⎝ ⎛⎦⎥⎤-∞,518B .(-∞,3]C.⎣⎢⎡⎭⎪⎫518,+∞D .[3,+∞) 答案 C解析 f ′(x )=3x 2-2tx +3,由于f (x )在区间[1,4]上单调递减,则有f ′(x )≤0在[1,4]上恒成立,即3x 2-2tx +3≤0,即t ≥32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上恒成立,因为y =32⎝ ⎛⎭⎪⎫x +1x 在[1,4]上单调递增,所以t ≥32⎝ ⎛⎭⎪⎫4+14=518,故选C.4.[2013·某某高考]已知a 为常数,函数f (x )=x (ln x -ax )有两个极值点x 1,x 2(x 1<x 2),则( )A .f (x 1)>0,f (x 2)>-12B .f (x 1)<0,f (x 2)<-12C .f (x 1)>0,f (x 2)<-12D .f (x 1)<0,f (x 2)>-12答案 D解析 f ′(x )=ln x -2ax +1,依题意知f ′(x )=0有两个不等实根x 1,x 2. 即曲线y 1=1+ln x 与y 2=2ax 有两个不同交点,如图.由直线y =x 是曲线y =1+ln x 的切线,可知:0<2a <1,且0<x 1<1<x 2.∴a ∈⎝ ⎛⎭⎪⎫0,12. 由0<x 1<1,得f (x 1)=x 1(ln x 1-ax 1)<0, 当x 1<x <x 2时,f ′(x )>0, 当x >x 2时,f ′(x )<0,∴f (x 2)>f (1)=-a >-12,故选D.5.[2015·某某一模]若定义在R 上的函数f (x )满足f (x )+f ′(x )>1,f (0)=4,则不等式f (x )>3ex +1(e 为自然对数的底数)的解集为( )A .(0,+∞) B.(-∞,0)∪(3,+∞) C .(-∞,0)∪(0,+∞) D.(3,+∞) 答案 A解析 由f (x )>3ex +1得,e x f (x )>3+e x ,构造函数F (x )=e x f (x )-e x-3,对F (x )求导得F ′(x )=e x f (x )+e x f ′(x )-e x =e x [f (x )+f ′(x )-1].由f (x )+f ′(x )>1,e x >0,可知F ′(x )>0,即F (x )在R 上单调递增,又因为F (0)=e 0f (0)-e 0-3=f (0)-4=0,所以F (x )>0的解集为(0,+∞),所以选A.6.[2013·某某高考]已知e 为自然对数的底数,设函数f (x )=(e x-1)(x -1)k(k =1,2),则( )A .当k =1时,f (x )在x =1处取到极小值B .当k =1时,f (x )在x =1处取到极大值C .当k =2时,f (x )在x =1处取到极小值D .当k =2时,f (x )在x =1处取到极大值 答案 C解析 当k =1时,f (x )=(e x -1)(x -1),f ′(x )=x e x-1,f ′(1)≠0,故A ,B 错;当k =2时,f (x )=(e x-1)(x -1)2,f ′(x )=(x 2-1)e x -2x +2=(x -1)[(x +1)e x-2],故f ′(x )=0有一根为x 1=1,另一根x 2∈(0,1).当x ∈(x 2,1)时,f ′(x )<0,f (x )递减;当x∈(1,+∞)时,f ′(x )>0,f (x )递增,∴f (x )在x =1处取得极小值,故选C.7.[2016·东北八校月考]已知函数y =f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________.答案 4解析 ∵f ′(x )=3x 2+6ax +3b ,∴⎩⎪⎨⎪⎧f ′2=3×22+6a ×2+3b =0,f ′1=3×12+6a ×1+3b =-3,⇒⎩⎪⎨⎪⎧a =-1,b =0,∴f ′(x )=3x 2-6x ,令3x 2-6x =0,得x =0或x =2, ∴f (x )极大值-f (x )极小值=f (0)-f (2)=4.8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值X 围是________.答案 (0,1)∪(2,3)解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x=-x -1x -3x,由f ′(x )=0得函数f (x )的两个极值点为1,3, 则只要这两个极值点有一个在区间(t ,t +1)内, 函数f (x )在区间[t ,t +1]上就不单调, 由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.9.已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ,n ∈[-1,1],则f (m )+f ′(n )的最小值是________.答案 -13解析 f ′(x )=-3x 2+2ax , 根据已知2a3=2,得a =3,即f (x )=-x 3+3x 2-4.根据函数f (x )的极值点,可得函数f (m )在[-1,1]上的最小值为f (0)=-4,f ′(n )=-3n 2+6n 在[-1,1]上单调递增,所以f ′(n )的最小值为f ′(-1)=-9.[f (m )+f ′(n )]min =f (m )min +f ′(n )min =-4-9=-13. 10.[2015·某某一检]已知函数f (x )=ln x -x1+2x .(1)求证:f (x )在区间(0,+∞)上单调递增; (2)若f [x (3x -2)]<-13,某某数x 的取值X 围.解 (1)证明:由已知得f (x )的定义域为(0,+∞). ∵f (x )=ln x -x1+2x, ∴f ′(x )=1x -1+2x -2x 1+2x 2=4x 2+3x +1x 1+2x 2. ∵x >0,∴4x 2+3x +1>0,x (1+2x )2>0. ∴当x >0时,f ′(x )>0. ∴f (x )在(0,+∞)上单调递增.(2)∵f (x )=ln x -x 1+2x ,∴f (1)=ln 1-11+2×1=-13.由f [x (3x -2)]<-13得f [x (3x -2)]<f (1).由(1)得⎩⎪⎨⎪⎧x 3x -2>0x3x -2<1,解得-13<x <0或23<x <1.综上所述,x 的取值X 围是⎝ ⎛⎭⎪⎫-13,0∪⎝ ⎛⎭⎪⎫23,1.11.[2015·某某一检]已知函数f (x )=x ·ln x ,g (x )=ax 3-12x -23e .(1)求f (x )的单调递增区间和最小值;(2)若函数y =f (x )与函数y =g (x )的图象在交点处存在公共切线,某某数a 的值. 解 (1)∵f ′(x )=ln x +1,由f ′(x )>0,得x >1e,∴f (x )的单调递增区间为⎝ ⎛⎭⎪⎫1e ,+∞. 又当x ∈⎝ ⎛⎭⎪⎫0,1e 时,f ′(x )<0,则f (x )在⎝ ⎛⎭⎪⎫0,1e 上单调递减,当x ∈⎝ ⎛⎭⎪⎫1e ,+∞时,f ′(x )>0,则f (x )在⎝ ⎛⎭⎪⎫1e ,+∞上单调递增, ∴f (x )的最小值为f ⎝ ⎛⎭⎪⎫1e =-1e .(2)∵f ′(x )=ln x +1,g ′(x )=3ax 2-12,设公切点的横坐标为x 0,则与f (x )的图象相切的直线方程为:y =(ln x 0+1)x -x 0, 与g (x )的图象相切的直线方程为:y =⎝⎛⎭⎪⎫3ax 20-12x -2ax 30-23e ,∴⎩⎪⎨⎪⎧ln x 0+1=3ax 2-12,-x 0=-2ax 30-23e解之得x 0ln x 0=-1e ,由(1)知x 0=1e ,∴a =e26.12.[2016·某某检测]已知f (x )=e x(x 3+mx 2-2x +2). (1)假设m =-2,求f (x )的极大值与极小值;(2)是否存在实数m ,使f (x )在[-2,-1]上单调递增?如果存在,求m 的取值X 围;如果不存在,请说明理由.解 (1)当m =-2时,f (x )=e x (x 3-2x 2-2x +2),其定义域为(-∞,+∞).则f ′(x )=e x(x 3-2x 2-2x +2)+e x (3x 2-4x -2)=x e x (x 2+x -6)=(x +3)x (x -2)e x, ∴当x ∈(-∞,-3)或x ∈(0,2)时,f ′(x )<0; 当x ∈(-3,0)或x ∈(2,+∞)时,f ′(x )>0;f ′(-3)=f ′(0)=f ′(2)=0,∴f (x )在(-∞,-3)上单调递减,在(-3,0)上单调递增; 在(0,2)上单调递减,在(2,+∞)上单调递增, ∴当x =-3或x =2时,f (x )取得极小值; 当x =0时,f (x )取得极大值, ∴f (x )极小值=f (-3)=-37e -3,f (x )极小值=f (2)=-2e 2, f (x )极大值=f (0)=2.(2)f ′(x )=e x(x 3+mx 2-2x +2)+e x (3x 2+2mx -2)=x e x [x 2+(m +3)x +2m -2]. ∵f (x )在[-2,-1]上单调递增, ∴当x ∈[-2,-1]时,f ′(x )≥0. 又∵当x ∈[-2,-1]时,x e x<0, ∴当x ∈[-2,-1]时,x 2+(m +3)x +2m -2≤0,∴⎩⎪⎨⎪⎧f ′-2=-22-2m +3+2m -2≤0,f ′-1=-12-m +3+2m -2≤0,解得m ≤4,∴当m ∈(-∞,4]时,f (x )在[-2,-1]上单调递增.[B 组·能力提升练]1.若函数f (x )=x 3-3x 在(a,6-a 2)上有最小值,则实数a 的取值X 围是( )A .(-5,1)B .[-5,1)C .[-2,1)D .(-5,-2] 答案 C解析 f ′(x )=3x 2-3=0,得x =±1,且x =1为函数的极小值点,x =-1为函数的极大值点.函数f (x )在区间(a,6-a 2)上有最小值, 则函数f (x )极小值点必在区间(a,6-a 2)内, 即实数a 满足a <1<6-a 2且f (a )=a 3-3a ≥f (1)=-2. 解a <1<6-a 2,得-5<a <1, 不等式a 3-3a ≥f (1)=-2,即a 3-3a +2≥0,即a 3-1-3(a -1)≥0, 即(a -1)(a 2+a -2)≥0, 即(a -1)2(a +2)≥0, 即a ≥-2.故实数a 的取值X 围是[-2,1). 故选C.2.[2016·某某调研]已知函数f (x )=ln x +1ln x ,则下列结论中正确的是( )A .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是增函数B .若x 1,x 2(x 1<x 2)是f (x )的极值点,则f (x )在区间(x 1,x 2)内是减函数C .∀x >0,且x ≠1,f (x )≥2D .∃x 0>0,f (x )在(x 0,+∞)内是增函数 答案 D解析 由已知得,f ′(x )=1x ·ln 2x -1ln 2x(x >0且x ≠1),令f ′(x )=0,得ln x =±1,得x =e 或x =1e.当x ∈⎝⎛⎭⎪⎫0,1e 时,f ′(x )>0;当x ∈⎝⎛⎭⎪⎫1e,1,x ∈(1,e)时,f ′(x )<0;当x ∈(e ,+∞)时,f ′(x )>0.故x =1e和x =e 分别是函数f (x )的极大值点和极小值点,但是由函数的定义域可知x ≠1,故函数f (x )在x ∈⎝ ⎛⎭⎪⎫1e ,e 内不是单调的,所以A ,B 错;当0<x <1时,ln x <0,此时f (x )<0,C 错;只要x 0≥e,则f (x )在(x 0,+∞)内是增函数,D 正确.3.[2015·某某高考]已知函数f (x )=2x,g (x )=x 2+ax (其中a ∈R ).对于不相等的实数x 1,x 2,设m =f x 1-f x 2x 1-x 2,n =g x 1-g x 2x 1-x 2.现有如下命题:①对于任意不相等的实数x 1,x 2,都有m >0;②对于任意的a 及任意不相等的实数x 1,x 2,都有n >0;③对于任意的a ,存在不相等的实数x 1,x 2,使得m =n ; ④对于任意的a ,存在不相等的实数x 1,x 2,使得m =-n . 其中的真命题有________(写出所有真命题的序号). 答案 ①④解析 ①f (x )=2x是增函数,∴对任意不相等的实数x 1,x 2,都有f x 1-f x 2x 1-x 2>0,即m >0,∴①成立.②由g (x )=x 2+ax 图象可知,当x ∈⎝⎛⎭⎪⎫-∞,-a 2时,g (x )是减函数,∴当不相等的实数x 1、x 2∈⎝⎛⎭⎪⎫-∞,-a 2时,g x 1-g x 2x 1-x 2<0,即n <0,∴②不成立. ③若m =n ,则有f x 1-f x 2x 1-x 2=g x 1-g x 2x 1-x 2,即f (x 1)-f (x 2)=g (x 1)-g (x 2),f (x 1)-g (x 1)=f (x 2)-g (x 2),令h (x )=f (x )-g (x ), 则h (x )=2x-x 2-ax ,h ′(x )=2x ln 2-2x -a ,令h ′(x )=2xln 2-2x -a =0, 得2xln 2=2x +a .由y =2x ln 2与y =2x +a 的图象知, 存在a 使对任意x ∈R 恒有2xln 2>2x +a , 此时h (x )在R 上是增函数. 若h (x 1)=h (x 2),则x 1=x 2, ∴③不成立. ④若m =-n ,则有f x 1-f x 2x 1-x 2=-g x 1-g x 2x 1-x 2,f (x 1)+g (x 1)=f (x 2)+g (x 2),令φ(x )=f (x )+g (x ), 则φ(x )=2x+x 2+ax ,φ′(x )=2x ln 2+2x +a .令φ′(x )=0,得2xln 2+2x +a =0, 即2xln 2=-2x -a .由y 1=2xln 2与y 2=-2x -a 的图象可知,对任意的a ,存在x 0,使x >x 0时y 1>y 2,x <x 0时y 1<y 2,故对任意的a ,存在x 0,使x >x 0时,φ′(x )>0,x <x 0时φ′(x )<0, 故对任意的a ,φ(x )在R 上不是单调函数.故对任意的a ,存在不相等的实数x 1,x 2,使m =-n , ∴④成立. 综上,①④正确.4.已知函数f (x )=e x-ln (x +m ).(1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; (2)当m ≤2时,证明f (x )>0. 解 (1)f ′(x )=e x-1x +m. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x-ln (x +1),x ∈(-1,+∞). 函数f ′(x )=e x -1x +1在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m ≤2,x ∈(-m ,+∞)时,ln (x +m )≤ln (x +2),故只需证当m =2时f (x )>0. 当m =2时,f ′(x )=e x-1x +2在(-2,+∞)上单调递增. 又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)上有唯一的解x 0,且x 0∈(-1,0). 当x ∈(-2,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0. 故当x =x 0时,f (x )取极小值. 故f ′(x )=0得e x 0=1x 0+2,ln (x 0+2)=-x 0. 故f (x )≥f (x 0)=1x 0+2+x 0=x 0+12x 0+2>0.综上所述,当m ≤2时,f (x )>0.。
(每日一练)人教版2023高中数学导数及其应用重点知识归纳单选题1、函数f(x)=x 3(x −1)的极值点的个数是( ) A .3个B .2个C .1个D .0个 答案:C 解析:对函数求导并求出导函数的零点,再判断导函数在各零点左右的正负即可得解. 对函数f(x)=x 4−x 3求导得:f ′(x)=4x 3−3x 2=4x 2(x −34),由f ′(x)=0得x =0或x =34,而当x <0和0<x <34时,都有f ′(x)<0,当x >34时,f ′(x)>0,所以0不是f(x)的极值点,34是f(x)的极小值点,函数f(x)只有一个极值点. 故选:C2、已知正项数列{a n }满足a 1∈(0,12),a n 2−1=ln (2a n a n+1)(n ∈N ∗),则( )A .对任意的n ∈N ∗,都有0<a n <1B .对任意的n ∈N ∗,都有a n >a n+1>0C .存在n ∈N ∗,使得a n+1<12a nD .对任意的n ∈N ∗,都有a n+1≥a12n答案:D可赋值a 1=12e,验证AB ;通过构造函数f (x )=ln (x +1)−x ,对ln (2a n a n+1)=ln((2a n a n+1−1)+1)进行放缩,可得a n+1a n≥12,累乘法可判断CD.因为a 1∈(0,12),a n 2−1=ln (2a n a n+1),不妨令a 1=12e ,则(12e )2−1=ln (2⋅12e ⋅a 2),即lna 2=14e2>0,a 2>1,故AB 错误;ln (2a n a n+1)=ln((2a n a n+1−1)+1),构造f (x )=ln (x +1)−x ,则f ′(x )=1x+1−1=−xx+1,当x ∈(−1,0),f ′(x )>0,f (x )单增,当x ∈(0,+∞)时,f ′(x )<0,f (x )单减,故f (x )≤f (0)=0,即ln (x +1)≤x ,所以ln((2a n a n+1−1)+1)≤2a n a n+1−1,即a n 2−1≤2a n a n+1−1,因为a n >0,所以a n+1a n≥12,累乘法可得a n+1a n·a n a n−1·⋯·a 2a 1≥12n,即a n+1a 1≥12n,也即a n+1≥a 12n.故C 错误,D 正确.故选:D3、函数f(x)=x 4−2x 3的图像在点(1,f(1))处的切线方程为( ) A .y =−2x −1B .y =−2x +1 C .y =2x −3D .y =2x +1 答案:B 解析:求得函数y =f (x )的导数f ′(x ),计算出f (1)和f ′(1)的值,可得出所求切线的点斜式方程,化简即可. ∵f (x )=x 4−2x 3,∴f ′(x )=4x 3−6x 2,∴f (1)=−1,f ′(1)=−2, 因此,所求切线的方程为y +1=−2(x −1),即y =−2x +1. 故选:B. 小提示:本题考查利用导数求解函图象的切线方程,考查计算能力,属于基础题4、曲线f(x)=cosx在x=π6处的切线方程为______.答案:6x+12y−6√3−π=0解析:根据导数的几何意义和点斜式求解即可f′(x)=−sinx,f′(π6)=−sinπ6=−12,当x=π6时,f(π6)=cosπ6=√32,故函数过(π6,√32),由点斜式可得y=−12(x−π6)+√32,即曲线f(x)=cosx在x=π6处的切线方程为6x+12y−6√3−π=0;故答案为6x+12y−6√3−π=0小提示:本题考查过曲线上某点对应的切线方程的求法,属于基础题5、函数f(x)=x3−3x在区间[−1,3]上的最小值为__________.答案:−2解析:根据函数求导判断函数单调性,进而求得最值.由f(x)=x3−3x,得f′(x)=3x2−3.令f′(x)=0,解得x1=−1,x2=1.f(x)在区间[−1,1]上单调递减,在区间[1,3]上单调递增,所以最小值为f(1)=−2.所以答案是:-2.小提示:在解决类似的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数y=f(x)在[a,b]内所有使f′(x)=0的点,再计算函数y=f(x)在区间内所有使f′(x)=0的点和区间端点处的函数值,最后比较即得.。
导数及应用(2)
1.设)12ln()(2++=x b x x f )0(≠b
○1若)(x f 为增函数,求b 的范围
○2若1=b ,求证对任意正整数n ,不等式)(n f n <恒成立
2.)(x f 为定义在),0(+∞的非负可导函数,且0)()('≤+x f x xf 对任意正数a, b 若b a <,则必有 A.)()(a bf b af ≤ B. )()(b af a bf ≤ C. )()(b f a af ≤ D. )()(b bf a af ≥
3.1)(32+++=x x ax x f
○1讨论)(x f 单调区间
○2若)(x f 在)31
,32
(--为减函数,求a 取值范围
4.设,0(ln 1
)(>=x x x x f 且)1±x
○1求)(x f 单调区间
○2a x x >1
2对任意)1,0(∈x 成立,求a 的范围
1.1)(3++=x ax x f 有极值充要条件为
A.0>a B. 0≥a C. 0<a
2.)0()(3≠++=a d cx ax x f 为R上奇函数,当1=x 时,)(x f 取极值-2
求证,对任意)1,1(,21-∈x x ,不等式4)()(21<-x f x f
3.已知a 为实数,)()(a x x x f -=
(1)求)(x f 单调区间
(2)求)(x f 在[0,2]的最小值
4.),100)......(2)(1()(---⋅=x x x x x f 求)
0('f A.0 B.2100
C.1
2.........9899100⨯⨯⨯⨯⨯
5.)1(ln )1(21
)(2>-+-=a x a ax x x f
证明:若5<a 则对任意2121),,0(,x x x x ≠+∞∈
有1)
()(2
121->--x x x f x f
6.证明121
sin 2121212........654321+<+<-⨯⨯⨯n n n n
7.设0),1ln()(2≠++=b x b x x f (1)当2
1>b 时,判断)(x f 单调性 (2)求极值 (3)求证对任意正整数n ,不等式3211)11ln(n n n ->+都成立
8.对于R上可导任意函数)(x f ,若0)(')1(≥-x f x 则必有 A.)1(2)2()0(f f f ≤+
B. )1(2)2()0(f f f ≥+
C. )1(2)2()0(f f f <+。