薄透镜系统的初级像差
- 格式:pptx
- 大小:847.91 KB
- 文档页数:55
1.6像差理论1.6.1非理想光学系统和像差所谓理想光学系统,就是能够对任意大的空间以任意宽的光束成完善像的光学系统。
一个物体发出的光经过理想光学系统后将产生一个清晰的、与物貌完全相似的像。
理想光学系统具有下述性质:①光学系统物方一个点(物点)对应像方一个点(像点),这两个点称为共轭点。
②物方每条直线对应像方的一条直线,称共轭线;物方每个平面对应像方的一个平面,称为共轭面。
③主光轴上任一点的共轭点仍在主光轴上。
任何垂直于主光轴的平面,其共轭面仍与主光轴垂直。
④对垂直于主光轴的共轭平面,横向放大率为常量。
实际中不存在真正的理想光学系统,平面反射镜是个例外,但其横向放大率恒为1。
虽然在近轴区域共轴球面系统可近似地满足理想光学系统的要求,但是实际光学系统成像都是需要一定大小的成像空间以及光束孔径的,同时还由于成像光束多是由不同颜色的光组成(同一种介质的折射率随波长而异)。
所以实际的光学系统成像都不是理想的,存在着一系列缺陷,这就是像差。
像差是指在光学系统中由透镜材料的特性或折射率(或反射)表面的集合形状引起实际像与理想像的偏差。
用高斯公式、牛顿公式或近轴光线追迹计算得到的像的位置和大小可以作为理想像的位置和大小,而实际光线追迹计算得到的像的位置和大小相对于理想像的偏差就可以作为像差的量度。
描述像差可以用几何像差和波像差(又叫光程差),本设计主要使用几何像差。
1.6.2几何像差[2]几何像差主要有七种:其中单色像差有五种,即球差、彗差、像散、场曲和畸变;复色光成像像差有轴向色差和垂轴色差两种。
1.6.2.1球差如图1-8表示的是轴上有限远同一物点发出的不同孔径的光线通过系统后不再交于一点,成像不理想。
为了表示这些对称光线在光轴方向上的离散程度,我们用不同孔径的光线对理想像点'0A 的距离''0 1.0A A 、''0.85A A …表示,称为球差。
球差是球面像差的简称,是由光学系统的口径而引起的,是光学系统口径的函数。
第三篇光学系统设计光学仪器的基本功能是借助于光学原理,通过光学系统来实现的。
光学系统的优劣直接影响仪器的性能和质量,因此,光学系统设计是光学仪器设计和制造过程中的重要一环。
本部分的目的是使读者获得光学设计所需要的基本理论和知识,并通过必要的设计实践以掌握光学设计的初步能力。
光学设计工作大体上可分四个阶段:一、根据仪器的技术参数和要求,考虑和拟定光学系统的整体方案,并计算其中各个具有独立功能的组成部分的高斯光学参数;二、选择各组成部分的结构型式,并查取或计算其初始结构参数;三、逐次修改结构参数,使像差得到最佳的校正和平衡;四、对设计结果进行评价。
上述各个阶段性工作之间有着密切的联系,前期工作的合理与否会影响到后期工作能否顺利进行,甚至会决定设计工作能否成功。
光学系统的整体方案可以有很大的灵活性和多样性,应该力求在满足仪器的性能要求的前提下,寻求一个简单易行、便于装调和经济合理的最佳方案。
相应地,系统各组成部分的光学性能参数也应根据整体要求定得恰如其分。
选择结构型式是光学设计中的重要一步,可能导致设计的成败。
现在,各种用途的光学镜头已积累起种类甚多的结构型式,它们有各自的像差特征和在保证像质时可能达到的相对孔径和视场,有些型式还能在工作距离或镜筒长度等参数方面达到其特殊要求。
因此,基于对已有结构型式基本特征的全面了解,有可能挑选到符合要求的型式。
但应注意到,随着对镜头要求的不断提高,设计者还应不断探求和研究新的更佳结构。
镜头初始参数的获得一般采用二种方法,一是根据初级像差理论求解满足初级像差要求的解,另一种方法是在已有的设计成果中选取性能参数相当的结果作为初始参数。
像差的平衡是一项通过反复修改结构参数以逐步逼近最佳结果的工作,这在过去以人工计算光路时,工作量是很大的。
计算机应用于光学设计后,先是取代了繁重的光路计算,随后又用于像差自动平衡,才根本上改变了光学设计的面貌。
应用像差自动平衡方法,能充分挖掘出系统各个结构参数对像差校正的潜力,不仅极大地加快了设计进程,而且显著提高了设计质量。