第五章 约束非线性优化--最优性条件及算法
- 格式:ppt
- 大小:2.34 MB
- 文档页数:86
非线性优化与约束优化问题的求解方法非线性优化问题是在目标函数和约束条件中包含非线性项的优化问题。
约束优化问题是在目标函数中加入了一些约束条件的优化问题。
解决这些问题在实际应用中具有重要意义,因此研究非线性优化和约束优化问题的求解方法具有重要的理论和实际意义。
一、非线性优化问题的求解方法非线性优化问题的求解方法有很多,下面介绍几种常见的方法:1. 黄金分割法:黄金分割法是一种简单但有效的搜索方法,它通过不断缩小搜索范围来逼近最优解。
该方法适用于目标函数单峰且连续的情况。
2. 牛顿法:牛顿法利用目标函数的一阶和二阶导数信息来逼近最优解。
该方法收敛速度较快,但在计算高阶导数或者初始点选取不当时可能产生不稳定的结果。
3. 拟牛顿法:拟牛顿法是对牛顿法的改进,它通过逼近目标函数的Hessian矩阵来加快收敛速度。
拟牛顿法可以通过不同的更新策略来选择Broyden-Fletcher-Goldfarb-Shanno(BFGS)方法或者DFP方法。
4. 全局优化方法:全局优化方法适用于非凸优化问题,它通过遍历搜索空间来寻找全局最优解。
全局优化方法包括遗传算法、粒子群优化等。
二、约束优化问题的求解方法约束优化问题的求解方法也有很多,下面介绍几种常见的方法:1. 等式约束问题的拉格朗日乘子法:等式约束问题可以通过引入拉格朗日乘子来转化为无约束优化问题。
通过求解无约束优化问题的驻点,求得原始约束优化问题的解。
2. 不等式约束问题的罚函数法:不等式约束问题可以通过引入罚函数来转化为无约束优化问题。
罚函数法通过将违反约束条件的点处添加罚项,将约束优化问题转化为无约束问题。
3. 逐次二次规划法:逐次二次规划法是一种常用的求解约束优化问题的方法。
该方法通过依次处理逐个约束来逼近最优解,每次处理都会得到一个更小的问题,直至满足所有约束条件。
4. 内点法:内点法是一种有效的求解约束优化问题的方法。
该方法通过向可行域内部逼近,在整个迭代过程中都保持在可行域内部,从而避免了外点法需要不断向可行域逼近的过程。
非线性优化理论及算法随着人工智能、大数据、云计算等技术的快速发展,非线性优化理论及算法逐渐成为研究的热点。
非线性优化是指在满足一定限制条件的情况下,将目标函数最优化的问题,通常具有多个局部最优解,需要通过算法求解全局最优解。
一、非线性优化理论1.1 优化问题的数学形式非线性优化问题的数学形式可以表示为:$$\min_{\boldsymbol{x} \in \mathcal{S}} f(\boldsymbol{x})$$其中,$\boldsymbol{x}$ 是决策变量向量,$\mathcal{S}$ 是定义域,$f(\boldsymbol{x})$ 是目标函数。
1.2 优化问题的分类根据优化问题的约束条件,可以将其分类为以下几种:1)无约束优化问题:没有约束条件,即 $\mathcal{S} =\mathbb{R}^n$;2)等式约束优化问题:存在等式约束条件,即 $\mathcal{S} = \{\boldsymbol{x} \in \mathbb{R}^n \, | \, g_i(\boldsymbol{x}) = 0, \, i = 1, \ldots, l\}$;3)不等式约束优化问题:存在不等式约束条件,即$\mathcal{S} = \{\boldsymbol{x} \in \mathbb{R}^n \, | \,h_i(\boldsymbol{x}) \leq 0, \, i = 1, \ldots, m\}$。
1.3 最优解的性质对于一般的非线性优化问题,其最优解可能具有以下几种性质:1)局部最优解:在解空间中,存在一个局部范围内的最优解,但不一定是全局最优解;2)全局最优解:在解空间中,存在一个全局最优解,但不一定是唯一的;3)不可行解:在优化问题的约束条件下,不存在满足条件的解。
1.4 梯度和海森矩阵梯度和海森矩阵是非线性优化中常用的两个概念。
梯度是目标函数的导数,表示了函数在某个点处增长最快的方向,可用于确定优化问题的搜索方向。
毕业论文题目非线性最优化计算方法与算法学院数学科学学院专业信息与计算科学班级计算1201学生陶红学号20120921104指导教师邢顺来二〇一六年五月二十五日摘要非线性规划问题是一般形式的非线性最优化问题。
本文针对非线性规划的最优化问题进行方法和算法分析。
传统的求解非线性规划的方法有最速下降法、牛顿法、可行方向法、函数逼近法、信赖域法,近来研究发现了更多的求解非线性规划问题的方法如遗传算法、粒子群算法。
本文对非线性规划分别从约束规划和无约束规划两个方面进行理论分析。
利用最速下降法和牛顿法两种典型算法求解无约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
另外给出了阻尼牛顿法,探讨其算法的收敛性和稳定性,求解无约束非线性规划比牛顿法的精确度更高,收敛速度更快。
惩罚函数是经典的求解约束非线性的方法,本文采用以惩罚函数法为核心的遗传算法求解有约束条件非线性规划问题,通过MATLAB程序求解最优值,探讨其收敛性和稳定性。
并改进遗传算法,给出适应度函数,通过变换适应度函数,提高算法的收敛性和稳定性。
关键词:非线性规划;最速下降法;牛顿法;遗传算法ABSTRACTNonlinear programming problem is the general form of the nonlinear optimization problem. In this paper, we carry on the analysis of the method and algorithm aiming at the optimization problem of nonlinear programming. The traditional methods of solving nonlinear programming problems include steepest descent method, Newton method, the feasible direction method, function approximation method and trust region method. Recent studies found more method of solving nonlinear programming problems, such as genetic algorithm, particle swarm optimization (pso) algorithm. In this paper, the nonlinear programming is analyzed from two aspects: the constraint programming and the unconstrained programming.We solve unconstrained condition nonlinear programming problem by steepest descent method and Newton's method, and get the optimal value through MATLAB. Then the convergence and stability are discussed. Besides, the damped Newton method is furnished. By discussing the convergence and stability of the algorithm, the damped Newton method has higher accuracy and faster convergent speed than Newton's method in solving unconstrained nonlinear programming problems.Punishment function is a classical method for solving constrained nonlinear. This paper solves nonlinear programming problem with constraints by using genetic algorithm method, the core of which is SUMT. Get the optimal value through MATLAB, then the convergence and stability are discussed. Improve genetic algorithm, give the fitness function, and improve the convergence and stability of the algorithm through transforming the fitness function.Key words:Nonlinear Programming; Pteepest Descent Method; Newton Method; GeneticAlgorithm目录摘要 (I)ABSTRACT .......................................................................................................................... I I 1 前言 .. (4)1.1 引言 (4)1.2 非线性规划的发展背景 (5)1.3 国内外研究现状 (5)1.4 研究主要内容及研究方案 (6)1.4.1 研究的主要内容 (6)1.4.2 研究方案 (6)1.5 研究难点 (7)2 预备知识 (8)2.1 向量和矩阵范数 (8)2.1.1 常见的向量范数 (8)2.1.2 谱范数 (9)2.2符号和定义 (9)2.3 数值误差 (10)2.4 算法的稳定性 (10)2.5 收敛性 (12)3 非线性规划模型 (13)3.1 非线性规划模型 (13)3.2 无约束非线性规划 (14)3.2.1 最速下降法 (16)3.2.2 牛顿法 (18)3.2.2 阻尼牛顿法 (18)3.3 约束非线性规划 (20)3.3.1 惩罚函数法 (21)3.3.2 遗传算法 (21)3.3.3 自适应遗传算法 (22)结论 (26)参考文献 (27)致谢 (28)附录 (29)1 前言1.1 引言我们知道最优化是一门很古老的求极值问题,最优化在求解线性规划,非线性规划,随机规划,多目标规划,非光滑规划,整数规划,几何规划等方面研究得到迅速发展。
大学数学非线性优化与最优化理论数学是一门广泛应用于各个领域的学科,其中非线性优化与最优化理论被广泛运用于解决实际问题。
本文将介绍大学数学中的非线性优化与最优化理论,深入探讨其基本原理和应用。
一、非线性优化与最优化理论的基本概念和原理1.1 非线性优化的概念非线性优化是指在约束条件下,求解非线性函数的最优解。
与线性优化相比,非线性优化问题更加困难,因为非线性函数的特性使得求解过程更加复杂。
1.2 最优化理论的基本原理最优化理论是指通过建立适当的数学模型,寻求使特定目标函数取得极大或极小值的方法。
最优化理论可以包括线性优化、非线性优化、凸优化等不同的分支。
1.3 非线性优化与最优化理论的区别与联系非线性优化是最优化理论中的一个重要分支,它研究的是求解非线性函数的最优解问题。
非线性优化与最优化理论之间存在紧密的联系,但非线性优化更加具体,更加专注于非线性函数的求解方法和优化算法。
二、非线性优化与最优化理论的应用领域2.1 金融领域非线性优化与最优化理论在金融领域广泛应用于投资组合优化、风险管理、资产定价等问题。
通过建立适当的数学模型,可以帮助金融机构以及个人投资者在获得最大利润的同时降低风险。
2.2 物流与供应链管理在物流与供应链管理中,非线性优化与最优化理论可以应用于路线优化、资源分配、库存管理等问题。
通过求解非线性函数的最优解,可以提高物流效率、降低成本。
2.3 工程领域非线性优化与最优化理论在工程领域中有广泛的应用,如结构优化、参数估计、信号处理等。
通过对非线性函数进行求解,可以优化工程设计方案、提高系统性能。
2.4 人工智能当前人工智能领域中,非线性优化与最优化理论也发挥着重要作用。
在机器学习、深度学习等算法中,通过优化模型参数,使得模型在给定任务上取得最佳性能。
三、非线性优化与最优化理论的解法与算法3.1 基于梯度的方法梯度是许多非线性优化算法中的重要工具,通过计算目标函数的梯度信息,可以确定当前点的搜索方向和步长。
非线性优化问题的理论与算法一、引言优化问题是数学中的一个重要研究领域,其目标是找到使某个目标函数取得最优值的变量取值。
在实际应用中,很多问题都可以被抽象为优化问题,例如机器学习、经济学、工程设计等领域。
非线性优化问题是其中一类具有广泛应用的问题,本文将介绍非线性优化问题的理论与算法。
二、非线性优化问题的定义非线性优化问题是指目标函数或约束条件中至少存在一个非线性项的优化问题。
与线性优化问题相比,非线性优化问题更加复杂,因为非线性函数的性质往往难以直接求解。
因此,研究非线性优化问题的理论与算法具有重要意义。
三、非线性优化问题的数学建模在解决非线性优化问题之前,首先需要将实际问题转化为数学模型。
通常,非线性优化问题可以通过以下方式进行数学建模:1. 目标函数的建模:将实际问题中的目标转化为一个数学函数,该函数的取值与问题的最优解相关。
2. 约束条件的建模:将实际问题中的约束条件转化为一组等式或不等式约束,以限制变量的取值范围。
3. 变量的定义:将实际问题中的变量进行定义,并确定其取值范围。
通过以上步骤,可以将实际问题转化为一个数学模型,从而为后续的优化算法提供基础。
四、非线性优化问题的求解方法针对非线性优化问题,有多种求解方法可供选择。
以下介绍两种常用的非线性优化算法:1. 梯度下降法:梯度下降法是一种基于迭代的优化算法,其思想是通过迭代地沿着目标函数的负梯度方向进行搜索,以逐步逼近最优解。
梯度下降法的优点是简单易实现,但在处理复杂的非线性问题时,可能会陷入局部最优解。
2. 牛顿法:牛顿法是一种基于二阶导数信息的优化算法,其思想是通过多次迭代来逼近最优解。
相比于梯度下降法,牛顿法具有更快的收敛速度,但也存在计算复杂度高和可能陷入局部最优解的问题。
除了以上两种算法,还有其他一些常用的非线性优化算法,例如拟牛顿法、共轭梯度法等。
选择合适的优化算法需要根据具体问题的特点和求解需求进行权衡。
五、非线性优化问题的理论研究除了算法的研究,非线性优化问题的理论研究也具有重要意义。