振动信号处理(精选)
- 格式:ppt
- 大小:454.50 KB
- 文档页数:13
物理实验技术中的振动信号处理方法与技巧振动信号是物理实验中常见的一种信号,它包含了丰富的物理信息。
在物理实验中,如何正确有效地处理振动信号,对于研究现象、分析数据以及获得准确结果至关重要。
本文将介绍几种常用的振动信号处理方法与技巧,帮助实验人员充分利用振动信号的信息。
一、去噪方法与技巧在实验中,振动信号常常受到各种干扰,如电磁干扰、机械噪声等,这些干扰会降低信号的质量。
为了保证振动信号的准确性,必须对其进行去噪处理。
1.数字滤波器数字滤波器是一种常用的去噪方法。
常见的数字滤波器有低通滤波器、高通滤波器和带通滤波器等。
低通滤波器可以过滤高频噪声,而高通滤波器则可以过滤低频噪声。
根据实验需求选择合适的滤波器,可以有效去除噪声。
2.小波变换小波变换是一种时频分析方法,可以将信号分解为不同频率的小波子信号。
通过选择合适的小波基函数和尺度,可以将噪声与信号有效分离,从而去除噪声。
小波变换在去噪中具有一定的优势,尤其适用于非平稳信号。
二、频域分析方法与技巧频域分析是振动信号处理中的一个重要步骤,它可以将时域信号转换为频域信号,进一步分析信号的频率成分、幅度、相位等信息。
1.傅里叶变换傅里叶变换是频域分析的基础方法之一,它可以将信号在时域和频域之间进行转换。
实验人员可以通过傅里叶变换得到信号的频谱图,进而分析信号的频率成分。
傅里叶变换的优点是简单易懂,但在处理非平稳信号时存在一定局限性。
2.短时傅里叶变换短时傅里叶变换是一种改进的傅里叶变换方法,可以处理非平稳信号。
它将信号分成若干小段,在每一段上进行傅里叶变换,然后通过描绘频率随时间变化的谱图来揭示信号的时频特性。
短时傅里叶变换在振动信号分析中应用广泛。
三、谐波分析方法与技巧谐波分析是对振动信号进行频域分析的一种方法,它可以分析信号中不同频率的谐波成分,揭示信号的特征和规律。
1.快速傅里叶变换快速傅里叶变换是一种高效的频域分析方法,可以快速计算信号的频谱。
通过快速傅里叶变换,可以快速得到信号中各个频率的幅度和相位信息,进而分析信号中的谐波成分。
振动信号处理方法综述振动信号处理是一个极其重要的研究领域,尤其在机械工程、电子工程和物理学等领域中具有广泛的应用。
随着数码信号处理技术的不断发展,振动信号处理方法也在不断更新和完善。
本文将综述当前常见的振动信号处理方法,包括时域分析方法、频域分析方法、小波分析方法和模态分析方法。
时域分析方法:时域分析方法是指直接对振动信号进行时间域分析的方法。
主要包括以下几种:1、峰值检测法:通过寻找振动信号的波峰和波谷来分析振动信号的性质,它可用于快速检测机器故障并确定故障类型。
2、自相关函数法:通过计算振动信号的自相关函数来获得振动信号的特征值,进而实现故障诊断。
3、包络分析法:分析振动信号的包络线变化,用于判定工况条件或或机器设备运行状况是否正常。
频域分析方法:频域分析是指对振动信号进行频域分析的方法,可以更加深入地了解振动信号的频率分布情况,主要包括以下几种:1、傅里叶分析法:将时域信号分解为若干正弦波的叠加,以分析各分量在振动信号中的占比情况。
2、功率谱密度分析法:通过功率谱密度的分析,可以更准确地了解振动源的特性。
其使用广泛的技术是快速傅里叶变换(FFT)技术,以快速计算振动信号的频谱。
小波分析方法:小波分析是一种新兴的信号处理方法,可以同时在时域和频域中分析信号,主要包括以下几种:1、小波多尺度分析法:通过对振动信号的小波多尺度分析,可以更准确地确定振动信号的频率特性。
2、小波包分析法:对振动信号进行小波包分析,可将信号分解成一系列子信号,每个子信号的带宽和频率能够更加清晰地描述振动信号的特点。
模态分析方法:模态分析是指研究振动系统在不同的振动模态下的振动特点。
主要包括以下几种:1、模态分析法:通过响应分析技术,解出振动系统的振型和振频,在工程实践中常用于分析旋转机械和结构的振动特性。
2、主成分分析法:主要用于多属性振动信号的特征提取和数据降维处理,从而更好地对振动信号进行分析和处理。
综上所述,振动信号处理方法不仅应用广泛,而且种类繁多。
振动信号处理与故障诊断方法研究随着工业技术的不断发展,机械设备的使用越来越广泛。
然而,随着时间的推移,这些机械设备也会逐渐出现各种各样的故障。
为了保障设备正常运行,及时发现并解决故障问题成为了重要的任务。
振动信号处理与故障诊断方法的研究就是为了满足这一需求而产生的。
振动信号是机械设备故障的重要指标之一。
通过分析和处理振动信号,可以获取到设备在运行过程中产生的振动波形。
不同种类的故障会产生不同的振动信号特征,因此通过振动信号分析可以判断设备是否存在故障,并进一步诊断故障的类型和原因。
振动信号处理可以分为预处理和特征提取两个阶段。
预处理阶段主要是对原始振动信号进行滤波、去除噪声等操作,以提高信号的质量。
特征提取阶段则是通过一系列算法和方法,从预处理后的信号中提取出代表故障特征的参数。
常用的特征参数包括频率谱、时域指标、能量谱等。
在故障诊断方法的研究中,机器学习算法被广泛运用。
机器学习算法通过训练模型,学习振动信号和故障之间的关系,从而实现对故障的自动诊断。
常用的机器学习算法包括支持向量机、神经网络、随机森林等。
这些算法可以根据特征参数来训练分类模型,实现对不同故障类型的准确诊断。
除了机器学习算法,深度学习算法也逐渐应用于振动信号处理与故障诊断中。
深度学习算法可以通过多层神经网络的训练,自动学习和提取振动信号中的特征。
与传统机器学习算法相比,深度学习算法可以更好地处理大规模数据,并且能够自动发现数据中的隐藏特征。
振动信号处理与故障诊断方法的研究不仅在工业领域有广泛应用,也涉及到其他领域。
例如,医学领域中的心脏病音信号处理与诊断、航空领域中的飞机结构健康监测等。
这些应用领域都需要对振动信号进行分析和处理,以实现故障的准确诊断和预测。
然而,振动信号处理与故障诊断方法的研究也面临着一些挑战。
首先,振动信号中可能包含大量的噪声,如背景干扰等,这会影响到特征提取的准确性。
其次,不同种类的故障可能具有相似的振动特征,导致诊断的困难。
振动测试及其信号处理伏晓煜倪青吴靖宇王伟摘要:随着试验条件和技术的不断完善,越来越多的领域需要进行振动测试,尤其是土木工程领域。
本文首先介绍了振动测试的基本内容和测试系统的组成,其次对振动测试中的激励方式进行了简单的概括,最后总结了信号数据的处理一般方法,包括数据的预处理方法、时域处理方法和频域处理方法。
关键词:振动测试测试系统信号处理Vibration Test and Signal processingFu Xiaoyu Ni Qing Wu Jingyu Wang WeiAbstract: Vibration test has been applied in more and more fields, especially in civil engineering, as experiment methods and technology elevated. This paper introduced the contents of vibration test and consists of test system firstly, and generalized the exciting mode subsequently. General methods of vibration signal processing were summarized in the end, including preprocessing, time-domain processing and frequency-domain processing methods.Key words: vibration test; test system; signal processing0 引言研究结构的动态变形和内力是个十分复杂的问题,它不仅与动力荷载的性质、数量、大小、作用方式、变化规律以及结构本身的动力特性有关,还与结构的组成形式、材料性质以及细部构造等密切相关。
第34卷第8期2013年8月仪器仪表学报Chinese Journal of Scientific InstrumentVol.34No.8Aug.2013收稿日期:2012-11Received Date :2012-11*基金项目:航空基础科学基金(2012ZD52054)资助项目振动信号处理方法综述*李舜酩1,郭海东1,李殿荣2(1.南京航空航天大学能源与动力学院南京210016;2.潍坊小型拖拉机有限公司潍坊261000)摘要:振动信号处理方法一直以来是研究的热点,对设备振动监测和故障诊断都至关重要。
近年来,振动信号的处理方法得到了快速发展,但仍需不断改进和完善。
对近年来的文献进行了分类总结,分别对传统方法中的幅值域分析法、傅里叶变换、相关分析和现代方法中的Wigner-Ville 分布、谱分析、小波分析、盲源分离、Hilbert-Huang 变换及高阶统计量分析的发展、特点以及应用进行了概述和对比分析,最后作出了总结与展望。
关键词:振动信号;处理方法;传统方法;现代方法中图分类号:V231.92文献标识码:A国家标准学科分类代码:590.25Review of vibration signal processing methodsLi Shunming 1,Guo Haidong 1,Li Dianrong 2(1.College of Energy and Power Engineering ,Nanjing University of Aeronautics and Astronautics ,Nanjing 210016,China ;2.Weifang Xiaotuo Tractor Co.,Ltd ,Weifang 261000,China )Abstract :Vibration signal processing method has been an active research topic all the time ,and the equipment vibra-tion monitoring and fault diagnosis are crucial.Though the vibration signal processing methods developed fast in re-cent years ,they still need to be improved and optimized.Some typical approaches referring to recent literatures are classified and summarized in this paper.The developments ,features and applications are presented and discussed for amplitude domain analysis ,Fourier transform ,correlation analysis in traditional methods ,and Wigner-Ville distribu-tion ,spectral analysis ,wavelet analysis ,blind source separation ,Hilbert-Huang transform ,higher order statistics anal-ysis in modern methods.Finally ,we make a conclusion for this paper and an overview is made to guide the future de-velopment in this field.Keywords :vibration signal ;processing method ;traditional method ;modern method1引言信号是信息的载体,为了从实际测量的振动信号中提取各种特征信息,必须采取各种有效的振动信号处理方法进行分析,从而进行参数检测、质量评价、状态监测和故障诊断等,因此振动信号的处理方法已成为科学研究的热点之一[1]。
振动信号的采集与预处理几乎所有的物理现象都可看作是信号,但这里我们特指动态振动信号。
振动信号采集与一般性模拟信号采集虽有共同之处,但存在的差异更多,因此,在采集振动信号时应注意以下几点:1. 振动信号采集形式取决于机组当时的工作状态,如稳态、瞬态等;2. 变转速运行设备的振动信号采集在有条件时应采取同步整周期采集;3. 所有工作状态下振动信号采集均应符合采样定理。
对信号预处理具有特定要求是振动信号本身的特性所致。
信号预处理的功能在一定程度上说是影响后续信号分析的重要因素。
预处理方法的选择也要注意以下条件:1. 在涉及相位计算或显示时尽量不采用抗混滤波;2. 在计算频谱时采用低通抗混滤波;3. 在处理瞬态过程中1X矢量、2X矢量的快速处理时采用矢量滤波。
上述第3条是保障瞬态过程符合采样定理的根本条件。
在瞬态振动信号采集时,机组转速变化率较高,假设依靠采集动态信号〔一般需要假设干周期〕通过后处理获得1X和2X 矢量数据,除了效率低下以外,计算机〔效劳器〕资源利用率也不高,且无法做到高分辨分析数据。
机组瞬态特征〔以波德图、极坐标图和三维频谱图等型式表示〕是固有的,当组成这些图谱的数据间隔过大〔分辨率过低〕时,除许多微小的变化无法表达出来,也会得出误差很大的分析结论,影响故障诊断的准确度。
一般来说,三维频谱图要求数据的组数〔△rpm 分辨率〕较少,太多了反而影响对图形的正确识别;但对前面两种分析图谱,那么要求较高的分辨率。
目前公认的方式是每采集10组静态数据采集1组动态数据,可很好地解决不同图谱对数据分辨率的要求差异。
影响振动信号采集精度的因素包括采集方式、采样频率、量化精度三个因素,采样方式不同,采集信号的精度不同,其中以同步整周期采集为最正确方式;采样频率受制于信号最高频率;量化精度取决于A/D转换的位数,一般采用12位,局部系统采用16位甚至24位。
振动信号的采样过程,严格来说应包含几个方面:1. 信号适调由于目前采用的数据采集系统是一种数字化系统,所采用的A/D芯片对信号输入量程有严格限制,为了保证信号转换具有较高的信噪比,信号进入A/D以前,均需进展信号适调。
振动信号的预处理方法@ 去趋势项@ 五点三次平滑法1,去趋势项(detrending)在振动测试中采集到的振动信号数据,由于放大器随温度变化产生的零点漂移、传感器频率范围外低频性能的不稳定以及传感器周围的环境干扰等,往往会偏离基线,甚至偏离基线的大小还会随时间变化。
偏离基线随时间变化的整个过程被称为信号的趋势项。
趋势项直接影响信号的正确性,应该将其去除。
常用的消除趋势项的方法是多项式最小二乘法。
在MATLAB中提供detrend()函数进行去趋势项操作,但只能去除均值和线性趋势项,所以如果使用该函数进行操作,即承认传感器所含趋势项是线性的。
如果认为趋势项是非线性的,则需要用polyfit()和ployval()组成的函数进行操作(如:Liu_detrend(t,y,m))。
在实际振动信号数据处理中,通常取1~3次多项式来对采样数据进行多项式趋势项消除的处理。
-------------------------------------------------------------- function y2 = Liu_detrend(t,y,m)temp = polyfit(t,y,m); %t为时间序列,y为信号,m为拟合多项式的次y2 = y - polyval(temp,t);--------------------------------------------------------------2,五点三次平滑法(cubical smoothing algorithm with five-point approximation)五点三次平滑法可以用作时域和频域信号平滑处理。
该处理方法对于时域数据的作用主要是能减少混入振动信号中的高频随机噪声。
而对于频域数据的作用则是能使谱曲线变得光滑,以便在模态参数识别中得到较好的拟合效果。
需要注意的一点是频域数据经过五点三次平滑法会使得谱曲线中的峰值降低,体形变宽,可能造成识别参数的误差增大。