直动式固定凸轮及连杆机构设计
- 格式:doc
- 大小:627.50 KB
- 文档页数:40
第九章 凸轮机构一.学习指导与提示凸轮机构由凸轮、从动件和机架组成,是点或线接触的高副机构。
它主要用于对从动件运动规律有特定要求的场合。
读者应了解它和面接触的低副连杆机构的区别,比较他们的优缺点和适用场合。
按凸轮的形状和运动形式来分,有盘形回转凸轮、平板移动凸轮和圆柱回转凸轮;按从动件形状不同有尖顶从动件、滚子从动件和平底从动件;按从动件运动形式不同有直动从动件和摆动从动件;而直动从动件又可以根据其导路轴线是否通过凸轮轴线,分为对心直动从动件和偏直直动从动件。
建议读者熟练掌握偏置直动滚子从动件盘形凸轮机构的原理,用反转作图法进行运动分析和廓线设计,启迪理解其它类型的凸轮机构。
1.从动件的常用运动规律及其选择(1)对直动从动件而言,从动件的运动规律是指当凸轮以等角速度1ω转动时,从动件的位移2s 、速度2v 和加速度2a 随时间t 或凸轮转角1δ变化的规律,可用各自的表达式或线图表示。
用反转作图法进行从动件运动分析或凸轮廓线设计时,常以12δ-s 线图表示从动件的运动规律,而12δ-s 线图的一阶、二阶微分线图便是12δ-v 线图和12δ-a 线图。
(2)从动件常见的运动规律有等速运动、等加速等减速运动和简谐运动。
读者应掌握其位移、速度、加速度线图的变化、绘制方法、特点及其适用的场合。
(3)根据运动线图中速度线图和加速度线图的特征可判断机构是否存在刚性冲击和柔性冲击:凡在速度线图的尖点处,加速度线图阶跃变化(加速度值突然改变),必产生柔性冲击;凡加速度线图阶跃变化,加速度值趋向无穷大,必产生刚性冲击。
(4)选择从动件运动规律时需考虑的问题很多,核心是应满足凸轮在机械中执行工作的要求,要分清工作行程和回程,要考虑从动件只需实现一定的位移还是有特殊的运动规律;还应该考虑使凸轮有良好的动力特性以及使得所设计的凸轮便于制造等。
2.凸轮机构的运动分析及廓线设计(1)凸轮机构的运动分析是指按给定的凸轮廓线和机构配置求从动件的运动规律(即求12δ-s 线图),而廓线设计是指按给定的从动件运动规律(即给定12δ-s 线图)和机构配置求凸轮廓线。
第四节 凸轮机构基本尺寸设计无论是作图法还是解析法,在设计凸轮廓线前,除了需要根据工作要求选定从动件的运动规律外,还需要确定凸轮机构的一些基本参数,如基圆半径b r 、偏距e 、滚子半径r r 等。
一般来讲,这些参数的选择除了应保证从动件能够准确地实现预期的运动规律外,还应当使机构具有良好的受力状况和紧凑的结构。
本节讨论凸轮机构基本尺寸设计的原则和方法。
一、移动滚子从动件盘形凸轮机构1. 压力角同连杆机构一样,压力角也是衡量凸轮机构传力特性好坏的一个重要参数。
所谓凸轮机构的压力角,是指在不计摩擦的情况下,凸轮对从动件作用力的方向线与从动件上力作用点的速度方向之间所夹的锐角。
对于图4-22所示的移动滚子从动件盘形凸轮机构来说,过滚子中心所作理论廓线的法线nn 与从动件运动方向之间的夹角α就是压力角。
(1)压力角与作用力的关系 由图4-22可以看出,凸轮对从动件的作用力F 可以分解成两个分力,即沿着从动件运动方向的分力F '和垂直于运动方向的分力F ''。
只有前者是推动从动件克服载荷的有效分力,而后者将增大从动件与导路间的摩擦,它是一种有害分力。
压力角α越大,有害分力越大。
当压力角α增大到某一数值时,有害分力所引起的摩擦阻力将大于有效分力F ',这时无论凸轮给从动件的作用力有多大,都不能推动从动件运动,即机构将发生自锁。
因此为减小侧向推力,避免自锁,压力角α应越小越好。
图4-22 凸轮机构的压力角(2)压力角与机构尺寸的关系 设计凸轮时,除了应使机构具有良好的受力状况外,还希望机构结构紧凑。
而凸轮尺寸的大小取决于凸轮基圆半径的大小。
在实现相同运动规律的情况下,基圆半径越大,凸轮的尺寸也越大。
因此,要获得轻便紧凑的凸轮机构,就应当使基圆半径尽可能地小。
但是基圆半径的大小又和凸轮机构的压力角有直接的关系。
下面以图4-22为例来说明这种关系。
图中,过滚子中心B 所作理论廓线的法线nn 与过凸轮轴心0A 所作从动件导路的垂线交于P 点,由瞬心定义可知,该点即为凸轮与从动件在此位置时的瞬心,且ϕωd ds v P A ==0。
连杆机构和凸轮机构分析和设计1.连杆机构连杆机构是若干刚性构件用低副连接而成的机构,故又称为低副机构。
连杆机构分为平面连杆机构和空间连杆机构两大类,本文主要讨论平面连杆机构,而平面连杆机构中结构最简单、应用最广泛的是四杆机构。
1.1平面四杆机构的基本类型全部运动副均为转动副的四杆机构称为铰链四杆机构,它是四杆机构的最基本型式。
在此机构中,固定不动的构件AD称为机架;与机架相连接的杆件AB、CD称为连架杆,其中能作整周回转运动的连架杆(AB)称为曲柄,只能在一定范围内作往复摆动的连架杆(CD)称为摇杆;机构中作平面运动的构件BC称为连杆。
铰链四杆机构根据其两连架杆的不同运动情况,又可分为:曲柄摇杆机构、双曲柄机构和双摇杆机构。
1.2平面四杆机构有曲柄的条件铰链四杆机构有曲柄的条件为:1)最短杆和最长杆长度之和小于或等于其它两杆长度之和;2)最短杆连架杆或机架。
当最短杆为连架杆时,该铰链四杆机构成为曲柄摇杆机构;当最短杆为机架时,成为双曲柄机构;当最短杆不为连架杆或机架(即最短杆为连杆)时,铰链四杆机构中无曲柄,此时称为双摇杆机构。
1.3压力角和传动角1)压力角铰链四杆机构中,如果不考虑构件的惯性力和铰链中的摩檫力,则原动件AB通过连杆BC作用到从动件CD上的力F将沿BC方向,该力的作用线与受力点C的绝对速度v c所夹的锐角δ称为压力角。
为使机构传动灵活,效率高,要求F t越大越好,即要求压力角δ越小越好。
2)传动角压力角的余角称为传动角,由上面分析可知,传动角θ愈大(压力角δ愈小)对传动愈有利。
所以,为了保证所设计的机构具有良好的传动性能,通常应使最小传动角θmin大于等于40°,在传递力矩较大的情况下,应使θmin大于等于50°。
(当传动角θ=0°时机构所处的位置为死点位置,也就是从动件与连杆共线的位置。
)2.凸轮机构及其设计凸轮机构是含有凸轮的一种高副机构。
凸轮是一个具有曲面轮廓的构件,一般多为原动件(有时为机架);当凸轮为原动件时,通常作等速连续转动或移动,而从动件则按预期输出特性要求作连续或间歇的往复摆动、移动或平面复杂运动。
直动式固定凸轮与连杆机构的设计设计者所在院(系):湖南工业大学专业:机械设计制造及其自动化班级学号:指导老师:时间:2015年12月27日目录一、课程设计的目的 (3)二、设计内容与步骤 (4)1、设计内容 (4)2.设计步骤 (4)三、设计要求 (6)四、设计指导 (7)1、概述 (7)2、基本参数 (9)3、设计步聚 (11)1)确定驱动方案 (11)2)确定e (11)3)确定h (12)4)确定α ........................................................................................ 错误!未定义书签。
5)确定δ ........................................................................................ 错误!未定义书签。
6)求算b1、b2 (12)7)设计凸轮廊线 (14)8)检验压力角 (16)五、参数优化 (18)六、结论 (19)七、参考文献 (20)八、附图 (21)摘要包装设计课程设计是在完成机械设计课程学习后,一次重要的实践性教学环节。
是高等工科院校大多数专业学生第一次较全面的设计能力训练,也是对机械设计课程的全面复习和实践。
其目的是培养理论联系实际的设计思想,训练综合运用机械设计和有关选修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关机械设计方面的知识。
本次设计的题目是直动式固定凸轮与连杆机构的设计。
根据题目要求和机械设计的特点作者做了以下几个方面的工作:①根据有关参数进行计算或编写有关设计计算程序;②利用程序设计的方法输出结果并自动生成图形;③画出装配图及其主要零件图;④完成设计计算说明书。
一、课程设计的目的《包装机械设计》课程设计是本课程各教学环节中重要的一环,它让学习者联系实际进一步深入理解、掌握所学的理论知识。
其基本目的是:培养理论联系实际的设计思想,训练综合运用包装机械和有关先修课程的理论,结合生产实际分析和解决工程实际问题的能力,巩固、加深和扩展有关包装机械设计方面的知识。
通过制订设计方案,合理选择裹包机中块状物品推送机构和零件类型,正确计算零件工作能力、确定尺寸和选择材料,以及较全面地考虑制造工艺、使用和维护等要求,之后进行结构设计,达到了解和掌握机械零件、包装机械经常采用的机构的设计过程和方法。
进行设计基本技能的训练。
例如计算、绘图、熟悉和运用设计资料(手册、图册、标准和规范等)以及使用经验数据、进行经验估算和处理数据的能力。
二、设计内容与步骤1、设计内容以裹包机中块状物品推送机构的典型机构——固定凸轮与连杆组合机构为题。
课程设计通常包括如下内容:读懂块状物品推送机构典型机构——固定凸轮与连杆组合机构,了解设计题目要求;分析该块状物品推送机构设计的可能方案;具体计算和设计该方案中机构的基本参数;进行机体结构及其附件的设计;绘制装配图及零件工作图;编写计算说明书以及进行设计答辩。
2.设计步骤(1)设计准备认真研究设计任务书,明确设计要求、条件、内容和步骤;通过阅读有关资料、图纸、参观实物或模型、观看电视教学片、挂图以及推送机构进行拆装实验等,了解设计对象;复习有关课程内容,熟悉零部件的设计方法和步骤;准备好设计需要的图书、资料和用具;拟定设计计划等。
(2)推送机构装置的总体设计决定推送机构装置的方案;选择机构的类型,计算机构装置的运动参数。
(3)装配图设计计算和选择机构的参数;确定机体结构和有关尺寸;绘制装配图草图;选择计算轴承和进行支承结构设计;进行机体结构及其附件的设计;完成装配图的其他要求;审核图纸。
(4)零件工作图设计(5)整理和编写计算说明书(6)设计总结和答辩三、设计要求在课程设计之前,准备好必要的设计手册或参考资料,以便在设计过程中逐步去学习查阅资料。
确定设计题目后,至少应复习在课程中学过的相关内容。
完成本课程设计的具体要求如下:1、设计说明书要全面反映设计思想、设计过程和结论性认识。
其工艺设计要有文字、计算、公式来源、参数选取的资料名称或代号、图表(草图)。
说明书用A4纸打印,约20页左右,并装订成册。
2、设计图样按“机械制图”、“公差与配合”等国家标准完成。
3、零件图按生产图样要求完成,零件的有关精度和技术要求要有合理的标注或说明。
设计过程中,提倡独立思考、深入钻研,主动地、创造性地进行设计,反对不求甚解、照抄照搬或依赖老师。
要求设计态度严肃认真、有错必改,反对敷衍塞责,容忍错误的存在。
只有这样,才能保证课程设计达到教学基本要求,在设计思想、设计方法和设计技能等方面得到良好的训练。
四、设计指导裹包机所包装的产品,绝大多数是单件或多件集合而成的块状物品。
包装作业线中前后机之间物品的输送、换向、排列组合,及单机内部的物品移动等,需要用各种各样的机构或装置完成。
以下是几种典型的推送块状物品的组合机构一一固定凸轮与连杆组合机构。
1、概述图1所示,是该机构的结构简图,用于香皂、糖果等裹包机中,将物品向上推送较大距离。
原动杆件AB按逆时针方向转动,驱动铰销C上的滚动轴承6在固定槽凸轮4的槽内运动,再通过连杆CD使推送杆(即滑块)2按预定规律作上下往复移动。
这种直动从杆类型的固定凸轮与连杆组合机构相当于连杆长度可变的曲柄滑块机构,曲柄为AB,滑块为推送杆,连杆为BD,在运动过程中连杆BD的长度是变化的。
图1 直动从动杆类型的固定凸轮和连杆组合的推送机构结构简图1-推送板2-推送杆3-导轨4-固定槽凸轮5-支座6-滚动轴承7-导轨图2 固定凸轮与连杆组合机构示意图1-推料板 2-推料杆 3-固定凸轮 4-滚子以所示推送机构,还有2种运动方式:一是是曲柄AB推着杆件BC运动,杆件BC承受压力;二是曲柄AB拉着BC杆运动,杆件BC 承受拉力。
这是两种不同的驱动方案。
当然,无论是前者还是后者,都可以在两种驱动方案中任意选择,本题我们选择直动从动杆类型的固定凸轮和连杆组合机构。
2、基本参数为研究方便,特规定:以曲柄回转中心A为坐标的原点,并作x、y轴。
对于直动从动类型(见图1所示),y轴与从动杆的运动方向平行;对于摆动从动杆类型(见图3所示)y轴与铰销D的两个运动极限位置之连线D 0D 1平行。
考虑到曲柄有两种转向,又规定y 轴的正轴逆着曲柄转向旋转900后所得轴为χ轴的正轴,于是,前者χ 轴的正轴向右,而手者则向左。
基本参数有:e —y 轴与D 0D 1线的间距,简称偏心距; h —铰销D 至χ轴的最小距离; a —曲柄AB 长; b 1、b 2—杆件BC 、CD 长;δ—从动杆升程运动起始时刻的曲柄位置AB 0和y 轴负轴的夹角,δ=1800-∠B 0AY 。
铰销B 和D 的距离用b 表示,b=BD ,它的最大值和最小值分别用b max 、b min 表示。
已知参数:表 1 初始参数表固定凸轮与连杆组合机构的特点是,从动杆的运动可以象凸轮机构的从动杆那样实现停留和按照定规律(如五次多项式)运动。
从动杆的行程、动停时间、运动速度由工艺要求预先给定。
这样,当参数e 、h 、α 、δ,确定后,每一运动时刻的b 值及m ax b 、m in b 值也随之确定。
显然,b 1、b 2应满足下式⎭⎬⎫=-=+min 12max 21b b b b b b (1)因此,应根据从动杆的运动规律和确定的c 、h 、α、δ、l 值,先计算出b max 、b min ,然后用下式求算b 1、b 2值:⎪⎭⎪⎬⎫+=-=)(21b2)(21b1min max min max b b b b (2) 3、设计步聚 1)确定驱动方案它对凸轮的压力角机构的传动效率影响较大。
应根据运动要求确定之。
用下列符号表示运动要求:S m —分别为直动总行程;ϕ1—升程运动对应的曲柄转角;2ϕ—最高位置停留对应的曲柄转角; 3ϕ—降程运动对应的曲柄转角;4ϕ—最低位置停留对应的曲柄转角;4321ϕϕϕϕ+++=3600,当31ϕϕ>时,先用曲柄AB 拉着杆件BC 运动的方案;当31ϕϕ<时,应选用曲柄AB 推着BC 杆运动的方案。
31ϕϕ=时,可任选其中一种方案。
2)确定e直动从动杆,取e=03)确定h从结构紧凑和减小凸轮压力角考虑,应将h 值取小些。
但h 值愈小,对从动杆驱动力的压力角也愈大。
通常取h ≥S m ,h=3s m 。
4)确定α若a 值过小,会使凸轮压力角明显增大,甚至不能实现预期动动。
可取a=0.8S m 。
5)确定δ其值对凸轮的压力角影响极大,δ过小,尤其是过大,会使压力角急剧增加。
在前述参数确定后,最好将δ优化,目标函数为min )(lm lm a a →δ式中a 1m 为凸轮的最大压力角。
δ=-46) 求算b 1、b 2须先求算b max 、b min 。
(1)直动从动杆类型参阅图4,依据铰销B 、D 的坐标,可建立它们之间距离的公式。
B 的坐标为⎭⎬⎫+-=+=)cos() sin(ϕδϕδa y a X B B (3)D 的坐标为:⎭⎬⎫+==S h y eX D D (4)式中 ϕ—曲柄转角,取升程起始时的ϕ =0°;S 为与ϕ相对应的从动杆位移,即铰销D 至其最低位置的距离。
S 值分为升程(ϕ=0~ϕ1)、最高位置停留(ϕ=ϕ1~ϕ1+ϕ2)、降程(ϕ=ϕ1+ϕ2~ϕ1+ϕ2+ϕ3)、最低位置停留(ϕ=ϕ1+ϕ2+ϕ3~360°)四个阶段求算。
b 值为:b=22)()(D B D B y y x x -+- (5)将式(3)、(4)代入式(5),求算b nax 、b min ,然后用式(2)算得 b 1、 b 2。
因此,应根据从动杆的运动规律和确定的 e , h , a 值,先计算出bmax , bmin ,利用MA TL AB 强大的可视化功能,绘出b 随φ的曲线图,见图4 ,程序如附录程序一.可以很方便地得到: bmax = 397.8748mm , bmin =256.9556mm 。
图4 B D 长度曲线图然后再利用(2)式求得1b 、2b 分别为:b1 =70.4613mm , b2 = 327.4171 mm7)设计凸轮廊线固定凸轮的理论廊线就是滚子中心C 的运动轨迹线,根据铰销B 、D 的位置及b 1、b 2值可确定C 的位置。
令铰销B , D 的连线B D 与D0 D1 线(或y 轴) 的夹角为θ, BD 与CD 的夹角为β,则:BD DBD B y y x x b x x --=-=arctan arcsinθ (6) 2212222cos bb b b b ar -+=β (7)显然, xB > x D 时θ为正值,反之则为负值,而β始终为正值。