高精度加速器质谱_14_C测年_郭之虞
- 格式:pdf
- 大小:247.74 KB
- 文档页数:6
2021.03(下)黄河黄土黄种人┃特别关注┃1995年秋的一天,仇士华先生给我打来电话:“老郭,用加速器质谱测夏商周系列样品的事儿还想不想干?”那时我们有一个隶属于中国第四纪研究会的C-14年代学组,仇士华先生是组长。
在1994年的全国C-14测年学术会议上,几位考古学家和C-14测年专家曾经讨论过这个问题。
在接到仇先生电话后我回答说:“当然想干了。
有什么好消息吗?”他告诉我:“国家就要为夏商周断代工程立项了!”原来他刚刚参加了宋健同志主持的座谈会,会上讨论了启动夏商周断代工程的事情。
我参加C-14年代学组比较晚,是在北京大学开始建造基于EN 加速器的加速器质谱计(AMS )之后。
EN 加速器是英国牛津大学1984年赠送给北京大学的。
1985年,我到牛津大学从事访问工作。
1986年,北京大学开始筹建AMS ,并安排我考察牛津大学的AMS 实验室。
同年,陈铁梅先生也到牛津大学AMS 实验室从事访问工作。
1986年6月,牛津大学AMS 实验室主办了AMS 技术国际研讨会,借此机会我认识了国际AMS 界的很多知名专家,并对AMS 的原理和技术有了一定的了解。
1987年春,我从牛津大学回到北京大学,随即参加了北京大学EN-AMS 的建设工作。
该工作1988年被立项为国家自然科学基金重大项目,由陈佳洱先生和李坤教授担任负责人。
我同时参加了C-14年代学组的工作,并从1988年起参加了历次C-14全国学术会议。
那时我们已开始考虑用加速器质谱方法测量夏商周系列样品特别是殷商甲骨的事儿。
作为这方面的探索,1990年,我去瑞士苏黎世高工AMS 实验室从事访问工作时,特意从中国社会科学院考古研究所带了6片无字卜骨去进行测年的尝试,并取得了初步的成功,但同时也发现有多片甲骨的年龄偏老。
1993年春,北京大学EN-AMS 建成通过验收,这是我国首台可以进行批量C-14样品测量的加速器质谱计,在考古、地学、环境、生命科学各领域测量了大量C-14样品,取得了一批重要的科研成果。
考古里的碳十四测年法是怎么回事?古里的碳十四测年法是怎么回事?作者:黄金狮子碳十四测年法实际上是一个舶来品。
碳十四测年法之父是个美国人,名叫W. F. 利比(W. F. Libby)。
他是个著名的物理化学家、放射化学专家、热原子化学、示踪技术、同位素示踪技术专家。
利比在1947年的时候创立了用放射性碳十四(14C)测定年代的方法,这个方法在考古学上中得到了广泛的应用。
1952年利比的著作《放射性测年法》由芝加哥大学出版社出版,1955年再版。
这个方法的创立给利比带来了极大的荣誉;利比因1947年创立的放射性碳十四测年法而获得了1960年的诺贝尔化学奖。
1960年以后,利比长期担任了《美国科学院公报》和《科学》的编委。
W. F. 利比已于1980年去世。
碳十四测年法又称放射性碳素断代法 (Radiocarbon dating) ,还可以写成C-14测年法等。
我们都知道,碳是自然界中广泛存在的元素,占地壳重要组成的0.018%;天然碳有三种同位素,即碳十二(12C)、碳十三(13C)、碳十四(14C),人工还可以合成碳的同位素。
这其中,只有碳十四(14C)才具有放射性。
碳十四(14C)在自然界含量极少,而且半衰期很长;它也是碳的最稳定、最重要的同位素。
碳十四(14C)的半衰期为5730年,不走运的是,随着岁月的推移,大气中碳十四的含量还可能会有轻微的改变(诸如太阳黑子爆炸、火山喷发等);所以碳十四半衰期还要按照具体的年代进行修订(树轮曲线),这个5730年最后算来大概还有正负四十年的误差存在。
由于新陈代谢,地球上生物体吸收或放出CO2的过程不断进行,生物体内的碳十四(14C)含量也保持不变。
但当生物失去新陈代谢作用(死亡),14C循环进入生物体内的过程就停止了。
这时,留在体内的14C就只能按照其固有的半衰期5730年的衰变速率逐渐减少。
因此,埋藏地下深层的样品,只要测定其14C与12C的含量比例,按14C的放射性衰变公式进行计算,校订之后便可推出待测物品的存在年代。
小议碳十四在考古学上的应用走进中国航海博物馆吸引我的是航海历史馆展厅的一条古独木舟。
解说员介绍说,这件珍贵的古文物应用碳十四检测法,确定是7000年前的古物。
那么碳十四检测古文物的原理是什么呢?一、碳原子与碳同位素我们知道自然界中广泛存在着碳元素,如地壳中的石灰岩,空气中的二氧化碳,以及植物、飞禽、游鱼、走兽等的各种生物,自然的和人造的各类有机物…,它们无不含有碳元素。
而碳原子有12C、13C、14C三种状态,我们称为碳元素的同位素。
同位素是指在元素周期表上占有同一位置,即同属于某一化学元素,其原子具有相同数目的电子,原子核也具有相同数目的质子,但却有不同数目的中子,互称为元素的同位素。
同一元素的同位素虽然质量数不同,但他们的化学性质基本相同(如:化学反应和离子的形成),物理性质有差异,主要表现在质量上(如:熔点和沸点)。
自然界中许多元素都有同位素,有稳定同位素和放射性同位素两类。
C原子的三种同位素中14c是放射性元素,现被广泛应用于考古学上。
二、碳十四测年法1、放射性同位素的半衰期放射性同位素的特点是:不稳定性,它会"变"。
它的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位素,这就是所谓"核衰变"。
放射性同位素在进行核衰变的时候,可放射出α、β、γ等射线,其核衰变的速度不受温度、压力、电磁场等外界条件的影响,也不受元素所处状态的影响,只和时间有关。
放射性同位素衰变的快慢速度,用"半衰期"来表示。
半衰期即一定数量放射性同位素原子数目减少到其初始值一半时所需要的时间。
如P原子的半衰期是14.3天,就是说,假使原来有P原子100万个,经过14.3天后,只剩下50万个了。
半衰期是放射性同位素的一特征常数,不同的放射性同位素有不同的半衰期。
2、碳十四测年法的提出研究发现,宇宙射线从太空不断轰击大气层,这种轰击会使大气层中部分普通碳原子形成放射性碳原子(碳14)。
碳十四测年法名词解释
碳十四测年法 (Carbon-14 dating) 是一种放射性测年法,用于测定古物的年龄,特别是生物体死亡后的遗骸年龄。
该方法是通过测量碳 -14 原子的数量来确定样品的年龄。
碳 -14 是一种由原子核中放射性衰变产生的元素,其原子核由一个质子和一个中子组成。
在地球的自然辐射中,碳 -14 的半衰期约为 5,730 年。
这意味着,在一个碳分子中,碳 -14 原子的数量是恒定的,并且当一个碳分子失去一个碳 -14 原子时,它的寿命就会缩短。
因此,可以通过测量样品中碳 -14 原子的数量来确定其年龄。
碳十四测年法通常使用放射性同位素测年法的原理。
具体来说,科学家会使用加速器质谱计 (Accelerator Mass Spectrometer,AMS) 来测量样品中碳 -14 原子的数量。
AMS 是一种高科技仪器,它可以精确地测量微量元素的数量。
通过使用 AMS,科学家可以准确地测量样品中的碳 -14 原子数量,并据此确定其年龄。
碳十四测年法被广泛应用于考古学、地质学、生物学等领域。
它可以帮助科学家们更好地了解古代生物的演化过程、地球历史的演变等方面的问题。
碳十四测试年代的原理与应用作者:梁浩洋来源:《中国科技纵横》2018年第09期摘要:本文介绍了放射性同位素的衰变性质,并重点介绍了利用放射性碳十四测年的基本原理,讨论了用于测试放射性碳十四的加速器质谱方法(AMS),对测试的参数做了具体说明,并获得了碳十四测年的模型,说明了利用14C测年的时间尺度。
对碳十四在考古、地质与海洋方面的应用做了简单介绍。
关键词:放射性碳十四同位素;加速器质谱仪;测试年中图分类号:K879.2 文献标识码:A 文章编号:1671-2064(2018)09-0240-021 概述放射性是指不稳定的原子自发地放出α射线、β射线、γ射线等不同射线,而衰变形成其他种类的原子。
原子序数在83以上(铋及铋以后)的元素及少数原子序数小于83的元素(锝和钷)无稳定的同位素,其余元素也均有放射性同位素。
对于放射性元素,有其中铀-238,钾-40和碳-14在测年方面有着广泛而成熟的应用。
自然界中存在两种原子的质子数目相同,但中子数目不同,在元素周期表是同一位置的元素,二者称为同位素。
存在放射性的同位素称为“放射性同位素”。
放射性同位素是不稳定的,存在核衰变现象。
核衰变的速度只与核素本身有关。
放射性同位素衰变的快慢,通常用“半衰期”(τ1/2)来表示。
半衰期即一定数量放射性同位素原子数目减少到其初始值一半时所需的时间。
对于放射性元素,有[1]:N=N0e-λt,即t=ln(N0/N)/λ其中,t表示放射性元素的年代(单位为年);λ表示放射性元素的衰变常数;N0表示放射性元素的初始原子数;N表示从初始经过t的时间放射性元素的剩余原子数;若ln(N0/N)=ln(2),则可以得到相应元素的衰变常数:λ=ln(2)/τ1/2自然条件下,碳元素存在12C、13C与14C三种同位素,而仅有14C是放射性同位素,其半衰期τ1/2=5730年,平均寿命约为8267年。
对于放射性碳十四同位素:dN/dt=-λ14N则有,dN/N=-λ14dt。
加速器质谱测年范围加速器质谱测年法(AMS)是一种高精度的放射性测年方法,可以对各种样品进行年代测定。
其测年范围广泛,涵盖了近代样品、中世纪样品、古代样品、地质样品等多个领域。
以下是AMS测年的主要范围:1.近代样品:AMS测年法可以测定近至几百年前的样品,如历史文献、古建筑、艺术品等。
通过测定这些样品的放射性元素含量,可以确定其制作年代或使用年限。
2.中世纪样品:中世纪是指欧洲公元5世纪到15世纪的历史时期。
AMS测年法可以测定中世纪时期的文物和艺术品,如雕塑、绘画、手工艺品等。
通过AMS测年法可以确定这些文物的制作年代或使用年限,为历史文化研究提供有力支持。
3.古代样品:古代是指公元前15世纪至公元5世纪的历史时期。
AMS测年法可以对古代的文物和艺术品进行年代测定,如古埃及的金字塔、古希腊的雕塑、古罗马的壁画等。
通过AMS测年法可以确定这些文物的制作年代或使用年限,为历史文化研究提供重要依据。
4.地质样品:AMS测年法也可以对地质样品进行年代测定,如岩石、矿床、化石等。
通过测定这些样品的放射性元素含量,可以确定其形成年代或变化历程,为地质学研究提供有价值的数据。
在AMS测年过程中,需要对样品进行处理,测定样品的同位素比值,并对数据进行解释。
以下是这些步骤的简要说明:1.样品处理:在进行AMS测年之前,需要对样品进行必要的处理,如破碎、研磨、提纯等。
这些处理步骤旨在减小样品中的杂质干扰,提高测试的精度和可靠性。
2.同位素比值分析:在样品处理后,需要对样品的同位素比值进行分析。
通常测定样品的C-14、C-13、O-18等同位素比值,以确定其年代。
通过比较现代标准和古代样品的同位素比值,可以推算出样品的年代。
3.数据解释:在获得样品的同位素比值后,需要对数据进行解释。
这包括对数据的统计处理和不确定性评估,以确定样品的年代范围。
同时还需要对数据进行校正,以消除仪器误差和环境因素的影响。
4.应用领域:AMS测年法在多个领域都有广泛的应用,如历史学、考古学、地质学等。
夏商周断代工程1996~2000年阶段成果概要夏商周断代工程专家组1 夏商周断代工程的目标、研究途径和实施情况1.1夏商周断代工程的基本情况1.1.1夏商周断代工程的意义中华文明是人类历史上有数的独立起源的古文明之一。
但是,我国古书记载的上古确切年代,只能上推到西周晚期共和元年(前841年)。
夏商周三代在我国古代文明历史上具有特殊地位,但其年代学始终是一个学术难题。
在国家的支持下,夏商周断代工程以人文社会科学和自然科学相结合,力求作出能反映20世纪年代学研究最好水平的成果。
1.1.2夏商周断代工程的目标夏商周断代工程的总目标,是制定有科学依据的夏商周时期年代学年表。
根据各历史阶段材料的不同情况,确定以下具体目标:1)西周共和元年(前841年)以前各王,提出比较准确的年代;2)商代后期武丁以下各王,提出比较准确的年代;3)商代前期,提出比较详细的年代框架;4)夏代,提出基本的年代框架。
1.1.3夏商周断代工程的研究途径和课题设置夏商周断代工程是由历史学、考古学、天文学和测年技术等学科的专家学者联合实施的系统工程。
研究途径主要有两条:1)对传世文献和甲骨文、金文等古文字材料进行搜集、整理、鉴定和研究,对有关的天文历法记录通过现代天文计算推定其年代。
2)对有典型意义的遗址、墓葬资料进行整理和分期研究,并作必要的发掘,取得系列样品,进行常规和AMS(加速器质谱计)的[14]C年代测定。
最后进行综合,得出尽可能合理的年代学年表。
夏商周断代工程于1996年5月正式启动,经论证当时共设9个课题,下分36个专题。
在“工程”实施过程中,根据研究需要和新的考古发现,又增设了8个专题。
1.1.4夏商周断代工程的组织为了加强对夏商周断代工程的统一领导,国务院成立了由七个有关部门负责人组成的领导小组。
聘任了四位首席科学家,并聘任社会科学和自然科学领域有关学者组成专家组,负责组织科研工作。
直接参与“工程”的专家学者达200人。
一、选择题1.贝可勒尔在120 年前首先发现了天然放射现象,如今原子核的放射性在众多领域中有着广泛应用。
下列属于核聚变的是( )A .23411120H H He n +→+ B .427301213130He Al P n +→+ C .14140671C N e -→+D .2351131103192053390U n I Y 2n +→++2.下面关于结合能和比结合能的说法中,正确的有( ) A .原子核拆解成核子放出的能量称为结合能B .比结合能越大的原子核越稳定,因此它的结合能也一定越大C .重核与中等质量原子核相比较,重核的结合能和比结合能都大D .中等质量原子核的结合能和比结合能均比轻核的要大 3.以下说法正确的是( )A .β衰变所释放的电子是原子核内的中子转变为质子时产生的B .23290Th 成为原子核20882Pb ,要经过8次α衰变和6次β衰变C .α、β、γ三种射线中,γ射线的穿透能力和电离能力都最强D .2812Mg 半衰期为21小时,则10个2812Mg 原子核,经过21小时后还有5个未衰变 4.下列说法正确的是( )A .23892U 衰变为22286Rn 要经过4次α衰变和2次β衰变B .衰变中产生的β射线实际上是原子的核外电子挣脱原子核的束缚而形成的C .查德威克发现了中子,并第一次实现了人工合成放射性同位素D .汤姆孙在研究阴极射线时发现了电子,并准确测出了电子的电荷量 5.下列说法中正确的是( )A .机械波和光有波动性,实物粒子不具有波动性B .用弧光灯发出紫外线照射锌板并发生光电效应后,锌板带正电C .由于核聚变需要很高的环境温度,21H 和31H 发生聚变过程中是需要从外界吸收能量的 D .构成物体的质量是守恒不变的 6.下列说法中正确的是( ) A .钍的半衰期为24天。
1g 钍23490Th 经过 120 天后还剩0.2g 钍B .一单色光照到某金属表面时,有光电子从金属表面逸出,延长入射光照射时间,光电子的最大初动能不会变化 C .放射性同位素23490Th 经α、β衰变会生成22286Rn ,其中经过了2次α衰变和 3 次β衰变D .大量处于n =4激发态的氢原子向低能级跃迁时,最多可产生4种不同频率的光子 7.钍23490Th 具有放射性,它能放出一个新的粒子而变为镤23491Pa ,同时伴随γ射线产生,其方程为2342349091Th Pa x →+,钍的半衰期为24天,则下列说法中正确的是( )A .此反应为钍核裂变,释放大量的核能,方程中的x 代表质子B .x 是钍核中的一个中子转化成一个质子时产生的C .γ射线是镤原子核外电子跃迁放出的高速粒子D .1g 钍23490Th 经过120天后还剩0.2g 钍8.关于天然放射线性质的说法正确的是( )A .γ射线就是中子流B .α射线有较强的穿透性C .电离本领最强的是γ射线D .β射线是高速电子流 9.有一钚的同位素23994Pu 核静止在匀强磁场中,该核沿与磁场垂直的方向放出x 粒子后,变成铀(U )的一个同位素原子核.铀核与x 粒子在该磁场中的旋转半径之比为1:46,则( )A .放出的x 粒子是42He B .放出的x 粒子是01e -C .该核反应是β衰变反应D .x 粒子与铀核在磁场中的旋转周期相等10.铀(23892U )经过α、β衰变后形成稳定的铅(20682Pb ),在衰变过程中,中子转变为质子的个数为( )A .6个B .14个C .22个D .32个11.本题用大写字母代表原子核,E 经α衰变边长F ,再经β衰变变成G ,再经α衰变成为H ,上述系列衰变可记为下式:E F G βαα→→→H ;另一系列衰变如下:P Q R S ββα→→→,已知P 是F 的同位素,则下列判断正确的是( )A .Q 是G 的同位素,R 是H 的同位素B .R 是G 的同位素,S 是H 的同位素C .R 是E 的同位素,S 是F 的同位素D .Q 是E 的同位素,R 是F 的同位素12.2020年11月27日0时41分,华龙一号核电5号机组首次并网成功,标志着我国正式进入核电技术先进国家行列。