四边形 几何证明 专题练习
- 格式:doc
- 大小:144.50 KB
- 文档页数:5
初三几何证明练习题和答案几何证明是初中数学中的重要内容,通过练习不同类型的几何证明题,可以帮助学生理解并掌握几何证明的基本方法与技巧。
本文将为大家提供一些初三几何证明的练习题和答案,希望对同学们的学习有所帮助。
1. 题目:已知ABCD是平行四边形,证明∠ABC + ∠ADC = 180°。
证明:解:连接AC,根据平行四边形的性质可知∠ADC = ∠ACB,所以要证明∠ABC + ∠ADC = 180°,只需证明∠ABC + ∠ACB = 180°。
由角的内外(对顶、同旁)定理可知∠ACB + ∠ABC = 180°,即∠ABC + ∠ACB = 180°。
所以,∠ABC + ∠ADC = 180°得证。
2. 题目:已知直角三角形ABC中,∠ACB = 90°,AC = 5cm,BC= 12cm,证明AB = 13cm。
证明:解:根据勾股定理可得AB² = AC² + BC²。
代入已知条件,即可得AB² = 5² + 12² = 25 + 144 = 169。
开方可得AB = 13cm。
所以,AB = 13cm得证。
3. 题目:已知直角三角形ABC中,∠ACB = 90°,AC = BC,证明∠ABC = 45°。
证明:解:连接AB,根据等腰直角三角形的性质可知∠ACB = ∠CAB。
所以,∠ABC = 180° - ∠ACB - ∠CAB = 180° - ∠ACB - ∠ACB = 180° - 2∠ACB。
由于∠ACB = 90°,代入得∠ABC = 180° - 2 × 90° = 0°。
所以,∠ABC = 0°,即∠ABC = 45°得证。
4. 题目:已知ABCD是一个平行四边形,E为AD的中点,证明BE平分∠CBD。
小学数学几何证明练习题题目一:平行线的证明题1. 请证明过直线l上的一点P,存在且唯一一条与直线l平行的直线。
2. 证明平行线具有传递性,即如果直线a // 直线b,直线b // 直线c,那么直线a // 直线c。
题目二:三角形和四边形的证明题1. 已知三角形ABC,通过顶点A作BC边的垂线,垂足为D。
请证明:∠ABD = ∠ACD。
2. 已知四边形ABCD,AB // CD,通过顶点A、D分别作BC、AD的垂线,垂足分别为E、F。
请证明∆ABE ≌ ∆CDF。
题目三:平行四边形的证明题1. 已知ABCD是平行四边形,E是AD边的中点,F是BC边的中点。
请证明:EF || AB。
2. 已知ABCD是平行四边形,对角线AC和BD交于点O。
请证明:AO ≌ CO。
题目四:圆的证明题1. 已知AB是圆的直径,C是圆上任意一点,AC交圆于点D。
请证明:∠ABC = 90°。
2. 已知O是ΔABC外接圆的圆心,交BC边于点D。
请证明:∠BAC = ∠BDO。
题目五:相似三角形的证明题1. 已知∆ABC和∆DEF相似,且∠A = ∠D,∠B = ∠E。
请证明:∠C = ∠F。
2. 已知∆ABC和∆EFD相似,且∠B = ∠E,∠F = ∠C。
请证明:∠A = ∠D。
题目六:角平分线的证明题1. 已知∠A和∠B是一个点P的相邻角,角APB的边PC是∠APB 的角平分线。
请证明∠APC = ∠BPC。
2. 已知∠A和∠B是一个点P的相邻角,角APB的边PC是∠APB 的角平分线。
请证明AP = BP。
注意:以上题目仅为示例题目,实际出题时可根据需要和学生水平进行调整。
四边形几何证明与计算1.如图,分别以Rt△ABC的斜边AB,直角边AC为边向△ABC外作等边△ABD和等边△ACE,F为AB边的中点,DE与AB交于点G,EF与AC交于点H,∠ACB=90°,∠BAC=30°.(1)求证:EF=AB;(2)求证:四边形ADFE是平行四边形;(3)若AB=2,求△AEG的周长.2.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.3.已知:四边形ABCD为正方形,△AMN是等腰Rt△,∠AMN=90°.(1)如图1,当Rt△AMN绕点A旋转时,若边AM、AN分别与BC、CD相交于点E、F,连接EF,试证明EF=DF+BE;(2)如图2,当Rt△AMN绕点A旋转时,若边AM、AN分别与BC、CD的延长线相交于点E、F,连接EF.①试写出此时三条线段EF、DF、BE的数量关系并加以证明;②若CE=6,DF=2,求:正方形ABCD的边长以及△AEF中AE边上的高.4.在正方形ABCD中,点P是射线BC上任意一点(不与点B、C重合),连接AP,过点P 作AP的垂线交正方形的外角∠DCF的平分线于点E.(1)如图1,当点P在BC边上时,判断线段AP、PE的大小关系,并说明理由;(2)如图2,当点P在BC的延长线上时,(1)中结论是否成立,若成立,请证明;若不成立,请说明理由;(3)如图3,在(2)的条件下,连接AE交CD的延长线于点G,连接GP,请写出三条线段GP、BP、GD的数量关系并证明.5.如图,菱形ABCD的对角线AC,BD相交于点O,延长AC到E,使CE=CO,连接EB,ED.(1)求证:EB=ED;(2)过点A作AF⊥AD,交BC于点G,交BE于点F,若∠AEB=45°,①试判断△ABF的形状,并加以证明;②设CE=m,求EF的长(用含m的式子表示).6.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.7.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=4,求菱形ABCD 的面积.8.如图,△ABC与△ADE都为等腰直角三角形,∠ABC=∠ADE=90°,连接BD,EC,且F为EC的中点.(1)如图1,若D、A、C三点在同一直线上时,请判DF与BF的关系,并说明理由;(2)如图2,将图1中的△ADE绕点A逆时针旋转m°(0<m<90),请判断(1)中的结论是否仍然成立?并证明你的判断;(3)在(2)下,若△DEF与△BCF的面积之和于△DBF的面积,请直接写出m的值.9.如图1,已知△ABC是等边三角形,点D,E分别在边BC,AC上,且CD=AE,AD与BE相交于点F.(1)求证:∠ABE=∠CAD;(2)如图2,以AD为边向左作等边△ADG,连接BG.ⅰ)试判断四边形AGBE的形状,并说明理由;ⅱ)若设BD=1,DC=k(0<k<1),求四边形AGBE与△ABC的周长比(用含k的代数式表示).10.如图1,在正方形ABCD中,E是BC边上一点,F是BA延长线上一点,AF=CE,连接BD,EF,FG平分∠BFE交BD于点G.(1)求证:△ADF≌△CDE;(2)求证:DF=DG;(3)如图2,若GH⊥EF于点H,且EH=FH,设正方形ABCD的边长为x,GH=y,求y与x之间的关系式.11.在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接AF和EF,作∠FEM=∠FDC,交AC于点M,如图1所示,(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;(3)在第(2)条件下,若点G是AF中点,且∠C=30°,AB=2,如图3,求GE的长度.12.(1)如图1,正方形ABCD中,∠PCG=45°,且PD=BG,求证:FP=FC;(2)如图2,正方形ABCD中,∠PCG=45°,延长PG交CB的延长线于点F,(1)中的结论还成立吗?请说明理由;(3)在(2)的条件下,作FE⊥PC,垂足为点E,交CG于点N,连结DN,求∠NDC 的度数.13.如图,在矩形ABCD中,E为射线CB上一点,AE=AD,∠BAE的平分线交直线DE 于点P.(1)如图1,当点E在CB的延长线上时,过A作AG⊥DE于点G,交EC于点K,连接BG.①求证:AG=BG;②若Q为DC延长线上一点,且DQ=DA,连接PQ,求证:PQ=(PD﹣BG);(2)如图2,当点E在BC边上且E为DP的中点时,过P作PF⊥AE于点F,AP交BC于点H.若AD=a,请直接写出BP的长(用含a的代数式表示)14.(1)如图1,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,且交AD于点E,交BC于点F,连接BE,DF,且BE平分∠ABD.①求证:四边形BFDE是菱形;②直接写出∠EBF的度数.(2)把(1)中菱形BFDE进行分离研究,如图2,G,I分别在BF,BE边上,且BG =BI,连接GD,H为GD的中点,连接FH,并延长FH交ED于点J,连接IJ,IH,IF,IG.试探究线段IH与FH之间满足的关系,并说明理由;(3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EF⊥DE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AG,GE,EC三者之间满足的数量关系.15.在菱形ABCD中,∠BAD=60°,点E,F分别为线段AB,AD的中点,连接EF.(1)如图1,连接DE,DB,若AB=4,求线段EC的长;(2)如图2,将(1)中的△AEF绕着点A逆时针旋转30°得到△AMN,MN交AD于点G,连接NC,取线段NC的中点Q,连接DQ,MQ和DM,求证:DM=2DQ.16.如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连按AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.(1)求证:四边形ABDF是平行四边形;(2)当AE=DF时,试判断四边形ADCF的形状,并说明理由;(3)若∠CBF=2∠ABF,求证:AF=2OG.。
几何证明与推理——四边形存在性1.如图,O是△ABC内一点,⊙O与BC相交于F,G两点,且与AB,AC分别相切于点D,E,DE∥BC,连接DF,EG.(1)求证:AB=AC.(2)填空:①若AB=10,BC=12,则当四边形DFGE是矩形时,⊙O的半径为_____;②若四边形DFGE是正方形,则∠B=_______.2.如图,在Rt△ABC中,∠ACB=90°,以AC为直径的⊙O与AB边交于点D,过点D作⊙O的切线,交BC于点E.(1)求证:BE=EC.(2)填空:①若∠B=30°,AC=DE=______;②当∠B=_____°时,以O,D,E,C为顶点的四边形是正方形.3.如图,以AB为直径的⊙O外接于△ABC,过A点的切线AP与BC的延长线交于点P,∠APB的平分线分别交AB,AC于点D,E,其中AE,BD (AE<BD)的长是一元二次方程x2-5x+6=0的两个实数根.(1)求证:P A·BD=PB·AE.(2)在线段BC上是否存在一点M,使得四边形ADME是菱形?若存在,请给予证明,并求其面积;若不存在,说明理由.4.如图,在Rt△ABC中,∠C=90°,点D在线段AB上,以AD为直径的⊙O与BC相交于点E,与AC相交于点F,∠B=∠BAE=30°.(1)求证:BC是⊙O的切线;(2)若AC=3,则⊙O的半径r为____________;(3)判断以A,O,E,F为顶点的四边形为哪种特殊四边形,并说明理由.5.如图,在Rt△ABC中,∠ABC=90°,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME.(2)填空:①若AB=6,当AD=2DM时,DE=___________;②连接OD,OE,当∠A的度数为__________时,四边形ODME是菱形.6.如图,在△ABD中,AB=AD,以AB为直径的⊙F交BD于点C,交AD于点E,CG⊥AD于点G,连接FE,FC.(1)求证:GC是⊙F的切线.(2)填空:①若∠BAD=45°,AB=CDG的面积为_______;②当∠GCD的度数为_______时,四边形EFCD是菱形.7.如图所示,半圆O的直径AB=4,=,DE⊥AB于E,DF⊥AC于F,连接CD,DB,OD.(1)求证:△CDF≌△BDE.(2)填空:①当AD=_______时,四边形AODC是菱形;②当AD=_______时,四边形AEDF是正方形.8.如图,已知AB是⊙O的直径,PC切⊙O于点P,过A作直线AC⊥PC,交⊙O于另一点D,连接P A,PB.(1)求证:AP平分∠CAB;(2)若P是直径AB上方半圆弧上一动点,⊙O的半径为2,则:①当弦AP的长是________时,以A,O,P,C为顶点的四边形是正方形;②当的长度是___________时,以A,D,O,P为顶点的四边形是菱形.CB9.如图,AB为⊙O的直径,点E在⊙O上,过点E的切线与AB的延长线交于点D,连接BE,过点O作BE的平行线,交⊙O于点F,交切线于点C,连接AC.(1)求证:AC是⊙O的切线;(2)连接EF,当∠D=______°时,四边形FOBE是菱形.CF EADO B10.如图,AB为⊙O的直径,点D,E是位于AB两侧的半圆AB上的动点,射线DC切⊙O于点D,连接DE,AE,DE与AB交于点P,F是射线DC上一动点,连接FP,FB,且∠AED=45°.(1)求证:CD∥AB;(2)填空:①若DF=AP,当∠DAE=__________时,四边形ADFP是菱形;②若BF⊥DF,当∠DAE=__________时,四边形BFDP是正方形.A11.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为_________时,四边形ECFG为菱形;②当∠D的度数为_________时,四边形ECOG为正方形.B AB。
【8分题夺分专练】【几何证明】1.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF;(2)四边形ABCD是平行四边形.2.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.3.如图.已知正方形ABCD的边长为1,正方形CEFG的面积为S1,点E在DC边上,点G在BC的延长线.设以线段AD和DE为邻边的矩形的面积为S2.且S1=S2.(1)求线段CE的长.(2)若点H为BC边的中点,连接HD,求证:HD=HG.4.如图,在口ABCD中对角线AC与BD相交于点O,点E,F分别为OB,OD的中点,延长AE至G,使EG=AE,连接CG.(1)求证:△ABE≌△CDF ;(2)当AB与AC满足什么数量关系时,四边形EGCF是矩形?请说明理由.5.如图,正方形ABCD,点E,F分别在AD,CD上,且DE=CF,AF与BE相交于点G.(1)求证:BE=AF;(2)若AB=4,DE=1,求AG的长.6.如图,矩形EFGH的顶点E,C分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD 上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.7.如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG .(1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM =12,求正方形OEFG 的边长.8.如图,已知在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,连结DF ,EF ,BF .(1)求证:四边形BEFD 是平行四边形;(2)若∠AFB =90°,AB =6,求四边形BEFD 的周长.9.在菱形ABCD 中,点P 是BC 边上一点,连接AP,点E,F 是AP 上的两点,连接DE,BF,使得∠AED =∠ABC,∠ABF =∠BPF.求证:(1)△ABF ≌△DAE;(2)DE =BF+EF.FE D C B A10.如图,矩形ABCD 中,点E 在边CD 上,将△BCE 沿BE 折叠,点C 落在AD 边上的点F 处,过点F 作FG ∥CD 交BE 于点G ,连接CG . (1)求证:四边形CEFG 是菱形;(2)若AB =6,AD =10,求四边形CEFG 的面积.11.如图,在□ABCD 中,∠ACB =45°,点E 在对角线AC 上,BE =BA ,BF ⊥AC 于点F ,BF 的延长线交AD 于点G .点H 在BC 的延长线上,且CH =AG ,连接EH . (1)若BC =122,AB =13,求AF 的长; (2)求证:EB =EH .12.如图,在四边形ABCD 中,E 是AB 的中点,AD//EC , ∠AED=∠B.(1)求证:△AED ≌△EBC. (2)当AB=6时,求CD 的长.24题图HG FEDC BA13.如图,在ABCD中,分别以边BC,CD作腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证:△ABF≌△EDA;(2)延长AB与CF相交于G,若AF⊥AE,求证BF⊥BC.【8分题夺分专练】【几何证明】1.如图,在四边形ABCD中,AD∥BC,延长BC到E,使CE=BC,连接AE交CD于点F,点F是CD的中点.求证:(1)△ADF≌△ECF;(2)四边形ABCD是平行四边形.解:(1)证明:∵AD∥BC,∴∠DAF=∠CEF,∠ADF=∠ECF,∵点F是CD的中点,∴DF=CF,∴△ADF≌△ECF;(2)∵△ADF≌△ECF∴AD=CE,∵CE=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形.2.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.(1)证明:由题意可得,△BCE≌△BFE,∴∠BEC=∠BEF,FE=CE.∵FG∥CE,∴∠FGE=∠CEB,∴∠FGE=∠FEG,∴FG=FE,∴FG=EC,∴四边形CEFG是平行四边形.又∵CE=FE,∴四边形CEFG是菱形.(2)∵矩形ABCD中,AB=6,AD=10,BC=BF,∴∠BAF=90°,AD=BC=BF=10,∴AF=8,∴DF=2.设EF=x,则CE=x,DE=6-x,∵∠FDE =90°,∴22+(6-x )2=x 2,解得x =,∴CE =,∴四边形CEFG 的面积是:CE •DF =×2=.3.如图.已知正方形ABCD 的边长为1,正方形CEFG 的面积为S 1,点E 在DC 边上,点G 在BC 的延长线.设以线段AD 和DE 为邻边的矩形的面积为S 2.且S 1=S 2. (1)求线段CE 的长.(2)若点H 为BC 边的中点,连接HD ,求证:HD=HG. 【解题过程】(1)设正方形CEFG 的边长为a , ∵正方形ABCD 的边长为1,∴DE=1-a , ∵S 1=S 2,∴a 2=1×(1-a ), 解得,(舍去),,即线段CE 的长是; (2)证明:∵点H 为BC 边的中点,BC=1,∴CH=0.5,∴DH==,∵CH=0.5,CG=,∴HG=,∴HD=HG .4.如图,在口ABCD 中对角线AC 与BD 相交于点O ,点E ,F 分别为OB ,OD 的中点,延长AE 至G ,使EG =AE ,连接CG .(1)求证:△ABE ≌△CDF ;(2)当AB 与AC 满足什么数量关系时,四边形EGCF 是矩形?请说明理由.【解题过程】(1)证明:四边形ABCD 是平行四边形,AB CD ∴=,//AB CD ,OB OD =,OA OC =,ABE CDF ∴∠=∠, 点E ,F 分别为OB ,OD 的中点, 12BE OB ∴=,12DF OD =,BE DF ∴=,在ABE ∆和CDF ∆中,AB CDBAE CDFBE DF =⎧⎪∠=∠⎨⎪=⎩,()ABE CDF SAS ∴∆≅∆;(2)解:当2AC AB =时,四边形EGCF 是矩形;理由如下: 2AC OA =,2AC AB =, AB OA ∴=,AG OB ∴⊥, 90OEG ∴∠=︒,同理:CF OD ⊥, //AG CF ∴, //EG CF ∴,EG AE =,OA OC =, OE ∴是ACG ∆的中位线, //OE CG ∴, //EF CG ∴,∴四边形EGCF 是平行四边形, 90OEG ∠=︒,∴四边形EGCF 是矩形.5.如图,正方形ABCD ,点E ,F 分别在AD ,CD 上,且DE=CF ,AF 与BE 相交于点G .(1)求证:BE=AF ;(2)若AB=4,DE=1,求AG 的长.【解题过程】(1)证明:∵四边形ABCD 是正方形,∴∠BAE=∠ADF=90°,AB=AD=CD ,∵DE=CF ,∴AE=DF ,在△BAE 和△ADF 中,AB=AD 、∠BAE=∠ADF 、AE=DF ,∴△BAE ≌△ADF (SAS ),∴BE=AF ;(2)解:由(1)得:△BAE ≌△ADF ,∴∠EBA=∠FAD ,∴∠GAE+∠AEG=90°,∴∠AGE=90°,∵AB=4,DE=1,∴AE=3,∴BE=22AB AE +=5,在Rt △ABE 中,12AB×AE=12BE ×AG ,∴AG=345⨯=125.6.如图,矩形EFGH 的顶点E,C 分别在菱形ABCD 的边AD,BC 上,顶点F,H 在菱形ABCD 的对角线BD上.(1)求证:BG =DE;(2)若E 为AD 中点,FH =2,求菱形ABCD 的周长.解:(1)在矩形EFGH 中,EH =FG ,EH ∥FG ,∠GFH =∠EHF.∠BFG =180°-∠GFH,∠DHE =180°-∠EHF,∠BFG =∠DHE,在菱形ABCD 中,AD ∥BC,∠GBF =∠EDH,△BGF ≌△DEH(AAS),BG =DE; (2) 如图,连接EG,在菱形ABCD 中,AD ∥BC,AD =BC,∵E 为AD 中点,AE =ED,BG =DE,∴AE =BG ,∴四边形ABGE 是平行四边形,∴AB =EG ,在矩形EFGH 中,EG =FH =2,AB =2,∴菱形周长为8.7.如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:△DOG≌△COE;(2)若DG⊥BD,正方形ABCD的边长为2,线段AD与线段OG相交于点M,AM=12,求正方形OEFG的边长.(1)证明:如图,∵正方形OEFG,∴GO=EO,∠GOE=90°. ∵正方形ABCD,∴OD=OC,∠DOC=90°,∴∠GOE=∠DOC,∴∠GOE-∠DOE=∠DOC-∠DOE,即∠DOG=∠COE,∴△DOG≌△COE.(2)∵DG⊥BD,AC⊥BD,∴DG∥AC,∴∠GDM=∠OAM.∵∠DMG=∠AMO,∴△GDM∽△OAM,∴AM AO DM DG.∵AD=2,AM=12,∴DM=1.5,∵2GD=32∴Rt△OGD中,OG2=OD2+DG2,∴OG=25∴正方形OEFG的边长为258.如图,已知在△ABC中,D,E,F分别是AB,BC,AC的中点,连结DF,EF,BF.(1)求证:四边形BEFD是平行四边形;解:(1)∵D,E,F分别是AB,BC,AC的中点,∴EF∥AB,DF∥BC.∴四边形BEFD是平行四边形.(2)∵∠AFB=90°,AB=6,D点是AB的中点,∴DF=DB=12AB=3.∴平行四边形BEFD是菱形.∴BE=EF=DF=BD=3.∴四边形BEFD的周长为4DF=12.9.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.求证:(1)△ABF≌△DAE;(2)DE=BF+EF.解:(1)∵四边形ABCD是菱形,∴AB=AD,AD∥BC,∴∠BPA=∠DAE.在△ABP和△DAE中,又∵∠ABC=∠AED,∴∠BAF=∠ADE.∵∠ABF=∠BPF且∠BPA=∠DAE,∴∠ABF=∠DAE,又∵AB=DA,∴△ABF≌△DAE(ASA);(2)∵△ABF≌△DAE,∴AE=BF,DE=AF,∵AF=AE+EF=BF+EF,∴DE=BF+EF.10.如图,矩形ABCD中,点E在边CD上,将△BCE沿BE折叠,点C落在AD边上的点F处,过点F作FG∥CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若AB=6,AD=10,求四边形CEFG的面积.解:(1)证明:由题意可得,∵FG ∥CE ,∴∠FGE =∠CEB ,∴∠FGE =∠FEG ,∴FG =FE ,∴FG =EC ,………………………………………………………………………………4分∴四边形CEFG 是平行四边形.………………………………………………………5分又∵CE =FE ,∴四边形CEFG 是菱形.………………………………………………6分(2)∵矩形ABCD 中,AB =6,AD =10,BC =BF ,………………………………7分∴∠BAF =90°,AD =BC =BF =10,∴AF =8,∴DF =2.设EF =x ,则CE =x ,DE =6-x ,……………………………………………………8分∵FDE =90°,∴22+(6-x )2=x 2,解得x =,……………………………………………………………………………12分 ∴CE =,∴四边形CEFG 的面积是:CE •DF =×2=.…………………………………13分11.如图,在□ABCD 中,∠ACB =45°,点E 在对角线AC 上,BE =BA ,BF ⊥AC 于点F ,BF 的延长线交AD 于点G .点H 在BC 的延长线上,且CH =AG ,连接EH .(1)若BC =2AB =13,求AF 的长;(2)求证:EB =EH .【解题过程】解:(1)∵BF ⊥AC ,∴∠BFC =∠AFB =90°.在Rt △FBC 中,sin ∠FCB =BF BC,而∠ACB =45°,BC =2 ∴sin45122. ∴BF =2sin45°=222=12. 24题图 HG F E DC BA在Rt △ABF 中,由勾股定理,得AF =22221312AB BF -=-=5.(2)方法一:如下图,在BF 上取点M ,使AM =AG ,连接ME 、GE .MAB C D E FG H∵∠BFC =90°,∠ACB =45°,∴△FBC 是等腰直角三角形.∴FB =FC .∵在□ABCD 中,AD ∥BC ,∴∠GAC =∠ACB =45°.∴∠AGB =45°.∵AM =AG ,AF ⊥MG ,∴∠AMG =∠AGM =45°,MF =GF .∴∠AMB =∠ECG =135°.∵BA =BE ,BF ⊥AE ,∴AF =EF .∴四边形AMEG 是正方形.∴FM =FE .∴BM =CE .又∵CH =AG ,∴CH =AM .∴△AMB ≌△CHE .∴EH =AB .∴EH =EB .12.如图,在四边形ABCD 中,E 是AB 的中点,AD//EC ,∠AED=∠B.(1)求证:△AED ≌△EBC.(2)当AB=6时,求CD 的长.【思路分析】(1)利用平行线的性质得∠A=∠BEC 再用ASA 证明△AED ≌△EBC(2)利用一组对边AD,EC 平行且相等得四边形AECD 是平行四边形得CD=AE=3【解题过程】解(1)∵AD ∥EC,∠A=∠BECE 是AB 中点,∴AE=BE∵∠AED=∠B,∴△AED ≌△EBC(2)∵△AED ≌△EBC,∴AD=EC∵AD ∥EC,∴四边形AECD 是平行四边形,∴CD=AE.∵AB=6, ∴CD=21AB=313.如图,在ABCD 中,分别以边BC ,CD 作腰△BCF ,△CDE ,使BC=BF ,CD=DE ,∠CBF=∠CDE ,连接AF ,AE.(1)求证:△ABF ≌△EDA ;(2)延长AB 与CF 相交于G ,若AF ⊥AE ,求证BF ⊥BC.【思路分析】(1)由平行四边形得到对边相等,对角相等,再由题上已知条件得到两个三角形对应边相等,通过等量代换,得到∠ABF=∠EDA ,故全等可证;(2)证垂直即证90°的角,将∠FBC 分为两个角∠FBG 和∠CBG ,通过等量代换,得到∠FBC=∠EAF ,即证得垂直【解析】(1)在ABCD 中,AB=DC ,BC=AD ,∠ABC=∠ADC ,AD ∥BC ,因为BC=BF ,CD=DE ,所以AB=DE ,BF=AD ,又因为∠CBF=∠CDE ,所以∠ABF=360°-∠ABC-∠CBF ,∠EDA=360°-∠ADC-∠CDE ,所以∠ABF=∠EDA ,又因为AB=DE ,BF=AD ,所以△ABF ≌△EDA ;(2)由(1)知∠EAD=∠AFB ,∠GBF=∠AFB+∠BAF ,因为AD ∥BC ,所以∠DAG=∠CBG ,所以∠FBC=∠FBG+∠CBG=∠EAD+∠FAB+∠DAG=∠EAF=90°,所以BF ⊥BC。
几何证明专题训练姓名:1、如图,在平行四边形ABCD中,O是其对角线AC的中点,EF过点O.(1)求证:∠OEA=∠OFC;(2)求证:BE=DF.2、如图,在梯形ABCD中,AB∥DC,AB=BD,E为AD的中点,BE和CD的延长线相交于点F,连接AF.(1)求证:AB=DF;(2)判断四边形ABDF是什么四边形,并说明你的理由.3.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.(1)求证:BE=BF;(2)当菱形ABCD的对角线AC=8,BD=6时,求BE的长.4.如图,在△ABC和△DCB中,AB = DC,AC = DB,AC与DB交于点M.(1)求证:△ABC≌△DCB;(2)过点C作CN∥BD,过点B作BN∥AC,CN与BN交于点N,试判断线段BN与CN的数量关系,并证明你的结论.5、如图,四边形ABCD是正方形,G是BC上任意一点(点G与B、C不重合),AE⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.6、在菱形ABCD中,∠ABC=60,过B点作BD⊥DE,且与BC的延长线交于点E,四边形ABED是等腰梯形吗?请说说你的理由。
7、如图,在梯形ABCD 中,AD ∥BC ,AB DC =,若点M 为线段AD 上任意一点(M 与A 、D 不重合).问:当点M 在什么位置时,MB MC =,请说明理由.8、如图,在梯形ABCD 中,A D ∥BC ,E 、F 分别是两腰AB 、DC 的中点,AF 、BC 的延长线交于点G. (1)求证:△ADF ≌△GCF.(2)类比三角形中位线的定义,我们把EF 叫做梯形ABCD 的中位线。
阅读填空: 在△ABG 中:∵E 中AB 的中点 由(1)的结论可知F 是AG 的中点, ∴EF 是△ABG 的_______线∴EF=)(2121CG BC BG +=又由(1)的结论可知:AD=CG∴21=EF (______+________)因此,可将梯形中位线EF 与两底AD ,BC 的数量关系用文字语言表述为____________________________. 9、(1)猜想:依次连接矩形四边的中点得到的图形是一个______________; (2)证明你的猜想(要求作出图形,写出已知、求证)10、已知,矩形ABCD 中,4AB cm =,8BC cm =,AC 的垂直平分线EF 分别交AD 、BC 于点E 、F ,垂足为O .(1)如图10-1,连接AF 、CE .求证四边形AFCE 为菱形,并求AF 的长; (2)如图10-2,动点P 、Q 分别从A 、C 两点同时出发,沿AFB ∆和CDE ∆各边匀速运动一周.即点P 自A →F →B →A 停止,点Q 自C →D →E →C 停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A 、C 、P 、Q 四点为顶点的四边形是平行四边形时,求t 的值.②若点P 、Q 的运动路程分别为a 、b (单位:cm ,0ab ≠),已知A 、C 、P 、Q 四点为顶点的四边形是平行四边形,求a 与b 满足的数量关系式.ABC D E 图10-1O图10-2备用图。
1.如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC . (1)求证:OE =OF ;(2)若BC =AB 的长.2.如图,四边形ABCD 是菱形,对角线AC 、BD 相交于点O ,DH ⊥AB 于H ,连接OH , 求证:∠DHO =∠DCO.3.如图,点P 是菱形ABCD 对角线AC 上的一点,连接DP 并延长DP 交边AB 于点E ,连接BP 并延长BP 交边AD 于点F ,交CD 的延长线于点G . (1)求证:△APB ≌△APD ;(2)已知DF ︰FA =1︰2,设线段DP 的长为x ,线段PF 的长为y . ①求y 与x 的函数关系式;②当x =6时,求线段FG 的长.4.如图,在△ABC 中,∠ACB =90°,AC=BC ,点D 在边AB 上,连接CD ,将线段CD 绕点C 顺时针旋转90°至CE 位置,连接AE . (1)求证:AB ⊥AE ; (2)若BC 2=AD ·AB ,求证:四边形ADCE 为正方形.5.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点。
BE =2DE ,延长DE 到点F ,使得EF =BE ,连接CF .(1)求证:四边形BCFE 是菱形;(2)若CE =4,∠BCF =120°,求菱形BCFE 的面积. C A6.如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF .(1)求证:AF =DC ;(2)若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.7.如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB=5,AO=4,求BD 的长. 8.(1)如图1,已知△ABC ,以AB 、AC 为边向△ABC 外做等边△ABD 和等边△ACE ,连接BE ,CD 。
EMF DCB A 四边形证明题的经典问题1.已知:梯形ABCD 中,AB ∥CD ,E 为DA 的中点,且BC=DC+AB 。
求证:BE ⊥EC 。
2.已知:如图,在菱形ABCD 中,F 为边BC 的中点,DF 与对角线AC 交于点M ,过M 作ME ⊥CD 于点E,∠1=∠2。
(1)若CE=1,求BC 的长;(2)求证AM=DF+ME 。
3.如图,在正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AF 平分∠DAE (1)若正方形ABCD 的边长为4,BE=3,求EF 的长? (2)求证:AE=EC+CD .BD F EG H F E D C B A4.如图,在梯形ABCD 中,AD ∥BC ,∠ABC=90°,DG ⊥BC 于G,BH ⊥DC 于H ,CH=DH ,点E 在AB 上,点F 在BC 上,并且EF ∥DC 。
(1)若AD=3,CG=2,求CD;(2)若CF=AD+BF ,求证:EF=21CD.5.如图,等边△ABC 中,AO 是∠BAC 的角平分线,D 为AO 上一点,以CD 为一边且在CD 下方作等边△CDE ,连接BE . (1)求证:△ACD ≌△BCE ;(2)延长BE 至Q ,P 为BQ 上一点,连接CP 、CQ 使CP=CQ=5,若BC=8时,求PQ 的长.6.已知,如图,//,90,AD BC ABC AB BC ∠==,点E 是AB 上的点,45ECD ∠=,连接ED ,过D 作DF BC ⊥于F .(1)若75,3BEC FC ∠==,求梯形ABCD 的周长.(2)求证:ED BE FC =+;7.如图1,直角梯形ABCD 中,//AD BC ,90B ∠=,45D ∠=. (1)若6AB c m =,3sin 5BCA ∠=,求梯形ABCD 的面积;(2)如图2,若E 、F 、G 、H 分别是梯形ABCD 的边AB 、BC 、CD 、DA 上一点,且满足EF GH =,EFH FHG ∠=∠,求证:HD BE BF =+8.如图,梯形ABCD中,AB∥CD,AD⊥CD,AC=AB,∠DAC=30度.点E、F是梯形ABCD外的两点,且∠EAB=∠FCB,∠ABC=∠FBE,∠CEB=30°.(1)求证:BE=BF;(2)若CE=5,BF=4,求线段AE的长.9.如图,在梯形ABCD中,AD∥BC,AB=CD,分别以AB,CD为边向外侧作等边三角形ABE和等边三角形DCF,连接AF,DE.(1)求证:AF=DE;(2)若∠BAD=45°,AB=a,△ABE和△DCF的面积之和等于梯形ABCD的面积,求的长.BC45,(1)求证: DE-EF=BF(2)若AD=3,∠BAF=︒15;求∆AEF的面积FAB11.在ABCD中,对角线,⊥为延长线上一点且BD BC G BD∠的平分线相交于点E,∠、CBDABG∆为等边三角形,BAD连接AE BD F交于,连接GE。
第八部分图形与证明知识点的把握新的课程标准对图形与证明提出了如下要求:1。
了解证明的含义。
(1)理解证明的必要性;(2)通过具体的例子,了解定义、命题、定理的含义,会区分命题的条件(题设)和结论;(3)结合具体例子,了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立;(4)通过具体的例子理解反例的作用,知道利用反例可以证明一个命题是错误的;(5)通过实例,体会反证法的含义;(6)掌握用综合法证明的格式,体会证明的过程要步步有据。
2。
掌握以下基本事实,作为证明的依据。
(1)一条直线截两条平行直线所得的同位角相等;(2)两条直线被第三条直线所截,若同位角相等,那么这两条直线平行;(3)若两个三角形的两边及其夹角(或两角及其夹边,或三边)分别相等,则这两个三角形全等;(4)全等三角形的对应边、对应角分别相等。
3。
利用2中的基本事实证明下列命题。
(1)平行线的性质定理(内错角相等、同旁内角互补)和判定定理(内错角相等或同旁内角互补,则两直线平行);(2)三角形的内角和定理及推论(三角形的外角等于不相邻的两内角的和,三角形的外角大于任何一个和它不相邻的内角);(3)直角三角形全等的判定定理;(4)角平分线性质定理及逆定理;三角形的三条角平分线交于一点(内心);(5)垂直平分线性质定理及逆定理;三角形的三边的垂直平分线交于一点(外心);(6)三角形中位线定理;(7)等腰三角形、等边三角形、直角三角形的性质和判定定理;(8)平行四边形、矩形、菱形、正方形、等腰梯形的性质和判定定理。
4.通过对欧几里得《原本》的介绍,感受几何的演绎体系对数学发展和人类文明的价值。
命题方向经过对近几年各地的中考试题来看,直接考查本章知识的试题约占10%,普遍由圆结合其他的知识点进行考查.在主客观题中均有出现,往往是综合运用方程、函数、三角形、相似形等知识解决与圆有关的中考压轴题.除了考查几何图形的性质和应用外,还常常与应用问题、实际问题结合,对学生的探究能力和创新思维能力进行综合考查。
中考几何证明题四边形专题练习
一、知识考点归纳:
1.平行四边形判定定理:(1)一组对边平行且相等的四边形是平行四边形;(2)两组对边
分别相等的四边形是平行四边形;(3)有两组对边分别平行的四边形是平行四边形;(4)对角线互相平分的四边形是平行四边形.
2. 矩形、正方形:(正方形具有矩形和菱形的一切性质)
判定定理:(1)三个角是直角的四边形是矩形; (2)有一个角是直角的平行四边形是矩形。
(3)对角线相等的平行四边形是矩形;
3. 菱形判定定理:(1)四边相等的四边形是菱形;(2)有一组邻边相等的平行四边形是菱形;(3)对角线互相垂直且平分的四边形是菱形;(4)对角线互相垂直的平行四边形是菱形.
二、中考真题专题训练
1.(2014乐山,第19题9分)如图,在△ABC中,AB=AC,四边形ADEF是菱形,求证:BE=CE.
2.(2014年广西钦州,第20题7分)如图,在正方形ABCD中,E、F分别是AB、BC上的点,且AE=BF.求证:CE=DF.
3. (2014乐山,第21题10分)如图,在梯形ABCD中,AD∥BC,∠ADC=90°,∠B=30°,CE⊥AB,垂足为点E.若AD=1,AB=2,求CE的长.
4.(2014青岛,第21题8分)已知:如图,ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;
(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形请说明理由.
5.(2014四川广安,第19题6分)如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PE C.
6.(2014海南,第23题13分)如图,正方形ABCD的对角线相交于点O,∠CAB的平分线分别交BD,BC于点E,F,作BH⊥AF于点H,分别交AC,CD于点G,P,连接GE,GF.
(1)求证:△OAE≌△OBG;
(2)试问:四边形BFGE是否为菱形若是,请证明;若不是,请说明理由;
7.(2014宁夏,第22题6分)在平行四边形ABCD中,将△ABC沿AC对折,使点B落在B′处,A B′和CD相交于点O.求证:OA=O C.
8.(10分)(2013·莱芜)如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连接DE. (1)证明:DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
9.(10分)(2013·白银)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.
(1)BD与CD之间有什么数量关系,并说明理由;
(2)当△ABC满足什么条件时,四边形AFBD是矩形并说明理由.
10. (2014·临夏州)点D,E分别是不等边三角形ABC(即AB≠BC≠AC)的边AB,AC的中点.O是△ABC所在平面上的动点,连接OB,OC,点G,F分别是OB,OC的中点,顺次连接点D,G,F,E.
(1)如图,当点O在△ABC的内部时,求证:四边形DGFE是平行四边形;
(2)若四边形DGFE是菱形,则OA与BC应满足怎样的数量关系(请直接写出答案,不用证明)
11. (2014·梅州)如图,在正方形ABCD 中,E 是AB 上一点,F 是AD 延长线上一点,且DF =BE.
(1)求证:CE =CF ;
(2)若点G 在AD 上,且∠GCE =45°,则GE =BE +GD 成立吗为什么
12. (10分)(2013·呼和浩特)如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,BE =1,∠AEP =90°,且EP 交正方形外角的平分线CP 于点P ,交边CD 于点F.
(1)FC EF 的值为________; (2)求证:AE =EP ;
(3)在AB 边上是否存在点M ,使得四边形DMEP 是平行四边形若存在,请给予证明;若不存在,请说明理由.
13.(2014年贵州安顺,第23题12分)已知:如图,在△ABC中,AB=AC,AD⊥BC,垂足为点D,AN 是△ABC外角∠CAM的平分线,CE⊥AN,垂足为点E。
(1)求证:四边形ADCE为矩形;
(2)当△ABC满足什么条件时,四边形ADCE是一个正方形并给出证明.
14.(2014浙江绍兴,第23题6分)(1)如图,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.
(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.。