1
2
2.等腰三角形的性质及其应用 【例2如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点 E,DF⊥AC于点F.求证:DE=DF.
分析:利用等腰三角形三线合一的性质及角平分线的性质进行证 明.
1
2
证明:连接AD(图略). ∵D为BC的中点,AB=AC, ∴AD平分∠BAC. 又DE⊥AB,DF⊥AC, ∴DE=DF. 点拨:此题解法灵活,也可以直接利用等腰三角形的性质证明 △BDE≌△CDF.另外,作底边上的中线(或顶角的平分线、底边上的 高)是解决与等腰三角形有关问题时常用的辅助线.
相等
(简写成“等边对等角”);
性质2:等腰三角形的顶角平分线、 底边上的中线 、底边
上的高相互重合(简写成“三线合一”).
2.等腰三角形是轴对称图形,底边上的中线(顶角平分线、底边上
的高)所在的 直线 就是它的对称轴.
知识梳理 预习自测
1.下列说法正确的是( ). A.等腰三角形的高、中线、角平分线互相重合 B.顶角相等的两个等腰三角形全等 C.等腰三角形的一边不可以是另一边的2倍 D.等腰三角形的两个底角相等
.
66°
关闭
答案
1
2
1.等腰三角形的边、角的计算 【例1】 已知一个等腰三角形的两角分别为(2x-2)°,(3x-5)°,求这 个等腰三角形各角的度数. 分析:应考虑3种情况,即(2x-2)°作顶角或(3x-5)°作顶角或(2x-2)° 和(3x-5)°均不是顶角. 解:若2x-2=3x-5,得x=3. 故三角形的三个内角分别为4°,4°,172°; 若2(2x-2)=180-(3x-5),得x=27. 故三角形的三个内角分别为52°,52°,76°; 若2(3x-5)=180-(2x-2),得x=24. 故三角形的三个内角分别为46°,67°,67°.