高二化学配合物是如何形成的
- 格式:pdf
- 大小:466.33 KB
- 文档页数:8
第二单元配合物是如何形成的【课标要求】1.理解配合物的概念、组成;2.掌握常见配合物的空间构型及其成因;3.掌握配合物的性质特点及应用。
【知识要点】1. 孤电子对:分子或离子中, 就是孤电子对.2. 配位键的概念:在共价键中,若电子对是由而跟另一个原子共用,这样的共价键叫做配位键。
成键条件:一方有另一方有。
3.写出下列微粒的结构式NH4+ H3O+H2SO4HNO3[活动与探究]:实验1:向试管中加入2mL5%的硫酸铜溶液,再逐滴加入浓氨水,振荡,观察。
现象:原理:(用离子方程式表示)、实验2:取5%的氯化铜、硝酸铜进行如上实验,观察现象并分析原理。
[交流讨论] Cu2+与4 个NH3分子是如何结合生成[Cu(NH3)4]2+的?⑴用结构式表示出NH3与H+反应生成NH4+的过程:⑵试写出[Cu(NH3)4]2+的结构式:一、配合物1、概念:由提供的配位体和提供的中心原子以结合形成的化合物。
2、形成条件:中心原子必须存在(通常在成键时进行杂化)配位体必须存在二、配合物的组成①中心原子——配合物的中心。
常见的是过渡金属的原子或离子,如:(也可以是主族元素阳离子,如:)②配位体——指配合物中与中心原子结合的离子或分子。
内界常见的有:阴离子,如:中心分子,如:(配位原子——指配合物中直接与中心原子相联结的配位体中的原子,它含有孤电子对)③配位数——配位体的数目外界:内界以外的其他离子构成外界。
有的配合物只有内界,没有外界,如:。
注:(1)配离子的电荷数=中心离子和配位体总电荷的代数和,配合物整体(包括内界和外界)应显电中性。
(2)配合物的内界和外界通过离子键结合,在水溶液中较易电离;中心原子和配位体通过配位键结合,一般很难电离。
例:1、KAl(SO4)2和Na3[AlF6]均是复盐吗?两者在电离上有何区别?试写出它们的电离方程式。
2、现有两种配合物晶体[Co(NH3)6]Cl3和[Co(NH3)5Cl]Cl2,一种为橙黄色,另一种为紫红色。
形成配合物的条件
当两种不同的物质结合在一起形成一个新的物质时,就称之为配合物。
配合物是由一种原子、分子或零件的组合而成,并具有新的物理和化学性质。
一般来说,两种不同的物质才能形成一个配合物。
它们聚合在一起,共同形成一种新的物质,在其结构和性质上与它们本身是不同的,从而达到了更好的用途。
形成配合物的条件有很多,主要有物质的性质、原子的构型和能量需要等。
首先,物质的性质是形成配合物的重要因素。
配合物的物质一般有感应力和重力的相互作用,两种物质的性质要相同才能形成配合物。
譬如,只有具有相同电性的两种物质,才能形成化学配合物。
其次,原子的构型也是形成配合物的关键因素。
原子之间要形成配合物,相互作用的力必须要有足够的强度,两个原子要有合适的构型才能形成配合物,譬如电子的屏蔽性、重力等。
最后,能量要求也是非常重要的一个因素。
配合物的形成要消耗能量,由于物质之间存在电势、重力等相互作用,当相互作用的能量大于拆分能量时,两个物质才能形成配合物。
以上就是形成配合物的条件。
配合物具有更复杂的结构和更高的功效,为我们的生活和工作带来了很大的帮助。
为了让配合物达到最佳效果,我们必须密切关注以上涉及到的形成配合物的条件。
- 1 -。
配合物的制备一、配合物的概念及意义配合物是由中心金属离子和周围的一些分子或离子组成的化合物。
它们具有独特的化学性质和生物活性,因此在药物、催化剂、材料等领域得到了广泛应用。
二、配合物的制备方法1. 直接合成法直接将金属离子和配体在适当条件下混合反应,生成配合物。
例如:FeCl3 + 6H2O + 3NH3 → [Fe(NH3)6]Cl3。
2. 水热法在高温高压水溶液中进行反应,利用水分子作为配体参与反应。
例如:CuSO4·5H2O + NH4NO3 + H2O → [Cu(H2O)6](NO3)2。
3. 溶剂热法在有机溶剂中进行反应,利用有机分子作为配体参与反应。
例如:Ni(NO3)2·6H2O + 4,4’-bipyridine + C2H5OH →[Ni(bpy)2](NO3)2。
4. 气相沉积法将金属源和有机源混合,在高温下进行气相沉积形成薄膜或纳米颗粒。
例如:Fe(CO)5 + CH3OH → Fe(CH3O)5。
三、配合物制备中需要注意的事项1. 配体选择选择合适的配体是制备高效、高产率配合物的关键。
一般来说,配体应具有较强的配位能力和较好的溶解性。
2. 反应条件控制反应条件包括反应温度、反应时间、反应物比例等,需要根据具体情况进行调整。
同时还需要注意反应过程中氧气和水分的影响,避免产生不必要的副产物。
3. 结晶与分离在制备过程中,需要通过结晶、沉淀或萃取等方法将目标产物从反应混合物中分离出来。
这一步骤需要掌握合适的技术,并注意对产物进行干燥和储存。
四、结语通过以上介绍,我们可以看出配合物制备是一个复杂而又精细的过程。
在实际操作中,需要掌握良好的化学基础知识和实验技能,并注重实验细节和安全操作。
只有这样才能保证得到高质量、高产率的目标产品。
配合物的生成和性质.新doc.doc
分子组装是结构化有机分子体系中最基本的方法之一,从两个或以上有机分子及/或非有机物中形成一种新的正面反面结构。
配合物就是通过分子组装生成的一类特殊分子,它所拥有的各种物理化学性质和晶体结构与普通分子有很大不同。
因此,研究配合物的生成和性质也就十分重要了。
配合物的形成有三种不同的方式:分子的排列、结构变化和它们之间的氢键作用。
第一种方式是分子的排列,这种排列是通过两个分子间的化学键的断裂结合,由一种有序的排列生成新的正反面结构而形成的,这种新形成的结构就是配合物。
第二种方式是结构变化,金属离子和有机分子之间会发生结构变化,而这些结构变化就会改变两种分子间的相互作用,使之形成了新的配合物。
第三种方式是氢键作用,惰性分子会通过氢键作用,在许多有机物之间形成配合物。
配合物拥有独特的物理化学性质。
它们的熔点、沸点远高于普通有机分子,它们的沸点一般高达一千多摄氏度。
它们的形貌是一种块体晶体,具有固有的晶体结构,具有螺旋形,线型等不同的晶体形态。
在外界条件和环境下,它们也可以表现出电磁学、光学、热力学等性质。
此外,配合物也可用于离子和抗菌药物的研究和细胞分子生物学的研究,以及各种电化学应用,如摩擦磨损和腐蚀保护剂、发光材料和抗氧化剂等。
从上述可以看出,配合物不仅在分子组装的发展中具有非常重要的作用,也在其他科学领域的研究和应用中发挥着巨大的作用,因此,在未来的研究中,深入研究配合物的生成和性质,为今后分子组装及其它领域的研究奠定坚实基础是十分必要的。
配合物的制备方法1、常温溶液挥发法:适用于溶解性好的原料和反应快的体系2、常规加热溶液法:适用于微溶剂原料和反应慢的体系,60—80℃3、水热法:适用于热稳定性高的物质,有利于产生特殊结构的单晶;一般在常规无法培养单晶时使用(120—170℃)有时也可用于晶体预处理(80—110℃)4、扩散法:用于合成难溶性配合物5、溶剂选择:依次顺序[1]水;[2]乙醇;[3]甲醇;[4]水—乙醇;[5]水—甲醇;[6]乙腈;[7]DMF(N,N-二甲基甲酰胺)或DMSO(二甲基亚砜)或DMSO(二甲亚砜);[8]或其他混合溶剂;[9]四氢呋喃水或醇的用量合计200ml左右,可以适当增加,取决于溶解性DMF的用量要小,一般合计10ml,配体和金属盐各用5ml溶解DMF可直接用于配合物的合成,也可在后续用于重结晶原理:利用水热或溶剂热,在高温高压下,是体系经过一个析出晶核,生长成长成单晶的过程,因高温高压条件下,可发生许多不可预料的反应。
方法: 将原料按组合比例放入高压釜中,选择好溶剂,利用溶剂的沸点选择体系的温度,高压釜密封好后放入烘箱中,调好温度,反应1—4小时均可。
然后,关闭烘箱,冷至室温,打开反应釜,观察情况按如下过程处理:1、没有反应——重新组合比例,调节条件,包括换溶剂,调PH值,加入新组分等。
2、反应但全是粉末,且粉末什么都不溶解,首先从粉末中挑选单晶或晶体,若不成,A:改变条件,换配体或加入新盐,如季铵盐,羧铵盐等;B: 破坏性试验,设法使其反应变成新物质。
3、部分固体,部分在溶液中:首先通过颜色或条件推断两部分的大致组分,是否相同组成,固体挑单晶,溶液挥发培养晶体,若组成不同固体按1或2的方法处理。
4、全部为溶液——旋蒸得到固体,将固体提纯,将主要组成纯化,再根据特点接上述单晶培养方法培养单晶。
在单晶制备时,经常会发现配位一发生,产生大量的微晶,再去挥发母液,怎么都长不大,可以找一根长玻璃管,底下注入盐的溶液,上面加一个纯溶剂缓冲层(第三种溶剂,如苯,正己烷,乙醚等减缓上下两种溶剂的扩散速率可长可短),玻璃管越细,两层间的接触面越小,扩散速度降低,有效避免新手一扩散完就出沉淀的局面。
第二单元配合物的形成和应用目标与素养:1.知道简单配合物的基本组成和形成条件。
(微观探析)2.理解配合物的结构与性质之间的关系。
(宏观辨识)3.认识配合物在生产生活和科学研究方面的广泛应用。
(社会责任)一、配合物的形成1.按表中实验操作步骤完成实验,并填写下表:实验操作步骤实验现象三支试管中先生成蓝色沉淀之后随浓氨水的滴入,沉淀逐渐溶解,最后变为深蓝色溶液结论生成Cu(OH)2蓝色沉淀且沉淀溶于浓氨水(1)写出上述反应的离子方程式。
Cu2++2NH3·H2O===Cu(OH)2↓+2NH+4;Cu(OH)2+4NH3·H2O===[Cu(NH3)4]2++2OH-+4H2O。
(2)[Cu(NH3)4]2+(配离子)的形成:氨分子中氮原子的孤电子对进入Cu2+的空轨道,Cu2+与NH3分子中的氮原子通过共用氮原子提供的孤电子对形成配位键。
配离子[Cu(NH3)4]2+可表示为(如下图)。
2.配位化合物的概念由提供孤电子对的配位体与接受孤电子对的中心原子以配位键结合形成的化合物。
配合物是配位化合物的简称。
如[Cu(NH3)4]SO4、[Ag(NH3)2]OH、NH4Cl等均为配合物。
3.配合物[Cu(NH3)4]SO4的组成如以下图所示:(1)中心原子是提供空轨道的金属离子(或原子)。
(2)配位体是提供孤电子对的阴离子或分子。
(3)配位数是直接与中心原子形成的配位键的数目。
(4)内界和外界:配合物分为内界和外界。
4.形成条件(1)配位体有孤电子对;如中性分子H2O、NH3、CO等;离子有F-、Cl-、CN-等。
(2)中心原子有空轨道;如Fe3+、Cu2+、Ag+、Zn2+等。
5.配合物异构现象(1)产生异构现象的原因①含有两种或两种以上配位体。
②配位体空间排列方式不同。
(2)(3)异构体的性质顺、反异构体在颜色、极性、溶解性、活性等方面都有差异。
二、配合物的应用1.在实验研究方面的应用(1)检验金属离子:如可用KSCN溶液检验Fe3+的存在,Fe3++n SCN-[Fe(SCN)n](3-n)+(血红色溶液);可用[Ag(NH3)2]OH溶液检验醛基的存在。
形成配合物的条件
配合物通常是一种存在于有机化学中的重要现象,它是由两种不同的分子之间的特殊
作用形成的化学结构。
构成配合物的条件很复杂,其特定结构的特点依赖于其形成的机制,可以根据以下几个方面讨论:
一、离子或分子大小配角相差不大:形成配合物需要相互作用的两种分子之间有一定
的距离,如果两种分子过大,则可能不容易相互作用而形成配合物。
另外,分子形状不佳,易受其他外部分子干扰,也不利于形成配合物。
二、具有足够的电子密度:由于配合物是两种分子之间的作用产生的,这种作用是一
种电子的作用。
因此,两种分子形成的配合物,必须具有足够的电子密度,以促进有机反
应的发生。
当金属离子和有机分子存在时,由于金属离子具有充足的电子,这将有助于形
成配合物。
三、足够的能量消耗:形成配合物必须消耗一定的能量,因此,反应的活化能一定不
能太高。
如果能量过高,由于反应的能量消耗较快,反应不容易发生;反之,能量足够低,可以便得到所需要的化合物。
四、选择性作用:物质有可能发生化学反应的分子有很多,有些分子之间特别容易产
生反应,有些分子之间则不容易产生反应。
所以说,形成配合物的条件也包括分子之间具
有选择性作用的条件,即可以有效地形成要求的配合物。
配合物的定义与组成一、引言配合物,作为一类独特的化合物,在现代化学领域中占据了重要地位。
其特性主要表现在中心原子与配位体的协同作用上。
本篇文档将对配合物的定义及组成进行深入探讨。
二、配合物的定义配合物,又称络合物,是由中心原子或离子和围绕它的配位体通过配位键结合而成的化合物。
中心原子或离子称为络合物的中心,通常具有可提供空轨道的d电子或s电子,从而形成配位键。
配位体则是含有孤对电子的分子或离子,通过提供孤对电子与中心原子形成配位键。
三、配合物的组成1.中心原子或离子:中心原子或离子是配合物的核心,通过提供空轨道与配位体形成配位键。
中心原子通常具有未填满的d电子或s电子轨道,如过渡金属元素(Fe、Co、Ni、Cu等)。
2.配位体:配位体是含有孤对电子的分子或离子,通过提供孤对电子与中心原子形成配位键。
常见的配位体包括卤素离子、含氧酸根离子、氨分子等。
3.配位数:配位数是指一个中心原子所能结合的配位体的数目。
例如,在[Cu(NH3)4]SO4中,Cu2+的配位数为4,表示有四个NH3分子与一个Cu2+结合。
4.外界和内界:络合物中,通过配位键与中心原子结合的配位体称为外界,而与外界配位体结合的络离子则称为内界。
例如,[Cu(NH3)4]SO4中,SO42-为外界,而[Cu(NH3)4]2+为内界。
5.络离子的电荷:络离子的电荷数等于中心离子的电荷数加上配位体的电荷数。
例如,[Cu(NH3)4]2+中,Cu2+带有2个电荷,由于有四个NH3分子与之结合,故络离子的电荷数为+2。
四、总结配合物是由中心原子或离子和围绕它的配位体通过配位键结合而成的化合物。
其组成包括中心原子或离子、配位体、配位数、外界和内界以及络离子的电荷等方面。
深入理解配合物的组成有助于我们更好地掌握其性质和用途。
第二单元配合物是如何形成的复习:1. 孤电子对:分子或离子中, 就是孤电子对.2. 配位键的概念:在共价键中,若电子对是由而跟另一个原子共用,这样的共价键叫做配位键。
成键条件:一方有另一方有。
3.写出下列微粒的结构式NH4+ H3O+H2SO4HNO3[Cu(H2O) 4]2+的结构简式为:在四水合铜离子中,铜离子与水分子之间的化学键是由水分子中的O原子提供孤对电子对给予铜离子(铜离子提供空轨道),铜离子接受水分子的孤对电子形成的,这类“电子对给予—接受的键”被称为配位键。
[Cu(NH3) 4]2+中Cu 2+和NH3 •H2O是怎样结合的?一、配合物:1、定义由提供孤电子对的配体与接受孤电子对的中心原子以配位键结合形成的化合物称为配位化合物简称配合物。
2、形成条件(1) 中心原子(或离子)必须存在空轨道。
(2)配位体具有提供孤电子对的原子。
3、配合物的组成从溶液中析出配合物时,配离子经常与带有相反电荷的其他离子结合成盐,这类盐称为配盐。
配盐的组成可以划分为内界和外界。
配离子属于内界,配离子以外的其他离子属于外界。
内、外界之间以离子键结合。
A、内界:一般加[ ]表示。
(1)中心原子(或离子)——提供空轨道,接受孤电子对的原子(或离子),也称形成体。
常见的有:①过渡元素阳离子或原子,如Fe3+、Fe2+、Cu2+、Zn2+、Ag+、Ni、②少数主族元素阳离子,如Al3+③一些非金属元素,如Si、I(2)配位体——指配合物中与中心原子结合的离子或分子。
(配位原子——指配合物中直接与中心原子相联结的配位体中的原子,它含有孤电子对)常见的有:阴离子,如X-(卤素离子)、OH-、SCN-、CN-中性分子,如H2O、NH3、CO、(3)配位数——直接与中心原子相连的配位原子个数。
一般为2、4、6、8,最常见为4、6常见金属离子的配位数1价金属离子2价金属离子3价金属离子Cu+2,4 Ca2+ 6 Al3+4,6Ag+ 2 Mg2+ 6 Cr3+ 6Au+2,4 Fe2+ 6 Fe3+ 6Co2+4,6 Co3+ 6Cu2+4,6 Au3+ 4Zn2+4,6(2)外界:除内界以外的部分(内界以外的其他离子构成外界)。
配合物合成是指通过化学反应将中心原子(通常是金属离子)与配体结合形成配合物的过程。
配合物是由中心原子和周围的配体组成的复合物,其中配体通过配位键与中心原子结合。
以下是一些常见的配合物合成方法:
1.直接合成法:将中心原子的盐溶液与配体的溶液混合,在适当的
条件下反应,使中心原子与配体结合形成配合物。
这种方法简单直接,但需要选择合适的反应条件和配比。
2.取代反应:通过取代配体上的原子或基团来合成新的配合物。
例
如,可以用一个新的配体取代已存在配合物中的一个配体,形成新的配合物。
3.氧化还原反应:利用氧化还原反应改变中心原子的氧化态,从而
形成不同的配合物。
这种方法常用于合成具有不同电子构型的配合物。
4.模板法:在存在模板分子的情况下,通过与模板分子的相互作用,
使中心原子与配体结合形成特定结构的配合物。
模板法可以控制配合物的结构和立体构型。
5.水热/溶剂热合成:在高温高压的水或有机溶剂中进行反应,这种
方法可以提供特殊的反应环境,促进配合物的形成。
配合物的合成需要选择合适的反应条件、配体和中心原子,并且需要对反应进行监控和表征,以确保合成的配合物具有预期的结构和性质。
不同类型的配合物可能需要不同的合成方法,因此具体的合成过程会根据目标配合物的特点而有所不同。
高中配合物的实验原理
高中化学中,配合物实验的原理是通过配位作用将金属离子与配体结合形成稳定的配合物。
在实验中,通常会使用乙二胺四乙酸(EDTA)等配体与金属离子配位,形成稳定的络合物。
这些络合物可以通过比色法、电导法、滴定法等方法来进行分析和检测。
在实验中,首先需要准备好所需的配体和金属离子,然后将它们混合在一起,观察是否会出现颜色变化或者出现沉淀。
如果出现颜色变化,可以通过比色法来测定其吸收光谱,从而确定络合物的性质。
如果出现沉淀,则可以通过滴定法来确定金属离子和配体的配位比例。
除了上述方法,还可以通过电导法、热分析法、核磁共振法等方法来对配合物进行分析和检测。
这些实验可以帮助学生深入理解化学中的配位作用和配合物的性质,同时也可以培养学生的实验技能和科学思维能力。