第三章量子力学
- 格式:doc
- 大小:40.00 KB
- 文档页数:2
第三章 力学量用算符表达§3.1 算符的运算规则一、算符的定义:算符代表对波函数进行某种运算或变换的符号。
ˆAuv = 表示Â把函数u 变成 v , Â就是这种变换的算符。
为强调算符的特点,常常在算符的符号上方加一个“^”号。
但在不会引起误解的地方,也常把“^”略去。
二、算符的一般特性 1、线性算符满足如下运算规律的算符Â,称为线性算符11221122ˆˆˆ()A c c c A c A ψψψψ+=+ 其中c 1, c 2是任意复常数,ψ1, ψ2是任意两个波函数。
例如:动量算符ˆpi =-∇, 单位算符I 是线性算符。
2、算符相等若两个算符Â、ˆB对体系的任何波函数ψ的运算结果都相同,即ˆˆA B ψψ=,则算符Â和算符ˆB 相等记为ˆˆAB =。
3、算符之和若两个算符Â、ˆB对体系的任何波函数ψ有:ˆˆˆˆˆ()A B A B C ψψψψ+=+=,则ˆˆˆA B C +=称为算符之和。
ˆˆˆˆAB B A +=+,ˆˆˆˆˆˆ()()A BC A B C ++=++ 4、算符之积算符Â与ˆB之积,记为ˆˆAB ,定义为 ˆˆˆˆ()()ABA B ψψ=ˆC ψ= ψ是任意波函数。
一般来说算符之积不满足交换律,即ˆˆˆˆABBA ≠。
5、对易关系若ˆˆˆˆABBA ≠,则称Â与ˆB 不对易。
若A B B Aˆˆˆˆ=,则称Â与ˆB 对易。
若算符满足ˆˆˆˆABBA =-, 则称ˆA 和ˆB 反对易。
例如:算符x , ˆx pi x∂=-∂不对易证明:(1) ˆ()x xpx i x ψψ∂=-∂i x x ψ∂=-∂ (2) ˆ()x px i x x ψψ∂=-∂i i x xψψ∂=--∂ 显然二者结果不相等,所以:ˆˆx x xpp x ≠ ˆˆ()x x xpp x i ψψ-= 因为ψ是体系的任意波函数,所以ˆˆx x xpp x i -= 对易关系 同理可证其它坐标算符与共轭动量满足ˆˆy y ypp y i -=,ˆˆz z zp p z i -= 但是坐标算符与其非共轭动量对易,各动量之间相互对易。
第三章 量子力学中的力学量§1.1 学习指导实验表明,微观粒子具有波粒二象性,在传播过程中出现干涉和衍射现象,显示出波动的特性;在相互作用过程中出现碰撞,能量和动量守恒,显示出粒子性。
量子力学理论中用波函数来描述微观粒子的状态,很好地解释了微观粒子波动性的一面,这在上一章中已经作了介绍。
本章主要介绍量子力学中力学量的描述,来处理其粒子性的一面。
在经典力学中,粒子的状态用广义坐标和广义动量来描述,力学量是广义坐标和动量的函数。
在量子力学中,粒子的状态用波函数来描述,坐标和动量成为作用在波函数上的算符。
按照对应原理,量子力学中的力学量应该是坐标算符和动量算符的函数,也是一个作用在波函数上的算符。
根据实验,微观粒子的波函数满足叠加原理,因此力学量算符必须是线性算符;力学量的测量结果为相应算符的本征值,它们都是实数,因此力学量算符必须是厄密算符。
用波函数来描述微观粒子的状态,用线性厄密算符(以下称厄密算符)来描述微观粒子的力学量,两者相互配合,形成了一个可以全面处理微观粒子波粒二象性特点的完整理论。
本章的主要知识点有 1.力学量算符 1)力学量的描述量子力学中的力学量Q 用厄密算符ˆQ 表示,位置算符ˆrr =v v 和动量算符ˆp i =-∇vh 是量子力学中最基本的力学量算符,而能量算符,即哈密顿算符122ˆ()mHp U r =+v是最重要的力学量算符。
厄密算符ˆQ是自共轭的,即ˆˆQ Q +=。
对于任意两个态函数,ψϕ,都有 ˆˆ()Q d Q d ψϕτψϕτ**=⎰⎰ (3-1)厄密算符ˆQ 的本征值nq 为实数,对应的本征函数()n r ϕv满足本征方程 ˆ()()n n nQ r q r ϕϕ=v v , (3-2) 本征函数之间具有正交性。
归一化的本征函数()n r ϕv满足正交归一性关系,()()m n m n r r d ϕϕτδ*=⎰v v, (3-3)其集合具有完备性(')()(')n n nr r r r ϕϕδ*=-∑v v v v。
第三章表象理论本章提要:本章讨论态矢和算符的具体表示形式。
首先,重点讨论了本征矢和本征函数、态矢量和波函数之间的关系,指出了函数依赖于表象。
之后,引入投影算符,讨论了不同表象下的态矢展开,尤其是位置和动量表象,并顺带解决了观测值问题。
接着,用投影算符统一了态矢内积与函数内积。
最后,简单介绍了一些矩阵力学的内容。
1.表象:完备基的选择不唯一。
因此可以选用不同的完备基把态矢量展开。
除了态矢量,算符在不同表象下的具体表示也不同。
因此,我们把态矢量和算符的具体表示方式统称为表象 ①使用力学量表象:我们还知道每个力学量对应的(厄米)算符的本征矢都构成一组完备基。
若选用算符G 的(已经标准正交化(离散谱)或规格正交化(连续谱))的本征矢作为态空间的基,就称为使用G 表象的描述②波函数:把态矢展开式中各项的系数(“坐标”)定义为G 表象下的波函数③本征函数与本征矢的关系:设本征方程ψ=ψλQˆ又可写作()()G Q G Q ψψ=ˆ 则两边乘G 有()()ψ===ψ=ψ=ψQ G Q G Q G Q Q G QG ˆˆˆψψ 因此:本征函数()ψ=G G ψ就是Q ˆ的本征态ψ在表象G ˆ下的“坐标”(波函数) 如果离散谱:()ψ=i i G ψ就是Q ˆ的本征态ψ在表象G ˆ的iG 方向上的“坐标” ④结论:算符和态矢量的抽象符号表示不依赖于表象,具体形式依赖于表象选择但本征函数和波函数相当于“坐标”,依赖于态矢(向量)和表象(基)*注意:第二章在展开态矢量、写算符和本征函数时使用都是位置表象(也称坐标表象)2.投影算符:我们将使用这个算符统一函数与矢量的内积符号(1)投影算符:令()()连续谱离散谱dG G Gi i Pi⎰∑==ˆ,称为投影算符(2)算符约定:求和或积分遍历算符G 的标准(或规格)完备正交基矢量(3)本征方程:ψ=ψ=ψI Pˆˆ,表明投影算符就是单位算符 (4)单位算符代换公式:()()连续谱离散谱dQ G G i i I i⎰∑==ˆ3.不同表象下的态矢量展开和波函数:①离散谱:∑=ii iF Fψψ,ψψi i F =为Fˆ表象下的波函数 {}i ψ可表示为一列矩阵,第i 行元素就是ψψi i F =观测值恰为i Q 的概率:用Qˆ表象展开∑=ii i Q Q ψψ,22Pr ψψi i Q ob ==概率归一等价于波函数归一∑==ii 12ψψψ算符Qˆ的观测平均值:ψψψQ Q Q ii i ˆˆ2==∑②连续谱:⎰==dG G GIψψψˆ,ψψG =称为Gˆ表象下的波函数观测值落在dQ Q Q +~范围内的概率:用Qˆ表象展开⎰=dQ Q Qψψ,dQ Q dQ ob 22Pr ψψ==,满足概率归一⎰=12dQ ψ算符Qˆ的观测平均值:()()ψψψQ dQ Q Q Q ˆ,ˆ2==⎰③本征函数和态矢量的内积统一:设f f =,g Q g =,有()g f gdQ f dQ g Q f Q dQ g Q f g I f g f ,ˆ**=====⎰⎰⎰结论:量子态g f 在同一表象Q 下投影得波函数g f ,,则()g f g f ,=算符对本征函数作用:()()ϕψϕψϕψϕψϕψQ Q QQ Qˆˆˆ,ˆˆ,==== 示例:()ϕψϕψϕψϕψϕψϕψp dx pdx x p dx p x x p I pˆ,ˆˆˆˆˆˆ**=====⎰⎰⎰④位置表象与动量表象:4.力学量的测量值问题:①当待测系统处于算符本征态:此时ψ=ψQ Qˆ,对系统中所有粒子的测量结果都是本征态ψ对应的本征值i Q ,显然i Q 的统计平均值还是i Q ,iQ Q =ˆ。
第三章习题解答3.1 一维谐振子处在基态t i x e x ωαπαψ2222)(--=,求:(1)势能的平均值2221x U μω=; (2)动能的平均值μ22p T =;(3)动量的几率分布函数。
解:(1) ⎰∞∞--==dx e x x U x 2222222121απαμωμω μωμωππαμω ⋅==⋅=2222221111221ω 41= (2) ⎰∞∞-==dx x p x p T )(ˆ)(2122*2ψψμμ ⎰∞∞----=dx e dx d e x x 22222122221)(21ααμπα ⎰∞∞---=dx e x x 22)1(22222αααμπα][222222222⎰⎰∞∞--∞∞---=dx e x dx e x xααααμπα]2[23222απααπαμπα⋅-=μωμαμαπαμπα⋅===442222222 ω 41=或 ωωω 414121=-=-=U E T (3) ⎰=dx x x p c p )()()(*ψψ 212221⎰∞∞---=dx ee Px i xαπαπ⎰∞∞---=dx eePx i x222121απαπ⎰∞∞--+-=dx ep ip x 2222)(21 21αααπαπ ⎰∞∞-+--=dx ee ip x p 222222)(212 21αααπαπ παπαπα22122p e -=22221απαp e-=动量几率分布函数为 2221)()(2απαωp ep c p -==#3.2.氢原子处在基态0/301),,(a r e a r -=πϕθψ,求:(1)r 的平均值;(2)势能re 2-的平均值;(3)最可几半径; (4)动能的平均值;(5)动量的几率分布函数。
解:(1)ϕθθπτϕθψππd rd d r re a d r r r a r sin 1),,(0220/23020⎰⎰⎰⎰∞-==⎰∞-=0/233004dr a r a a r04030232!34a a a =⎪⎪⎭⎫⎝⎛=2203020/232020/232202/2322214 4 sin sin 1)()2(000a e a a e drr ea e d drd r e a e d drd r e ra e r e U a r a r a r -=⎪⎪⎭⎫ ⎝⎛-=-=-=-=-=⎰⎰⎰⎰⎰⎰⎰∞-∞-∞-ππππϕθθπϕθθπ(3)电子出现在r+dr 球壳内出现的几率为 ⎰⎰=ππϕθθϕθψω02022 sin )],,([)(d drd r r dr r dr r e a a r 2/23004-=2/23004)(r e a r a r -=ω 0/2030)22(4)(a r re r a a dr r d --=ω令 0321 , ,0 0)(a r r r drr d =∞==⇒=,ω 当0)( ,0 21=∞==r r r ω时,为几率最小位置/22203022)482(4)(a r e r a r a a dr r d -+-=ω08)(230220<-=-=e a dr r d a r ω ∴ 0a r =是最可几半径。
第三章一维定态问题3.1)设粒子处在二维无限深势阱中,⎩⎨⎧∞<<<<=其余区域,0,0 ,0),(by a x y x V 求粒子的能量本征值和本征波函数。
如b a = ,能级的简并度如何? 解:能量的本征值和本征函数为m E y x n n 222π =)(2222bn an y x +,2,1, ,sinsin2==y x y x nn n n byn axn abyx ππψ若b a =,则 )(222222y x n nn n ma E yx +=πayn axn ay x nn yx ππψsinsin2=这时,若y x n n =,则能级不简并;若y x n n ≠,则能级一般是二度简并的(有偶然简并情况,如5,10==y x n n 与2,11''==y x n n )3.2)设粒子限制在矩形匣子中运动,即⎩⎨⎧∞<<<<<<=其余区域 ,0,0,0 ,0),,(cz b y a x z y x V 求粒子的能量本征值和本征波函数。
如c b a ==,讨论能级的简并度。
解:能量本征值和本征波函数为)(222222222cn bn an mnn n Ez y x zyx++=π ,,3,2,1,, ,sinsinsin8==z y x z y x n n n czn byn axn abcn n n zy x πππψ当c b a ==时,)(2222222z y x n n n mann n Ezyx++=πayn ayn axn a n n n z y x zy x πππψsinsinsin223⎪⎭⎫⎝⎛=z y x n n n ==时,能级不简并;z y x n n n ,,三者中有二者相等,而第三者不等时,能级一般为三重简并的。
z y x n n n ,,三者皆不相等时,能级一般为6度简并的。
如 ⎩⎨⎧→++=++→++=++)9,6,3()10,5,1(2086161210)11,3,1()9,7,1(10438652222222222223.3)设粒子处在一维无限深方势阱中,⎩⎨⎧><∞<<=ax 0, ,0 ,0),(x ax y x V 证明处于定态)(x n ψ的粒子)61(12)x -(x ,22222πn aa x -==讨论∞→ n 的情况,并于经典力学计算结果相比较。
第三章 量子力学导论
一、学习要点
1.德布罗意假设:
(1)内容: ων ==h E , n k k h p λ
πλ2,=== (2)实验验证:戴维孙—革末试验
电子 λ
≈(nm ) 2.测不准关系:2 ≥
∆⋅∆x p x , 2 ≥∆⋅∆E t ; 3.波函数及其统计解释、标准条件、归一化条件
薛定谔方程、定态薛定谔方程、定态波函数、定态
4.量子力学对氢原子的处理
第三章自测
1.选择题
(1)为了证实德布罗意假设,戴维孙—革末于1927年在镍单晶体上做了电子衍射实验从而证明了:
A.电子的波动性和粒子性
B.电子的波动性
C.电子的粒子性
D.所有粒子具有二相性
(2)德布罗意假设可归结为下列关系式: A .E=h υ, p=λh
; B.E=ω ,P=κ ; C. E=h υ ,p =λ
; D. E=ω ,p=λ
(4)基于德布罗意假设得出的公式
λ=nm 的适用条件是: A.自由电子,非相对论近似; B.一切实物粒子,非相对论近似;
C.被电场束缚的电子,相对论结果; D 带电的任何粒子,非相对论近似
(5)如果一个原子处于某能态的时间为10-7S,原子这个能态能量的最小不确定数量级为(以焦耳为单位):
A .10-34; B.10-27; C.10-24; D.10-30
2.简答题
(1)波恩对波函数作出什么样的解释?(长春光机所1999)
(2)请回答测不准关系的主要内容和物理实质.(长春光机所1998)。