无穷区间上的广义积分
- 格式:ppt
- 大小:1.40 MB
- 文档页数:62
广义积分与无穷小量的概念与运算在微积分学中,广义积分是一种重要的数学工具。
它的概念与运算方法与无穷小量密切相关。
本文将介绍广义积分和无穷小量的基本概念,并探讨它们之间的运算规则。
一、广义积分的概念广义积分是对一定范围内函数的积分运算。
它与定积分的概念类似,但对于某些函数而言,定积分的定义不能直接适用。
这时,我们就需要引入广义积分来处理这种情况。
对于函数f(x),在区间[a, b]上的广义积分可表示为:∫f(x)dx = lim┬(t→b⁻)〖∫_a^t f(x)dx〗其中,lim表示极限,a和b为积分区间的端点。
在计算广义积分时,我们通常将b设为一个趋于无穷的数,使得函数在该点不再有定义上的问题。
二、无穷小量的概念无穷小量是微积分中一个重要的概念,它表示当自变量趋于某个确定值时,函数取得的极限为零。
无穷小量常用符号o来表示。
形式化地,如果当x趋于a时,函数f(x)满足lim┬(x→a)〖f(x) = 0〗,则称f(x)为x趋于a时的无穷小量。
无穷小量在微积分中有着广泛的应用。
例如,在求导数和积分中,可以利用无穷小量的性质进行计算和推导。
三、广义积分与无穷小量的关系广义积分中的无穷小量概念与极限的思想密切相关。
为了更好地理解广义积分与无穷小量的关系,我们以一个例子来说明。
考虑函数f(x) = 1/x,我们想要求解∫f(x)dx,其中积分区间为[1, ∞)。
首先,我们将该广义积分问题转化为极限问题,即求解lim┬(t→∞)〖∫_1^t 1/x dx〗。
根据定积分的性质,我们可以通过求解定积分的极限来得到广义积分的值。
进一步计算,我们有:lim┬(t→∞)〖∫_1^t 1/x dx = lim┬(t→∞)〖ln(t) - ln(1)〗= ∞〗由此可见,在这个例子中,广义积分∫f(x)dx的值为无穷大。
这说明函数f(x) = 1/x在区间[1, ∞)上不满足定积分的定义,因此需要引入广义积分的概念来处理。