数学建模第四章差分方程方法
- 格式:ppt
- 大小:486.50 KB
- 文档页数:36
(完整版)差分方程的常见解法差分方程的常见解法差分方程是数学中的一种重要方程类型,常用于描述离散事件系统的发展规律。
在求解差分方程时,我们可以采用以下几种常见的解法。
1. 直接求解法直接求解法是最简单且常用的差分方程求解方法之一。
它的基本思想是通过观察差分方程的规律,找到解的形式,并通过代入验证得到确切的解。
举例来说,对于一阶线性差分方程$y_{n+1} = ay_n + b$,我们可以猜测解的形式为$y_n = c\lambda^n$,其中$c$和$\lambda$为待定常数。
将此解代入方程,再通过已知条件解得$c$和$\lambda$的值,从而得到原差分方程的解。
2. 特征方程法特征方程法是一种常用于求解线性齐次差分方程的方法。
对于形如$y_{n+2} = ay_{n+1} + by_n$的差分方程,我们可以通过构造特征方程来求解。
具体步骤是,我们将差分方程中的项移动到一边,得到$y_{n+2} - ay_{n+1} - by_n = 0$。
然后,假设解的形式为$y_n =\lambda^n$,将其代入方程,得到特征方程$\lambda^2 - a\lambda - b = 0$。
解这个特征方程,得到特征根$\lambda_1$和$\lambda_2$,然后通解的形式为$y_n = c_1\lambda_1^n + c_2\lambda_2^n$,其中$c_1$和$c_2$为待定常数。
3. Z 变换法Z 变换法是一种广泛应用于差分方程求解的方法,特别适用于线性时不变差分方程。
该方法的基本思想是将差分方程转化为代数方程,并利用 Z 变换的性质求解。
对于差分方程$y_{n+1} = ay_n + b$,通过取 Z 变换,我们可以得到转化后的方程$Y(z) = azY(z) + b \frac{1}{1 - z^{-1}}$,其中$Y(z)$代表$y_n$的Z 变换。
然后,将方程整理,求解得到$Y(z)$,再通过反 Z 变换将其转换为差分方程的解$y_n$。
差分方程模型①建立差分方程利用数学、力学、物理、化学等学科中的定理或经过实验检验的规律来建立差分方程模型。
一阶常系数线性差分方程的一般形式为1(),(0)t t y ay f t a +-=≠(1)②求解一阶常系数齐次线性差分方程10,(0)t t y ay a +-=≠(2)常用的两种解法1)迭代法假设0y 已知,则有2112210(),n n n n n n y ay a ay a y a y a y ----======一般有0(0,1,2,).t t y a y t ==10t t y ay +-=(3)2)特征方程法假设(0)t Y λλ=≠为方程(3)的解,代入(3)得方程的特征方程10(0),t t a λλλ+-= ≠解得特征根:.a λ=则t t y a =是方程(3)的解,所以齐次方程的通解为 (t t y ca c =为任意常数)例题:设某房屋总价为a 元,先付一半可入住,另一半由银行以年利r 贷款, n 年付清,问平均每月付多少元?共付利息多少元?解:设每月应付x 元,月利率为12r ,则第一个月应付利息为 1.12224r a ra y =⨯=第二月应付利息为2111,2121212a r r rx y x y y ⎛⎫⎛⎫=-+⨯=+- ⎪ ⎪⎝⎭⎝⎭以此类推得到 11,1212t t r rx y y +⎛⎫=+- ⎪⎝⎭此方程为一阶常系数非线性差分方程。
其相应的特征方程为(1)012r λ-+= 特征根为112r + 则得到通解为1(12t t r y c c ⎛⎫=+ ⎪⎝⎭为任意常数). 解得特解为t y x *=所以原方程通解为 112t t r y c x ⎛⎫=++ ⎪⎝⎭当112224r a ra y =⨯=时,解得24112ra x c r -=+。
所以解得满足初始条件的特解为112411211211.2121212t t t t ra x r y x r a r r r x x ---⎛⎫=++ ⎪⎝⎭+⎛⎫⎛⎫=⨯⨯++-+ ⎪ ⎪⎝⎭⎝⎭ 于是得到n 年的利息之和为11212121212121221112nnn I y y a r r a n r =++⎛⎫⨯+⨯ ⎪⎝⎭=⨯-⎛⎫+- ⎪⎝⎭ 元,平均每月需要付12121212121112nna r rr⎛⎫⨯+⨯⎪⎝⎭⎛⎫+-⎪⎝⎭元。
差分方程对连续型变量而言,我们常常回导致到微分方程的问题. 对离散型变量将导致一类的问题.一、差分的定义定义 设)(x y y =是一个函数, 自变量从x 变化到x +1, 这时函数的增量记为)()1(x y x y y x -+=∆, 我们趁这个量为)(x y 在点x 步长为1的一阶差分,简称为)(x y 的一阶差分. 为了方便我们也记)(),1(1x y y x y y x x =+=+,即 x x x y y y -=∆+1.称x x x x x x x x y y y y y y y y +-=---=∆∆+++++121122)()()(为)(x y 二阶差分,简记为x y 2∆.同样记)(2x y ∆∆为x y 3∆,并称为三阶差分.一般记)(1x n x n y y -∆∆=∆,称为n 阶差分.且有i n x i ni i n x ny C y -+=-=∆∑)1(0. 性质: 当a,b,C 是常数, y x 和z x 是函数时,(1) Δ(C )=0;(2) Δ(Cy x )= C Δ(y x );(3) Δ(ay x + b z x )= a Δy x + b Δ z x ;(4) Δ(y x z x )= z x+1Δy x +y x Δ z x = y x+1Δz x +z x Δy x ;(5) 1111++++∆-∆=∆-∆=⎪⎪⎭⎫ ⎝⎛∆x x x x x x x x x x x x x x z z z y y z z z z y y z z y . 例 已知),0(≠=x x y x α求Δ(y x ).解 Δ(y x )= ααx x -+)1(.特别, 当n 为正整数时, Δ(y x )= i n n i i n x C -=∑1, 阶数降了一阶.推论 若m, ,n 为正整数时, m,> n P(x)为n 次多项式,则0)(=∆x P m .例 已知),10(≠<=a a y x x 求Δ(y x ).解 Δ(y x )= )1(1-=-+a a a a x x x .二、差分方程定义 设是含有未知函数差分的等式,称为差分方程。
第四章 差分方程方法在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。
有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。
这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。
关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。
下面就不同类型的差分方程进行讨论。
所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。
4.1常系数线性差分方程4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为02211=+⋯+++---k n k n n n x a x a x a x (4.1)其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。
对应的代数方程02211=++++--k k k k a a a λλλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。
常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。
下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。
1. 特征根为单根设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为nk k n n n c c c x λλλ+++= 2211,其中k c c c ,,,21 为任意常数,且当给定初始条件()0 i i x λ= ()k i ,,2,1 = (4.3)时,可以唯一确定一个特解。
2. 特征根为重根设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ 重数分别为l m m m ,,,21 且k m li i =∑=1则差分方程(4.1)的通解为n l i m i li n i m i i n i m i i n n c n c n c x lλλλ112112111121-=-=-=∑∑∑+++=同样的,由给定的初始条件(4.3)可以唯一确定一个特解。
数学建模中的差分方程算法在数学建模中,差分方程算法是常用的一种方法。
它可以用来模拟各种现象,例如人口增长、物理运动等。
差分方程算法采用差分逼近的方法来解决连续变量的问题。
本文将介绍差分方程算法的基本原理和应用。
一、差分方程算法的基本原理差分方程算法是在连续变量上进行离散化的方法。
它将一个连续变量的函数f(x)离散化为一个由离散节点组成的序列f(x1),f(x2), …, f(xn)。
这些离散节点通常是等间距的。
通过差分逼近的方法,我们可以将f(x)的导数、二阶导数等进行离散化,从而得到相应的差分方程。
一个一阶常微分方程的一般形式为:dy/dx = f(x,y)如果我们将x、y离散化,可以得到以下的形式:(yi+1-yi)/(xi+1-xi) = f(xi, yi)其中,xi和yi表示第i个离散节点上的值,xi+1和yi+1表示第i+1个离散节点上的值。
这个式子就是一个一阶差分方程。
二、差分方程算法的应用差分方程算法可以用来模拟各种现象。
下面将介绍几个常见的应用。
(一) 人口增长人口增长可以用一个简单的模型来描述:每年有一定比例的人口出生,同时有一定比例的人口死亡。
假设出生率为b,死亡率为d,那么人口增长的速率就是(b-d)N,其中N是当前人口数量。
将时间离散化,可以得到以下的差分方程:Nt+1 - Nt = (b-d)Nt这个式子表示,下一年的人口数量等于当前的人口数量加上人口增长的数量。
每一年人口增长的数量是(b-d)N,其中N表示当前的人口数量。
(二) 物理运动物理运动可以用牛顿第二定律来描述:加速度等于力除以质量。
假设物体的质量为m,力为F,速度为v,物体的位置为x,那么可以得到以下的差分方程:v(t+dt) = v(t) + a(t)dtx(t+dt) = x(t) + v(t)dt + 0.5a(t)dt^2a(t) = F(t)/m这三个式子分别表示,下一时刻的速度等于当前速度加上加速度乘以时间变化量dt;下一时刻的位置等于当前位置加上速度乘以时间变化量dt加上1/2的加速度乘以时间变化量的平方;加速度等于力除以质量。
数学建模方法之差分方程模型差分方程模型是数学建模中常用的一种方法,它基于差分方程来描述问题,并用差分方程来求解问题。
所谓差分方程,是指用差分代替微分的方程,它是一种离散的模型。
在实际问题中,很多情况下,并不能直接通过微分方程来描述问题,而差分方程模型则可以通过离散化的方法来近似地描述问题。
差分方程模型的优点之一是可以适用于离散化的数据,对于实际问题的离散化模型建立是非常有帮助的。
差分方程模型的另一个优点是可以通过数值方法来求解,不需要进行繁琐的解析推导,因此适用于复杂问题的求解。
差分方程模型的基本形式为:yn+1 = fn(yn, yn-1, ..., yn-k)其中,yn表示第n个时刻的解,fn是一个给定的函数,表示通过前k个时刻的解来计算第n+1个时刻的解。
这个方程是离散的,通过已知的初始条件来逐步递推获得结果。
差分方程模型的适用范围非常广泛,可以用于描述和预测各种动态过程。
例如,差分方程模型可以用来描述人口增长模型、生态系统模型、传染病模型等等。
在这些例子中,差分方程模型可以通过已知的数据和初始条件来预测未来的发展趋势。
差分方程模型的建立步骤主要包括以下几个方面:1.确定问题的描述和目标:明确问题的背景和目标,确定需要建立差分方程模型的原因和用途。
2.确定模型的变量和参数:根据实际问题,确定需要用到的变量和参数。
3.确定差分方程的形式和函数:根据问题的特点和要求,选择合适的差分方程形式和函数。
这部分需要结合实际问题和数学方法来确定。
4.确定初始条件和边界条件:确定差分方程模型的初始条件和边界条件。
这部分是求解差分方程的前提条件。
5.差分方程的求解和分析:通过数值方法求解差分方程,得到数值解,并对结果进行分析和解释。
数学建模差分方程问题数学建模是运用数学方法解决现实问题的一种方法。
而差分方程是数学建模中常用的一种数学工具,用于描述离散时间的动态系统。
本文将介绍差分方程的基本概念和应用,并以一个实际问题为例进行论述。
一、差分方程概述差分方程是一种用差分代替导数的方程,适用于离散时间的动态系统建模。
差分方程常用于描述离散时间下的变量变化规律,包括时序数据和动态优化等问题。
差分方程可以通过迭代求解来获得系统的演化过程。
二、差分方程的类型差分方程可分为线性差分方程和非线性差分方程两种类型。
线性差分方程的形式为:y(n+1) = a*y(n) + b*y(n-1)其中,y(n)表示第n个时间点的变量值,a和b为常数。
非线性差分方程的形式更加复杂,可以包含更多的项和参数,例如:y(n+1) = a*y(n)^2 + b*y(n-1) + c*n其中,y(n)^2表示y(n)的平方,c*n表示变量与时间的乘积。
三、差分方程的应用差分方程广泛应用于各个领域的实际问题,在科学研究、工程设计和金融市场等方面都有重要的应用价值。
下面以生态系统模型为例,来介绍差分方程的具体应用。
生态系统模型是生态学领域中的重要问题之一。
考虑一个简化的生态系统,由捕食者和被捕食者两个物种组成。
假设捕食者的数量为x,被捕食者的数量为y。
捕食者的增长速率与被捕食者的数量成正比,而被捕食者的减少速率与捕食者的数量成正比。
则可以建立如下差分方程模型:x(n+1) = x(n) + a*x(n)*y(n)y(n+1) = y(n) - b*x(n)*y(n)其中,a和b为模型的参数,表示捕食者与被捕食者之间的相互作用强度。
通过迭代求解这个差分方程模型,可以得到生态系统中捕食者和被捕食者数量的变化趋势。
四、差分方程的求解方法差分方程的求解可以通过数值方法进行。
常见的有欧拉法和龙格-库塔法等。
这些方法可以将差分方程转化为计算机程序进行求解,得到系统的近似解。
五、差分方程与其他数学工具的关系差分方程与微分方程是数学建模中常用的两种数学工具。